namespace std { typedef long unsigned int size_t; typedef long int ptrdiff_t; } namespace std { inline namespace __gnu_cxx_ldbl128 { } } namespace std __attribute__ ((__visibility__ ("default"))) { template class allocator; template struct char_traits; template, typename _Alloc = allocator<_CharT> > class basic_string; template<> struct char_traits; typedef basic_string string; template<> struct char_traits; typedef basic_string wstring; } namespace std __attribute__ ((__visibility__ ("default"))) { void __throw_bad_exception(void) __attribute__((__noreturn__)); void __throw_bad_alloc(void) __attribute__((__noreturn__)); void __throw_bad_cast(void) __attribute__((__noreturn__)); void __throw_bad_typeid(void) __attribute__((__noreturn__)); void __throw_logic_error(const char*) __attribute__((__noreturn__)); void __throw_domain_error(const char*) __attribute__((__noreturn__)); void __throw_invalid_argument(const char*) __attribute__((__noreturn__)); void __throw_length_error(const char*) __attribute__((__noreturn__)); void __throw_out_of_range(const char*) __attribute__((__noreturn__)); void __throw_runtime_error(const char*) __attribute__((__noreturn__)); void __throw_range_error(const char*) __attribute__((__noreturn__)); void __throw_overflow_error(const char*) __attribute__((__noreturn__)); void __throw_underflow_error(const char*) __attribute__((__noreturn__)); void __throw_ios_failure(const char*) __attribute__((__noreturn__)); void __throw_system_error(int) __attribute__((__noreturn__)); void __throw_future_error(int) __attribute__((__noreturn__)); void __throw_bad_function_call() __attribute__((__noreturn__)); } namespace __gnu_cxx __attribute__ ((__visibility__ ("default"))) { template class __normal_iterator; } namespace std __attribute__ ((__visibility__ ("default"))) { struct __true_type { }; struct __false_type { }; template struct __truth_type { typedef __false_type __type; }; template<> struct __truth_type { typedef __true_type __type; }; template struct __traitor { enum { __value = bool(_Sp::__value) || bool(_Tp::__value) }; typedef typename __truth_type<__value>::__type __type; }; template struct __are_same { enum { __value = 0 }; typedef __false_type __type; }; template struct __are_same<_Tp, _Tp> { enum { __value = 1 }; typedef __true_type __type; }; template struct __is_void { enum { __value = 0 }; typedef __false_type __type; }; template<> struct __is_void { enum { __value = 1 }; typedef __true_type __type; }; template struct __is_integer { enum { __value = 0 }; typedef __false_type __type; }; template<> struct __is_integer { enum { __value = 1 }; typedef __true_type __type; }; template<> struct __is_integer { enum { __value = 1 }; typedef __true_type __type; }; template<> struct __is_integer { enum { __value = 1 }; typedef __true_type __type; }; template<> struct __is_integer { enum { __value = 1 }; typedef __true_type __type; }; template<> struct __is_integer { enum { __value = 1 }; typedef __true_type __type; }; template<> struct __is_integer { enum { __value = 1 }; typedef __true_type __type; }; template<> struct __is_integer { enum { __value = 1 }; typedef __true_type __type; }; template<> struct __is_integer { enum { __value = 1 }; typedef __true_type __type; }; template<> struct __is_integer { enum { __value = 1 }; typedef __true_type __type; }; template<> struct __is_integer { enum { __value = 1 }; typedef __true_type __type; }; template<> struct __is_integer { enum { __value = 1 }; typedef __true_type __type; }; template<> struct __is_integer { enum { __value = 1 }; typedef __true_type __type; }; template<> struct __is_integer { enum { __value = 1 }; typedef __true_type __type; }; template struct __is_floating { enum { __value = 0 }; typedef __false_type __type; }; template<> struct __is_floating { enum { __value = 1 }; typedef __true_type __type; }; template<> struct __is_floating { enum { __value = 1 }; typedef __true_type __type; }; template<> struct __is_floating { enum { __value = 1 }; typedef __true_type __type; }; template struct __is_pointer { enum { __value = 0 }; typedef __false_type __type; }; template struct __is_pointer<_Tp*> { enum { __value = 1 }; typedef __true_type __type; }; template struct __is_normal_iterator { enum { __value = 0 }; typedef __false_type __type; }; template struct __is_normal_iterator< __gnu_cxx::__normal_iterator<_Iterator, _Container> > { enum { __value = 1 }; typedef __true_type __type; }; template struct __is_arithmetic : public __traitor<__is_integer<_Tp>, __is_floating<_Tp> > { }; template struct __is_fundamental : public __traitor<__is_void<_Tp>, __is_arithmetic<_Tp> > { }; template struct __is_scalar : public __traitor<__is_arithmetic<_Tp>, __is_pointer<_Tp> > { }; template struct __is_char { enum { __value = 0 }; typedef __false_type __type; }; template<> struct __is_char { enum { __value = 1 }; typedef __true_type __type; }; template<> struct __is_char { enum { __value = 1 }; typedef __true_type __type; }; template struct __is_byte { enum { __value = 0 }; typedef __false_type __type; }; template<> struct __is_byte { enum { __value = 1 }; typedef __true_type __type; }; template<> struct __is_byte { enum { __value = 1 }; typedef __true_type __type; }; template<> struct __is_byte { enum { __value = 1 }; typedef __true_type __type; }; template struct __is_move_iterator { enum { __value = 0 }; typedef __false_type __type; }; } namespace __gnu_cxx __attribute__ ((__visibility__ ("default"))) { template struct __enable_if { }; template struct __enable_if { typedef _Tp __type; }; template struct __conditional_type { typedef _Iftrue __type; }; template struct __conditional_type { typedef _Iffalse __type; }; template struct __add_unsigned { private: typedef __enable_if::__value, _Tp> __if_type; public: typedef typename __if_type::__type __type; }; template<> struct __add_unsigned { typedef unsigned char __type; }; template<> struct __add_unsigned { typedef unsigned char __type; }; template<> struct __add_unsigned { typedef unsigned short __type; }; template<> struct __add_unsigned { typedef unsigned int __type; }; template<> struct __add_unsigned { typedef unsigned long __type; }; template<> struct __add_unsigned { typedef unsigned long long __type; }; template<> struct __add_unsigned; template<> struct __add_unsigned; template struct __remove_unsigned { private: typedef __enable_if::__value, _Tp> __if_type; public: typedef typename __if_type::__type __type; }; template<> struct __remove_unsigned { typedef signed char __type; }; template<> struct __remove_unsigned { typedef signed char __type; }; template<> struct __remove_unsigned { typedef short __type; }; template<> struct __remove_unsigned { typedef int __type; }; template<> struct __remove_unsigned { typedef long __type; }; template<> struct __remove_unsigned { typedef long long __type; }; template<> struct __remove_unsigned; template<> struct __remove_unsigned; template inline bool __is_null_pointer(_Type* __ptr) { return __ptr == 0; } template inline bool __is_null_pointer(_Type) { return false; } template::__value> struct __promote { typedef double __type; }; template struct __promote<_Tp, false> { }; template<> struct __promote { typedef long double __type; }; template<> struct __promote { typedef double __type; }; template<> struct __promote { typedef float __type; }; template::__type, typename _Up2 = typename __promote<_Up>::__type> struct __promote_2 { typedef __typeof__(_Tp2() + _Up2()) __type; }; template::__type, typename _Up2 = typename __promote<_Up>::__type, typename _Vp2 = typename __promote<_Vp>::__type> struct __promote_3 { typedef __typeof__(_Tp2() + _Up2() + _Vp2()) __type; }; template::__type, typename _Up2 = typename __promote<_Up>::__type, typename _Vp2 = typename __promote<_Vp>::__type, typename _Wp2 = typename __promote<_Wp>::__type> struct __promote_4 { typedef __typeof__(_Tp2() + _Up2() + _Vp2() + _Wp2()) __type; }; } namespace __gnu_cxx __attribute__ ((__visibility__ ("default"))) { template struct __numeric_traits_integer { static const _Value __min = (((_Value)(-1) < 0) ? (_Value)1 << (sizeof(_Value) * 8 - ((_Value)(-1) < 0)) : (_Value)0); static const _Value __max = (((_Value)(-1) < 0) ? (((((_Value)1 << ((sizeof(_Value) * 8 - ((_Value)(-1) < 0)) - 1)) - 1) << 1) + 1) : ~(_Value)0); static const bool __is_signed = ((_Value)(-1) < 0); static const int __digits = (sizeof(_Value) * 8 - ((_Value)(-1) < 0)); }; template const _Value __numeric_traits_integer<_Value>::__min; template const _Value __numeric_traits_integer<_Value>::__max; template const bool __numeric_traits_integer<_Value>::__is_signed; template const int __numeric_traits_integer<_Value>::__digits; template struct __numeric_traits_floating { static const int __max_digits10 = (2 + (std::__are_same<_Value, float>::__value ? 24 : std::__are_same<_Value, double>::__value ? 53 : 106) * 643L / 2136); static const bool __is_signed = true; static const int __digits10 = (std::__are_same<_Value, float>::__value ? 6 : std::__are_same<_Value, double>::__value ? 15 : 31); static const int __max_exponent10 = (std::__are_same<_Value, float>::__value ? 38 : std::__are_same<_Value, double>::__value ? 308 : 308); }; template const int __numeric_traits_floating<_Value>::__max_digits10; template const bool __numeric_traits_floating<_Value>::__is_signed; template const int __numeric_traits_floating<_Value>::__digits10; template const int __numeric_traits_floating<_Value>::__max_exponent10; template struct __numeric_traits : public __conditional_type::__value, __numeric_traits_integer<_Value>, __numeric_traits_floating<_Value> >::__type { }; } namespace std __attribute__ ((__visibility__ ("default"))) { template inline _Tp* __addressof(_Tp& __r) { return reinterpret_cast<_Tp*> (&const_cast(reinterpret_cast(__r))); } } namespace std __attribute__ ((__visibility__ ("default"))) { template inline void swap(_Tp& __a, _Tp& __b) { _Tp __tmp = (__a); __a = (__b); __b = (__tmp); } template inline void swap(_Tp (&__a)[_Nm], _Tp (&__b)[_Nm]) { for (size_t __n = 0; __n < _Nm; ++__n) swap(__a[__n], __b[__n]); } } namespace std __attribute__ ((__visibility__ ("default"))) { template struct pair { typedef _T1 first_type; typedef _T2 second_type; _T1 first; _T2 second; pair() : first(), second() { } pair(const _T1& __a, const _T2& __b) : first(__a), second(__b) { } template pair(const pair<_U1, _U2>& __p) : first(__p.first), second(__p.second) { } }; template inline bool operator==(const pair<_T1, _T2>& __x, const pair<_T1, _T2>& __y) { return __x.first == __y.first && __x.second == __y.second; } template inline bool operator<(const pair<_T1, _T2>& __x, const pair<_T1, _T2>& __y) { return __x.first < __y.first || (!(__y.first < __x.first) && __x.second < __y.second); } template inline bool operator!=(const pair<_T1, _T2>& __x, const pair<_T1, _T2>& __y) { return !(__x == __y); } template inline bool operator>(const pair<_T1, _T2>& __x, const pair<_T1, _T2>& __y) { return __y < __x; } template inline bool operator<=(const pair<_T1, _T2>& __x, const pair<_T1, _T2>& __y) { return !(__y < __x); } template inline bool operator>=(const pair<_T1, _T2>& __x, const pair<_T1, _T2>& __y) { return !(__x < __y); } template inline pair<_T1, _T2> make_pair(_T1 __x, _T2 __y) { return pair<_T1, _T2>(__x, __y); } } namespace std __attribute__ ((__visibility__ ("default"))) { struct input_iterator_tag { }; struct output_iterator_tag { }; struct forward_iterator_tag : public input_iterator_tag { }; struct bidirectional_iterator_tag : public forward_iterator_tag { }; struct random_access_iterator_tag : public bidirectional_iterator_tag { }; template struct iterator { typedef _Category iterator_category; typedef _Tp value_type; typedef _Distance difference_type; typedef _Pointer pointer; typedef _Reference reference; }; template struct iterator_traits { typedef typename _Iterator::iterator_category iterator_category; typedef typename _Iterator::value_type value_type; typedef typename _Iterator::difference_type difference_type; typedef typename _Iterator::pointer pointer; typedef typename _Iterator::reference reference; }; template struct iterator_traits<_Tp*> { typedef random_access_iterator_tag iterator_category; typedef _Tp value_type; typedef ptrdiff_t difference_type; typedef _Tp* pointer; typedef _Tp& reference; }; template struct iterator_traits { typedef random_access_iterator_tag iterator_category; typedef _Tp value_type; typedef ptrdiff_t difference_type; typedef const _Tp* pointer; typedef const _Tp& reference; }; template inline typename iterator_traits<_Iter>::iterator_category __iterator_category(const _Iter&) { return typename iterator_traits<_Iter>::iterator_category(); } template struct _Iter_base { typedef _Iterator iterator_type; static iterator_type _S_base(_Iterator __it) { return __it; } }; template struct _Iter_base<_Iterator, true> { typedef typename _Iterator::iterator_type iterator_type; static iterator_type _S_base(_Iterator __it) { return __it.base(); } }; } namespace std __attribute__ ((__visibility__ ("default"))) { template inline typename iterator_traits<_InputIterator>::difference_type __distance(_InputIterator __first, _InputIterator __last, input_iterator_tag) { typename iterator_traits<_InputIterator>::difference_type __n = 0; while (__first != __last) { ++__first; ++__n; } return __n; } template inline typename iterator_traits<_RandomAccessIterator>::difference_type __distance(_RandomAccessIterator __first, _RandomAccessIterator __last, random_access_iterator_tag) { return __last - __first; } template inline typename iterator_traits<_InputIterator>::difference_type distance(_InputIterator __first, _InputIterator __last) { return std::__distance(__first, __last, std::__iterator_category(__first)); } template inline void __advance(_InputIterator& __i, _Distance __n, input_iterator_tag) { while (__n--) ++__i; } template inline void __advance(_BidirectionalIterator& __i, _Distance __n, bidirectional_iterator_tag) { if (__n > 0) while (__n--) ++__i; else while (__n++) --__i; } template inline void __advance(_RandomAccessIterator& __i, _Distance __n, random_access_iterator_tag) { __i += __n; } template inline void advance(_InputIterator& __i, _Distance __n) { typename iterator_traits<_InputIterator>::difference_type __d = __n; std::__advance(__i, __d, std::__iterator_category(__i)); } } namespace std __attribute__ ((__visibility__ ("default"))) { template class reverse_iterator : public iterator::iterator_category, typename iterator_traits<_Iterator>::value_type, typename iterator_traits<_Iterator>::difference_type, typename iterator_traits<_Iterator>::pointer, typename iterator_traits<_Iterator>::reference> { protected: _Iterator current; typedef iterator_traits<_Iterator> __traits_type; public: typedef _Iterator iterator_type; typedef typename __traits_type::difference_type difference_type; typedef typename __traits_type::pointer pointer; typedef typename __traits_type::reference reference; reverse_iterator() : current() { } explicit reverse_iterator(iterator_type __x) : current(__x) { } reverse_iterator(const reverse_iterator& __x) : current(__x.current) { } template reverse_iterator(const reverse_iterator<_Iter>& __x) : current(__x.base()) { } iterator_type base() const { return current; } reference operator*() const { _Iterator __tmp = current; return *--__tmp; } pointer operator->() const { return &(operator*()); } reverse_iterator& operator++() { --current; return *this; } reverse_iterator operator++(int) { reverse_iterator __tmp = *this; --current; return __tmp; } reverse_iterator& operator--() { ++current; return *this; } reverse_iterator operator--(int) { reverse_iterator __tmp = *this; ++current; return __tmp; } reverse_iterator operator+(difference_type __n) const { return reverse_iterator(current - __n); } reverse_iterator& operator+=(difference_type __n) { current -= __n; return *this; } reverse_iterator operator-(difference_type __n) const { return reverse_iterator(current + __n); } reverse_iterator& operator-=(difference_type __n) { current += __n; return *this; } reference operator[](difference_type __n) const { return *(*this + __n); } }; template inline bool operator==(const reverse_iterator<_Iterator>& __x, const reverse_iterator<_Iterator>& __y) { return __x.base() == __y.base(); } template inline bool operator<(const reverse_iterator<_Iterator>& __x, const reverse_iterator<_Iterator>& __y) { return __y.base() < __x.base(); } template inline bool operator!=(const reverse_iterator<_Iterator>& __x, const reverse_iterator<_Iterator>& __y) { return !(__x == __y); } template inline bool operator>(const reverse_iterator<_Iterator>& __x, const reverse_iterator<_Iterator>& __y) { return __y < __x; } template inline bool operator<=(const reverse_iterator<_Iterator>& __x, const reverse_iterator<_Iterator>& __y) { return !(__y < __x); } template inline bool operator>=(const reverse_iterator<_Iterator>& __x, const reverse_iterator<_Iterator>& __y) { return !(__x < __y); } template inline typename reverse_iterator<_Iterator>::difference_type operator-(const reverse_iterator<_Iterator>& __x, const reverse_iterator<_Iterator>& __y) { return __y.base() - __x.base(); } template inline reverse_iterator<_Iterator> operator+(typename reverse_iterator<_Iterator>::difference_type __n, const reverse_iterator<_Iterator>& __x) { return reverse_iterator<_Iterator>(__x.base() - __n); } template inline bool operator==(const reverse_iterator<_IteratorL>& __x, const reverse_iterator<_IteratorR>& __y) { return __x.base() == __y.base(); } template inline bool operator<(const reverse_iterator<_IteratorL>& __x, const reverse_iterator<_IteratorR>& __y) { return __y.base() < __x.base(); } template inline bool operator!=(const reverse_iterator<_IteratorL>& __x, const reverse_iterator<_IteratorR>& __y) { return !(__x == __y); } template inline bool operator>(const reverse_iterator<_IteratorL>& __x, const reverse_iterator<_IteratorR>& __y) { return __y < __x; } template inline bool operator<=(const reverse_iterator<_IteratorL>& __x, const reverse_iterator<_IteratorR>& __y) { return !(__y < __x); } template inline bool operator>=(const reverse_iterator<_IteratorL>& __x, const reverse_iterator<_IteratorR>& __y) { return !(__x < __y); } template inline typename reverse_iterator<_IteratorL>::difference_type operator-(const reverse_iterator<_IteratorL>& __x, const reverse_iterator<_IteratorR>& __y) { return __y.base() - __x.base(); } template class back_insert_iterator : public iterator { protected: _Container* container; public: typedef _Container container_type; explicit back_insert_iterator(_Container& __x) : container(&__x) { } back_insert_iterator& operator=(typename _Container::const_reference __value) { container->push_back(__value); return *this; } back_insert_iterator& operator*() { return *this; } back_insert_iterator& operator++() { return *this; } back_insert_iterator operator++(int) { return *this; } }; template inline back_insert_iterator<_Container> back_inserter(_Container& __x) { return back_insert_iterator<_Container>(__x); } template class front_insert_iterator : public iterator { protected: _Container* container; public: typedef _Container container_type; explicit front_insert_iterator(_Container& __x) : container(&__x) { } front_insert_iterator& operator=(typename _Container::const_reference __value) { container->push_front(__value); return *this; } front_insert_iterator& operator*() { return *this; } front_insert_iterator& operator++() { return *this; } front_insert_iterator operator++(int) { return *this; } }; template inline front_insert_iterator<_Container> front_inserter(_Container& __x) { return front_insert_iterator<_Container>(__x); } template class insert_iterator : public iterator { protected: _Container* container; typename _Container::iterator iter; public: typedef _Container container_type; insert_iterator(_Container& __x, typename _Container::iterator __i) : container(&__x), iter(__i) {} insert_iterator& operator=(typename _Container::const_reference __value) { iter = container->insert(iter, __value); ++iter; return *this; } insert_iterator& operator*() { return *this; } insert_iterator& operator++() { return *this; } insert_iterator& operator++(int) { return *this; } }; template inline insert_iterator<_Container> inserter(_Container& __x, _Iterator __i) { return insert_iterator<_Container>(__x, typename _Container::iterator(__i)); } } namespace __gnu_cxx __attribute__ ((__visibility__ ("default"))) { using std::iterator_traits; using std::iterator; template class __normal_iterator { protected: _Iterator _M_current; typedef iterator_traits<_Iterator> __traits_type; public: typedef _Iterator iterator_type; typedef typename __traits_type::iterator_category iterator_category; typedef typename __traits_type::value_type value_type; typedef typename __traits_type::difference_type difference_type; typedef typename __traits_type::reference reference; typedef typename __traits_type::pointer pointer; __normal_iterator() : _M_current(_Iterator()) { } explicit __normal_iterator(const _Iterator& __i) : _M_current(__i) { } template __normal_iterator(const __normal_iterator<_Iter, typename __enable_if< (std::__are_same<_Iter, typename _Container::pointer>::__value), _Container>::__type>& __i) : _M_current(__i.base()) { } reference operator*() const { return *_M_current; } pointer operator->() const { return _M_current; } __normal_iterator& operator++() { ++_M_current; return *this; } __normal_iterator operator++(int) { return __normal_iterator(_M_current++); } __normal_iterator& operator--() { --_M_current; return *this; } __normal_iterator operator--(int) { return __normal_iterator(_M_current--); } reference operator[](const difference_type& __n) const { return _M_current[__n]; } __normal_iterator& operator+=(const difference_type& __n) { _M_current += __n; return *this; } __normal_iterator operator+(const difference_type& __n) const { return __normal_iterator(_M_current + __n); } __normal_iterator& operator-=(const difference_type& __n) { _M_current -= __n; return *this; } __normal_iterator operator-(const difference_type& __n) const { return __normal_iterator(_M_current - __n); } const _Iterator& base() const { return _M_current; } }; template inline bool operator==(const __normal_iterator<_IteratorL, _Container>& __lhs, const __normal_iterator<_IteratorR, _Container>& __rhs) { return __lhs.base() == __rhs.base(); } template inline bool operator==(const __normal_iterator<_Iterator, _Container>& __lhs, const __normal_iterator<_Iterator, _Container>& __rhs) { return __lhs.base() == __rhs.base(); } template inline bool operator!=(const __normal_iterator<_IteratorL, _Container>& __lhs, const __normal_iterator<_IteratorR, _Container>& __rhs) { return __lhs.base() != __rhs.base(); } template inline bool operator!=(const __normal_iterator<_Iterator, _Container>& __lhs, const __normal_iterator<_Iterator, _Container>& __rhs) { return __lhs.base() != __rhs.base(); } template inline bool operator<(const __normal_iterator<_IteratorL, _Container>& __lhs, const __normal_iterator<_IteratorR, _Container>& __rhs) { return __lhs.base() < __rhs.base(); } template inline bool operator<(const __normal_iterator<_Iterator, _Container>& __lhs, const __normal_iterator<_Iterator, _Container>& __rhs) { return __lhs.base() < __rhs.base(); } template inline bool operator>(const __normal_iterator<_IteratorL, _Container>& __lhs, const __normal_iterator<_IteratorR, _Container>& __rhs) { return __lhs.base() > __rhs.base(); } template inline bool operator>(const __normal_iterator<_Iterator, _Container>& __lhs, const __normal_iterator<_Iterator, _Container>& __rhs) { return __lhs.base() > __rhs.base(); } template inline bool operator<=(const __normal_iterator<_IteratorL, _Container>& __lhs, const __normal_iterator<_IteratorR, _Container>& __rhs) { return __lhs.base() <= __rhs.base(); } template inline bool operator<=(const __normal_iterator<_Iterator, _Container>& __lhs, const __normal_iterator<_Iterator, _Container>& __rhs) { return __lhs.base() <= __rhs.base(); } template inline bool operator>=(const __normal_iterator<_IteratorL, _Container>& __lhs, const __normal_iterator<_IteratorR, _Container>& __rhs) { return __lhs.base() >= __rhs.base(); } template inline bool operator>=(const __normal_iterator<_Iterator, _Container>& __lhs, const __normal_iterator<_Iterator, _Container>& __rhs) { return __lhs.base() >= __rhs.base(); } template inline typename __normal_iterator<_IteratorL, _Container>::difference_type operator-(const __normal_iterator<_IteratorL, _Container>& __lhs, const __normal_iterator<_IteratorR, _Container>& __rhs) { return __lhs.base() - __rhs.base(); } template inline typename __normal_iterator<_Iterator, _Container>::difference_type operator-(const __normal_iterator<_Iterator, _Container>& __lhs, const __normal_iterator<_Iterator, _Container>& __rhs) { return __lhs.base() - __rhs.base(); } template inline __normal_iterator<_Iterator, _Container> operator+(typename __normal_iterator<_Iterator, _Container>::difference_type __n, const __normal_iterator<_Iterator, _Container>& __i) { return __normal_iterator<_Iterator, _Container>(__i.base() + __n); } } namespace std { namespace __debug { } } namespace __gnu_debug { using namespace std::__debug; } namespace std __attribute__ ((__visibility__ ("default"))) { template struct __iter_swap { template static void iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b) { typedef typename iterator_traits<_ForwardIterator1>::value_type _ValueType1; _ValueType1 __tmp = (*__a); *__a = (*__b); *__b = (__tmp); } }; template<> struct __iter_swap { template static void iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b) { swap(*__a, *__b); } }; template inline void iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b) { typedef typename iterator_traits<_ForwardIterator1>::value_type _ValueType1; typedef typename iterator_traits<_ForwardIterator2>::value_type _ValueType2; typedef typename iterator_traits<_ForwardIterator1>::reference _ReferenceType1; typedef typename iterator_traits<_ForwardIterator2>::reference _ReferenceType2; std::__iter_swap<__are_same<_ValueType1, _ValueType2>::__value && __are_same<_ValueType1&, _ReferenceType1>::__value && __are_same<_ValueType2&, _ReferenceType2>::__value>:: iter_swap(__a, __b); } template _ForwardIterator2 swap_ranges(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2) { ; for (; __first1 != __last1; ++__first1, ++__first2) std::iter_swap(__first1, __first2); return __first2; } template inline const _Tp& min(const _Tp& __a, const _Tp& __b) { if (__b < __a) return __b; return __a; } template inline const _Tp& max(const _Tp& __a, const _Tp& __b) { if (__a < __b) return __b; return __a; } template inline const _Tp& min(const _Tp& __a, const _Tp& __b, _Compare __comp) { if (__comp(__b, __a)) return __b; return __a; } template inline const _Tp& max(const _Tp& __a, const _Tp& __b, _Compare __comp) { if (__comp(__a, __b)) return __b; return __a; } template struct _Niter_base : _Iter_base<_Iterator, __is_normal_iterator<_Iterator>::__value> { }; template inline typename _Niter_base<_Iterator>::iterator_type __niter_base(_Iterator __it) { return std::_Niter_base<_Iterator>::_S_base(__it); } template struct _Miter_base : _Iter_base<_Iterator, __is_move_iterator<_Iterator>::__value> { }; template inline typename _Miter_base<_Iterator>::iterator_type __miter_base(_Iterator __it) { return std::_Miter_base<_Iterator>::_S_base(__it); } template struct __copy_move { template static _OI __copy_m(_II __first, _II __last, _OI __result) { for (; __first != __last; ++__result, ++__first) *__result = *__first; return __result; } }; template<> struct __copy_move { template static _OI __copy_m(_II __first, _II __last, _OI __result) { typedef typename iterator_traits<_II>::difference_type _Distance; for(_Distance __n = __last - __first; __n > 0; --__n) { *__result = *__first; ++__first; ++__result; } return __result; } }; template struct __copy_move<_IsMove, true, random_access_iterator_tag> { template static _Tp* __copy_m(const _Tp* __first, const _Tp* __last, _Tp* __result) { const ptrdiff_t _Num = __last - __first; if (_Num) __builtin_memmove(__result, __first, sizeof(_Tp) * _Num); return __result + _Num; } }; template inline _OI __copy_move_a(_II __first, _II __last, _OI __result) { typedef typename iterator_traits<_II>::value_type _ValueTypeI; typedef typename iterator_traits<_OI>::value_type _ValueTypeO; typedef typename iterator_traits<_II>::iterator_category _Category; const bool __simple = (__is_trivial(_ValueTypeI) && __is_pointer<_II>::__value && __is_pointer<_OI>::__value && __are_same<_ValueTypeI, _ValueTypeO>::__value); return std::__copy_move<_IsMove, __simple, _Category>::__copy_m(__first, __last, __result); } template struct char_traits; template class istreambuf_iterator; template class ostreambuf_iterator; template typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, ostreambuf_iterator<_CharT, char_traits<_CharT> > >::__type __copy_move_a2(_CharT*, _CharT*, ostreambuf_iterator<_CharT, char_traits<_CharT> >); template typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, ostreambuf_iterator<_CharT, char_traits<_CharT> > >::__type __copy_move_a2(const _CharT*, const _CharT*, ostreambuf_iterator<_CharT, char_traits<_CharT> >); template typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, _CharT*>::__type __copy_move_a2(istreambuf_iterator<_CharT, char_traits<_CharT> >, istreambuf_iterator<_CharT, char_traits<_CharT> >, _CharT*); template inline _OI __copy_move_a2(_II __first, _II __last, _OI __result) { return _OI(std::__copy_move_a<_IsMove>(std::__niter_base(__first), std::__niter_base(__last), std::__niter_base(__result))); } template inline _OI copy(_II __first, _II __last, _OI __result) { ; return (std::__copy_move_a2<__is_move_iterator<_II>::__value> (std::__miter_base(__first), std::__miter_base(__last), __result)); } template struct __copy_move_backward { template static _BI2 __copy_move_b(_BI1 __first, _BI1 __last, _BI2 __result) { while (__first != __last) *--__result = *--__last; return __result; } }; template<> struct __copy_move_backward { template static _BI2 __copy_move_b(_BI1 __first, _BI1 __last, _BI2 __result) { typename iterator_traits<_BI1>::difference_type __n; for (__n = __last - __first; __n > 0; --__n) *--__result = *--__last; return __result; } }; template struct __copy_move_backward<_IsMove, true, random_access_iterator_tag> { template static _Tp* __copy_move_b(const _Tp* __first, const _Tp* __last, _Tp* __result) { const ptrdiff_t _Num = __last - __first; if (_Num) __builtin_memmove(__result - _Num, __first, sizeof(_Tp) * _Num); return __result - _Num; } }; template inline _BI2 __copy_move_backward_a(_BI1 __first, _BI1 __last, _BI2 __result) { typedef typename iterator_traits<_BI1>::value_type _ValueType1; typedef typename iterator_traits<_BI2>::value_type _ValueType2; typedef typename iterator_traits<_BI1>::iterator_category _Category; const bool __simple = (__is_trivial(_ValueType1) && __is_pointer<_BI1>::__value && __is_pointer<_BI2>::__value && __are_same<_ValueType1, _ValueType2>::__value); return std::__copy_move_backward<_IsMove, __simple, _Category>::__copy_move_b(__first, __last, __result); } template inline _BI2 __copy_move_backward_a2(_BI1 __first, _BI1 __last, _BI2 __result) { return _BI2(std::__copy_move_backward_a<_IsMove> (std::__niter_base(__first), std::__niter_base(__last), std::__niter_base(__result))); } template inline _BI2 copy_backward(_BI1 __first, _BI1 __last, _BI2 __result) { ; return (std::__copy_move_backward_a2<__is_move_iterator<_BI1>::__value> (std::__miter_base(__first), std::__miter_base(__last), __result)); } template inline typename __gnu_cxx::__enable_if::__value, void>::__type __fill_a(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { for (; __first != __last; ++__first) *__first = __value; } template inline typename __gnu_cxx::__enable_if<__is_scalar<_Tp>::__value, void>::__type __fill_a(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { const _Tp __tmp = __value; for (; __first != __last; ++__first) *__first = __tmp; } template inline typename __gnu_cxx::__enable_if<__is_byte<_Tp>::__value, void>::__type __fill_a(_Tp* __first, _Tp* __last, const _Tp& __c) { const _Tp __tmp = __c; __builtin_memset(__first, static_cast(__tmp), __last - __first); } template inline void fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { ; std::__fill_a(std::__niter_base(__first), std::__niter_base(__last), __value); } template inline typename __gnu_cxx::__enable_if::__value, _OutputIterator>::__type __fill_n_a(_OutputIterator __first, _Size __n, const _Tp& __value) { for (__decltype(__n + 0) __niter = __n; __niter > 0; --__niter, ++__first) *__first = __value; return __first; } template inline typename __gnu_cxx::__enable_if<__is_scalar<_Tp>::__value, _OutputIterator>::__type __fill_n_a(_OutputIterator __first, _Size __n, const _Tp& __value) { const _Tp __tmp = __value; for (__decltype(__n + 0) __niter = __n; __niter > 0; --__niter, ++__first) *__first = __tmp; return __first; } template inline typename __gnu_cxx::__enable_if<__is_byte<_Tp>::__value, _Tp*>::__type __fill_n_a(_Tp* __first, _Size __n, const _Tp& __c) { std::__fill_a(__first, __first + __n, __c); return __first + __n; } template inline _OI fill_n(_OI __first, _Size __n, const _Tp& __value) { return _OI(std::__fill_n_a(std::__niter_base(__first), __n, __value)); } template struct __equal { template static bool equal(_II1 __first1, _II1 __last1, _II2 __first2) { for (; __first1 != __last1; ++__first1, ++__first2) if (!(*__first1 == *__first2)) return false; return true; } }; template<> struct __equal { template static bool equal(const _Tp* __first1, const _Tp* __last1, const _Tp* __first2) { return !__builtin_memcmp(__first1, __first2, sizeof(_Tp) * (__last1 - __first1)); } }; template inline bool __equal_aux(_II1 __first1, _II1 __last1, _II2 __first2) { typedef typename iterator_traits<_II1>::value_type _ValueType1; typedef typename iterator_traits<_II2>::value_type _ValueType2; const bool __simple = (__is_integer<_ValueType1>::__value && __is_pointer<_II1>::__value && __is_pointer<_II2>::__value && __are_same<_ValueType1, _ValueType2>::__value); return std::__equal<__simple>::equal(__first1, __last1, __first2); } template struct __lc_rai { template static _II1 __newlast1(_II1, _II1 __last1, _II2, _II2) { return __last1; } template static bool __cnd2(_II __first, _II __last) { return __first != __last; } }; template<> struct __lc_rai { template static _RAI1 __newlast1(_RAI1 __first1, _RAI1 __last1, _RAI2 __first2, _RAI2 __last2) { const typename iterator_traits<_RAI1>::difference_type __diff1 = __last1 - __first1; const typename iterator_traits<_RAI2>::difference_type __diff2 = __last2 - __first2; return __diff2 < __diff1 ? __first1 + __diff2 : __last1; } template static bool __cnd2(_RAI, _RAI) { return true; } }; template struct __lexicographical_compare { template static bool __lc(_II1, _II1, _II2, _II2); }; template template bool __lexicographical_compare<_BoolType>:: __lc(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2) { typedef typename iterator_traits<_II1>::iterator_category _Category1; typedef typename iterator_traits<_II2>::iterator_category _Category2; typedef std::__lc_rai<_Category1, _Category2> __rai_type; __last1 = __rai_type::__newlast1(__first1, __last1, __first2, __last2); for (; __first1 != __last1 && __rai_type::__cnd2(__first2, __last2); ++__first1, ++__first2) { if (*__first1 < *__first2) return true; if (*__first2 < *__first1) return false; } return __first1 == __last1 && __first2 != __last2; } template<> struct __lexicographical_compare { template static bool __lc(const _Tp* __first1, const _Tp* __last1, const _Up* __first2, const _Up* __last2) { const size_t __len1 = __last1 - __first1; const size_t __len2 = __last2 - __first2; const int __result = __builtin_memcmp(__first1, __first2, std::min(__len1, __len2)); return __result != 0 ? __result < 0 : __len1 < __len2; } }; template inline bool __lexicographical_compare_aux(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2) { typedef typename iterator_traits<_II1>::value_type _ValueType1; typedef typename iterator_traits<_II2>::value_type _ValueType2; const bool __simple = (__is_byte<_ValueType1>::__value && __is_byte<_ValueType2>::__value && !__gnu_cxx::__numeric_traits<_ValueType1>::__is_signed && !__gnu_cxx::__numeric_traits<_ValueType2>::__is_signed && __is_pointer<_II1>::__value && __is_pointer<_II2>::__value); return std::__lexicographical_compare<__simple>::__lc(__first1, __last1, __first2, __last2); } template _ForwardIterator lower_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType; ; _DistanceType __len = std::distance(__first, __last); while (__len > 0) { _DistanceType __half = __len >> 1; _ForwardIterator __middle = __first; std::advance(__middle, __half); if (*__middle < __val) { __first = __middle; ++__first; __len = __len - __half - 1; } else __len = __half; } return __first; } template inline _Size __lg(_Size __n) { _Size __k; for (__k = 0; __n != 0; __n >>= 1) ++__k; return __k - 1; } inline int __lg(int __n) { return sizeof(int) * 8 - 1 - __builtin_clz(__n); } inline long __lg(long __n) { return sizeof(long) * 8 - 1 - __builtin_clzl(__n); } inline long long __lg(long long __n) { return sizeof(long long) * 8 - 1 - __builtin_clzll(__n); } template inline bool equal(_II1 __first1, _II1 __last1, _II2 __first2) { ; return std::__equal_aux(std::__niter_base(__first1), std::__niter_base(__last1), std::__niter_base(__first2)); } template inline bool equal(_IIter1 __first1, _IIter1 __last1, _IIter2 __first2, _BinaryPredicate __binary_pred) { ; for (; __first1 != __last1; ++__first1, ++__first2) if (!bool(__binary_pred(*__first1, *__first2))) return false; return true; } template inline bool lexicographical_compare(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2) { typedef typename iterator_traits<_II1>::value_type _ValueType1; typedef typename iterator_traits<_II2>::value_type _ValueType2; ; ; return std::__lexicographical_compare_aux(std::__niter_base(__first1), std::__niter_base(__last1), std::__niter_base(__first2), std::__niter_base(__last2)); } template bool lexicographical_compare(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2, _Compare __comp) { typedef typename iterator_traits<_II1>::iterator_category _Category1; typedef typename iterator_traits<_II2>::iterator_category _Category2; typedef std::__lc_rai<_Category1, _Category2> __rai_type; ; ; __last1 = __rai_type::__newlast1(__first1, __last1, __first2, __last2); for (; __first1 != __last1 && __rai_type::__cnd2(__first2, __last2); ++__first1, ++__first2) { if (__comp(*__first1, *__first2)) return true; if (__comp(*__first2, *__first1)) return false; } return __first1 == __last1 && __first2 != __last2; } template pair<_InputIterator1, _InputIterator2> mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2) { ; while (__first1 != __last1 && *__first1 == *__first2) { ++__first1; ++__first2; } return pair<_InputIterator1, _InputIterator2>(__first1, __first2); } template pair<_InputIterator1, _InputIterator2> mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _BinaryPredicate __binary_pred) { ; while (__first1 != __last1 && bool(__binary_pred(*__first1, *__first2))) { ++__first1; ++__first2; } return pair<_InputIterator1, _InputIterator2>(__first1, __first2); } } struct _IO_FILE; typedef struct _IO_FILE FILE; typedef struct _IO_FILE __FILE; typedef __builtin_va_list __gnuc_va_list; typedef long unsigned int size_t; typedef unsigned int wint_t; typedef struct { int __count; union { unsigned int __wch; char __wchb[4]; } __value; } __mbstate_t; typedef __mbstate_t mbstate_t; extern "C" { struct tm; extern wchar_t *wcscpy (wchar_t *__restrict __dest, __const wchar_t *__restrict __src) throw (); extern wchar_t *wcsncpy (wchar_t *__restrict __dest, __const wchar_t *__restrict __src, size_t __n) throw (); extern wchar_t *wcscat (wchar_t *__restrict __dest, __const wchar_t *__restrict __src) throw (); extern wchar_t *wcsncat (wchar_t *__restrict __dest, __const wchar_t *__restrict __src, size_t __n) throw (); extern int wcscmp (__const wchar_t *__s1, __const wchar_t *__s2) throw () __attribute__ ((__pure__)); extern int wcsncmp (__const wchar_t *__s1, __const wchar_t *__s2, size_t __n) throw () __attribute__ ((__pure__)); extern int wcscasecmp (__const wchar_t *__s1, __const wchar_t *__s2) throw (); extern int wcsncasecmp (__const wchar_t *__s1, __const wchar_t *__s2, size_t __n) throw (); typedef struct __locale_struct { struct __locale_data *__locales[13]; const unsigned short int *__ctype_b; const int *__ctype_tolower; const int *__ctype_toupper; const char *__names[13]; } *__locale_t; typedef __locale_t locale_t; extern int wcscasecmp_l (__const wchar_t *__s1, __const wchar_t *__s2, __locale_t __loc) throw (); extern int wcsncasecmp_l (__const wchar_t *__s1, __const wchar_t *__s2, size_t __n, __locale_t __loc) throw (); extern int wcscoll (__const wchar_t *__s1, __const wchar_t *__s2) throw (); extern size_t wcsxfrm (wchar_t *__restrict __s1, __const wchar_t *__restrict __s2, size_t __n) throw (); extern int wcscoll_l (__const wchar_t *__s1, __const wchar_t *__s2, __locale_t __loc) throw (); extern size_t wcsxfrm_l (wchar_t *__s1, __const wchar_t *__s2, size_t __n, __locale_t __loc) throw (); extern wchar_t *wcsdup (__const wchar_t *__s) throw () __attribute__ ((__malloc__)); extern "C++" wchar_t *wcschr (wchar_t *__wcs, wchar_t __wc) throw () __asm ("wcschr") __attribute__ ((__pure__)); extern "C++" __const wchar_t *wcschr (__const wchar_t *__wcs, wchar_t __wc) throw () __asm ("wcschr") __attribute__ ((__pure__)); extern "C++" wchar_t *wcsrchr (wchar_t *__wcs, wchar_t __wc) throw () __asm ("wcsrchr") __attribute__ ((__pure__)); extern "C++" __const wchar_t *wcsrchr (__const wchar_t *__wcs, wchar_t __wc) throw () __asm ("wcsrchr") __attribute__ ((__pure__)); extern wchar_t *wcschrnul (__const wchar_t *__s, wchar_t __wc) throw () __attribute__ ((__pure__)); extern size_t wcscspn (__const wchar_t *__wcs, __const wchar_t *__reject) throw () __attribute__ ((__pure__)); extern size_t wcsspn (__const wchar_t *__wcs, __const wchar_t *__accept) throw () __attribute__ ((__pure__)); extern "C++" wchar_t *wcspbrk (wchar_t *__wcs, __const wchar_t *__accept) throw () __asm ("wcspbrk") __attribute__ ((__pure__)); extern "C++" __const wchar_t *wcspbrk (__const wchar_t *__wcs, __const wchar_t *__accept) throw () __asm ("wcspbrk") __attribute__ ((__pure__)); extern "C++" wchar_t *wcsstr (wchar_t *__haystack, __const wchar_t *__needle) throw () __asm ("wcsstr") __attribute__ ((__pure__)); extern "C++" __const wchar_t *wcsstr (__const wchar_t *__haystack, __const wchar_t *__needle) throw () __asm ("wcsstr") __attribute__ ((__pure__)); extern wchar_t *wcstok (wchar_t *__restrict __s, __const wchar_t *__restrict __delim, wchar_t **__restrict __ptr) throw (); extern size_t wcslen (__const wchar_t *__s) throw () __attribute__ ((__pure__)); extern "C++" wchar_t *wcswcs (wchar_t *__haystack, __const wchar_t *__needle) throw () __asm ("wcswcs") __attribute__ ((__pure__)); extern "C++" __const wchar_t *wcswcs (__const wchar_t *__haystack, __const wchar_t *__needle) throw () __asm ("wcswcs") __attribute__ ((__pure__)); extern size_t wcsnlen (__const wchar_t *__s, size_t __maxlen) throw () __attribute__ ((__pure__)); extern "C++" wchar_t *wmemchr (wchar_t *__s, wchar_t __c, size_t __n) throw () __asm ("wmemchr") __attribute__ ((__pure__)); extern "C++" __const wchar_t *wmemchr (__const wchar_t *__s, wchar_t __c, size_t __n) throw () __asm ("wmemchr") __attribute__ ((__pure__)); extern int wmemcmp (__const wchar_t *__s1, __const wchar_t *__s2, size_t __n) throw () __attribute__ ((__pure__)); extern wchar_t *wmemcpy (wchar_t *__restrict __s1, __const wchar_t *__restrict __s2, size_t __n) throw (); extern wchar_t *wmemmove (wchar_t *__s1, __const wchar_t *__s2, size_t __n) throw (); extern wchar_t *wmemset (wchar_t *__s, wchar_t __c, size_t __n) throw (); extern wchar_t *wmempcpy (wchar_t *__restrict __s1, __const wchar_t *__restrict __s2, size_t __n) throw (); extern wint_t btowc (int __c) throw (); extern int wctob (wint_t __c) throw (); extern int mbsinit (__const mbstate_t *__ps) throw () __attribute__ ((__pure__)); extern size_t mbrtowc (wchar_t *__restrict __pwc, __const char *__restrict __s, size_t __n, mbstate_t *__p) throw (); extern size_t wcrtomb (char *__restrict __s, wchar_t __wc, mbstate_t *__restrict __ps) throw (); extern size_t __mbrlen (__const char *__restrict __s, size_t __n, mbstate_t *__restrict __ps) throw (); extern size_t mbrlen (__const char *__restrict __s, size_t __n, mbstate_t *__restrict __ps) throw (); extern wint_t __btowc_alias (int __c) __asm ("btowc"); extern __inline __attribute__ ((__gnu_inline__)) wint_t __attribute__ ((__leaf__)) btowc (int __c) throw () { return (__builtin_constant_p (__c) && __c >= '\0' && __c <= '\x7f' ? (wint_t) __c : __btowc_alias (__c)); } extern int __wctob_alias (wint_t __c) __asm ("wctob"); extern __inline __attribute__ ((__gnu_inline__)) int __attribute__ ((__leaf__)) wctob (wint_t __wc) throw () { return (__builtin_constant_p (__wc) && __wc >= L'\0' && __wc <= L'\x7f' ? (int) __wc : __wctob_alias (__wc)); } extern __inline __attribute__ ((__gnu_inline__)) size_t __attribute__ ((__leaf__)) mbrlen (__const char *__restrict __s, size_t __n, mbstate_t *__restrict __ps) throw () { return (__ps != __null ? mbrtowc (__null, __s, __n, __ps) : __mbrlen (__s, __n, __null)); } extern size_t mbsrtowcs (wchar_t *__restrict __dst, __const char **__restrict __src, size_t __len, mbstate_t *__restrict __ps) throw (); extern size_t wcsrtombs (char *__restrict __dst, __const wchar_t **__restrict __src, size_t __len, mbstate_t *__restrict __ps) throw (); extern size_t mbsnrtowcs (wchar_t *__restrict __dst, __const char **__restrict __src, size_t __nmc, size_t __len, mbstate_t *__restrict __ps) throw (); extern size_t wcsnrtombs (char *__restrict __dst, __const wchar_t **__restrict __src, size_t __nwc, size_t __len, mbstate_t *__restrict __ps) throw (); extern int wcwidth (wchar_t __c) throw (); extern int wcswidth (__const wchar_t *__s, size_t __n) throw (); extern double wcstod (__const wchar_t *__restrict __nptr, wchar_t **__restrict __endptr) throw (); extern float wcstof (__const wchar_t *__restrict __nptr, wchar_t **__restrict __endptr) throw (); extern long double wcstold (__const wchar_t *__restrict __nptr, wchar_t **__restrict __endptr) throw (); extern long int wcstol (__const wchar_t *__restrict __nptr, wchar_t **__restrict __endptr, int __base) throw (); extern unsigned long int wcstoul (__const wchar_t *__restrict __nptr, wchar_t **__restrict __endptr, int __base) throw (); __extension__ extern long long int wcstoll (__const wchar_t *__restrict __nptr, wchar_t **__restrict __endptr, int __base) throw (); __extension__ extern unsigned long long int wcstoull (__const wchar_t *__restrict __nptr, wchar_t **__restrict __endptr, int __base) throw (); __extension__ extern long long int wcstoq (__const wchar_t *__restrict __nptr, wchar_t **__restrict __endptr, int __base) throw (); __extension__ extern unsigned long long int wcstouq (__const wchar_t *__restrict __nptr, wchar_t **__restrict __endptr, int __base) throw (); extern long int wcstol_l (__const wchar_t *__restrict __nptr, wchar_t **__restrict __endptr, int __base, __locale_t __loc) throw (); extern unsigned long int wcstoul_l (__const wchar_t *__restrict __nptr, wchar_t **__restrict __endptr, int __base, __locale_t __loc) throw (); __extension__ extern long long int wcstoll_l (__const wchar_t *__restrict __nptr, wchar_t **__restrict __endptr, int __base, __locale_t __loc) throw (); __extension__ extern unsigned long long int wcstoull_l (__const wchar_t *__restrict __nptr, wchar_t **__restrict __endptr, int __base, __locale_t __loc) throw (); extern double wcstod_l (__const wchar_t *__restrict __nptr, wchar_t **__restrict __endptr, __locale_t __loc) throw (); extern float wcstof_l (__const wchar_t *__restrict __nptr, wchar_t **__restrict __endptr, __locale_t __loc) throw (); extern long double wcstold_l (__const wchar_t *__restrict __nptr, wchar_t **__restrict __endptr, __locale_t __loc) throw (); extern wchar_t *wcpcpy (wchar_t *__restrict __dest, __const wchar_t *__restrict __src) throw (); extern wchar_t *wcpncpy (wchar_t *__restrict __dest, __const wchar_t *__restrict __src, size_t __n) throw (); extern __FILE *open_wmemstream (wchar_t **__bufloc, size_t *__sizeloc) throw (); extern int fwide (__FILE *__fp, int __mode) throw (); extern int fwprintf (__FILE *__restrict __stream, __const wchar_t *__restrict __format, ...) ; extern int wprintf (__const wchar_t *__restrict __format, ...) ; extern int swprintf (wchar_t *__restrict __s, size_t __n, __const wchar_t *__restrict __format, ...) throw () ; extern int vfwprintf (__FILE *__restrict __s, __const wchar_t *__restrict __format, __gnuc_va_list __arg) ; extern int vwprintf (__const wchar_t *__restrict __format, __gnuc_va_list __arg) ; extern int vswprintf (wchar_t *__restrict __s, size_t __n, __const wchar_t *__restrict __format, __gnuc_va_list __arg) throw () ; extern int fwscanf (__FILE *__restrict __stream, __const wchar_t *__restrict __format, ...) ; extern int wscanf (__const wchar_t *__restrict __format, ...) ; extern int swscanf (__const wchar_t *__restrict __s, __const wchar_t *__restrict __format, ...) throw () ; extern int vfwscanf (__FILE *__restrict __s, __const wchar_t *__restrict __format, __gnuc_va_list __arg) ; extern int vwscanf (__const wchar_t *__restrict __format, __gnuc_va_list __arg) ; extern int vswscanf (__const wchar_t *__restrict __s, __const wchar_t *__restrict __format, __gnuc_va_list __arg) throw () ; extern wint_t fgetwc (__FILE *__stream); extern wint_t getwc (__FILE *__stream); extern wint_t getwchar (void); extern wint_t fputwc (wchar_t __wc, __FILE *__stream); extern wint_t putwc (wchar_t __wc, __FILE *__stream); extern wint_t putwchar (wchar_t __wc); extern wchar_t *fgetws (wchar_t *__restrict __ws, int __n, __FILE *__restrict __stream); extern int fputws (__const wchar_t *__restrict __ws, __FILE *__restrict __stream); extern wint_t ungetwc (wint_t __wc, __FILE *__stream); extern wint_t getwc_unlocked (__FILE *__stream); extern wint_t getwchar_unlocked (void); extern wint_t fgetwc_unlocked (__FILE *__stream); extern wint_t fputwc_unlocked (wchar_t __wc, __FILE *__stream); extern wint_t putwc_unlocked (wchar_t __wc, __FILE *__stream); extern wint_t putwchar_unlocked (wchar_t __wc); extern wchar_t *fgetws_unlocked (wchar_t *__restrict __ws, int __n, __FILE *__restrict __stream); extern int fputws_unlocked (__const wchar_t *__restrict __ws, __FILE *__restrict __stream); extern size_t wcsftime (wchar_t *__restrict __s, size_t __maxsize, __const wchar_t *__restrict __format, __const struct tm *__restrict __tp) throw (); extern size_t wcsftime_l (wchar_t *__restrict __s, size_t __maxsize, __const wchar_t *__restrict __format, __const struct tm *__restrict __tp, __locale_t __loc) throw (); extern wchar_t *__wmemcpy_chk (wchar_t *__restrict __s1, __const wchar_t *__restrict __s2, size_t __n, size_t __ns1) throw (); extern wchar_t *__wmemcpy_alias (wchar_t *__restrict __s1, __const wchar_t *__restrict __s2, size_t __n) throw () __asm__ ("" "wmemcpy") ; extern wchar_t *__wmemcpy_chk_warn (wchar_t *__restrict __s1, __const wchar_t *__restrict __s2, size_t __n, size_t __ns1) throw () __asm__ ("" "__wmemcpy_chk") __attribute__((__warning__ ("wmemcpy called with length bigger than size of destination " "buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) wchar_t * __attribute__ ((__leaf__)) wmemcpy (wchar_t *__restrict __s1, __const wchar_t *__restrict __s2, size_t __n) throw () { if (__builtin_object_size (__s1, 0) != (size_t) -1) { if (!__builtin_constant_p (__n)) return __wmemcpy_chk (__s1, __s2, __n, __builtin_object_size (__s1, 0) / sizeof (wchar_t)); if (__n > __builtin_object_size (__s1, 0) / sizeof (wchar_t)) return __wmemcpy_chk_warn (__s1, __s2, __n, __builtin_object_size (__s1, 0) / sizeof (wchar_t)); } return __wmemcpy_alias (__s1, __s2, __n); } extern wchar_t *__wmemmove_chk (wchar_t *__s1, __const wchar_t *__s2, size_t __n, size_t __ns1) throw (); extern wchar_t *__wmemmove_alias (wchar_t *__s1, __const wchar_t *__s2, size_t __n) throw () __asm__ ("" "wmemmove") ; extern wchar_t *__wmemmove_chk_warn (wchar_t *__s1, __const wchar_t *__s2, size_t __n, size_t __ns1) throw () __asm__ ("" "__wmemmove_chk") __attribute__((__warning__ ("wmemmove called with length bigger than size of destination " "buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) wchar_t * __attribute__ ((__leaf__)) wmemmove (wchar_t *__s1, __const wchar_t *__s2, size_t __n) throw () { if (__builtin_object_size (__s1, 0) != (size_t) -1) { if (!__builtin_constant_p (__n)) return __wmemmove_chk (__s1, __s2, __n, __builtin_object_size (__s1, 0) / sizeof (wchar_t)); if (__n > __builtin_object_size (__s1, 0) / sizeof (wchar_t)) return __wmemmove_chk_warn (__s1, __s2, __n, __builtin_object_size (__s1, 0) / sizeof (wchar_t)); } return __wmemmove_alias (__s1, __s2, __n); } extern wchar_t *__wmempcpy_chk (wchar_t *__restrict __s1, __const wchar_t *__restrict __s2, size_t __n, size_t __ns1) throw (); extern wchar_t *__wmempcpy_alias (wchar_t *__restrict __s1, __const wchar_t *__restrict __s2, size_t __n) throw () __asm__ ("" "wmempcpy") ; extern wchar_t *__wmempcpy_chk_warn (wchar_t *__restrict __s1, __const wchar_t *__restrict __s2, size_t __n, size_t __ns1) throw () __asm__ ("" "__wmempcpy_chk") __attribute__((__warning__ ("wmempcpy called with length bigger than size of destination " "buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) wchar_t * __attribute__ ((__leaf__)) wmempcpy (wchar_t *__restrict __s1, __const wchar_t *__restrict __s2, size_t __n) throw () { if (__builtin_object_size (__s1, 0) != (size_t) -1) { if (!__builtin_constant_p (__n)) return __wmempcpy_chk (__s1, __s2, __n, __builtin_object_size (__s1, 0) / sizeof (wchar_t)); if (__n > __builtin_object_size (__s1, 0) / sizeof (wchar_t)) return __wmempcpy_chk_warn (__s1, __s2, __n, __builtin_object_size (__s1, 0) / sizeof (wchar_t)); } return __wmempcpy_alias (__s1, __s2, __n); } extern wchar_t *__wmemset_chk (wchar_t *__s, wchar_t __c, size_t __n, size_t __ns) throw (); extern wchar_t *__wmemset_alias (wchar_t *__s, wchar_t __c, size_t __n) throw () __asm__ ("" "wmemset") ; extern wchar_t *__wmemset_chk_warn (wchar_t *__s, wchar_t __c, size_t __n, size_t __ns) throw () __asm__ ("" "__wmemset_chk") __attribute__((__warning__ ("wmemset called with length bigger than size of destination " "buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) wchar_t * __attribute__ ((__leaf__)) wmemset (wchar_t *__s, wchar_t __c, size_t __n) throw () { if (__builtin_object_size (__s, 0) != (size_t) -1) { if (!__builtin_constant_p (__n)) return __wmemset_chk (__s, __c, __n, __builtin_object_size (__s, 0) / sizeof (wchar_t)); if (__n > __builtin_object_size (__s, 0) / sizeof (wchar_t)) return __wmemset_chk_warn (__s, __c, __n, __builtin_object_size (__s, 0) / sizeof (wchar_t)); } return __wmemset_alias (__s, __c, __n); } extern wchar_t *__wcscpy_chk (wchar_t *__restrict __dest, __const wchar_t *__restrict __src, size_t __n) throw (); extern wchar_t *__wcscpy_alias (wchar_t *__restrict __dest, __const wchar_t *__restrict __src) throw () __asm__ ("" "wcscpy") ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) wchar_t * __attribute__ ((__leaf__)) wcscpy (wchar_t *__restrict __dest, __const wchar_t *__restrict __src) throw () { if (__builtin_object_size (__dest, 2 > 1) != (size_t) -1) return __wcscpy_chk (__dest, __src, __builtin_object_size (__dest, 2 > 1) / sizeof (wchar_t)); return __wcscpy_alias (__dest, __src); } extern wchar_t *__wcpcpy_chk (wchar_t *__restrict __dest, __const wchar_t *__restrict __src, size_t __destlen) throw (); extern wchar_t *__wcpcpy_alias (wchar_t *__restrict __dest, __const wchar_t *__restrict __src) throw () __asm__ ("" "wcpcpy") ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) wchar_t * __attribute__ ((__leaf__)) wcpcpy (wchar_t *__restrict __dest, __const wchar_t *__restrict __src) throw () { if (__builtin_object_size (__dest, 2 > 1) != (size_t) -1) return __wcpcpy_chk (__dest, __src, __builtin_object_size (__dest, 2 > 1) / sizeof (wchar_t)); return __wcpcpy_alias (__dest, __src); } extern wchar_t *__wcsncpy_chk (wchar_t *__restrict __dest, __const wchar_t *__restrict __src, size_t __n, size_t __destlen) throw (); extern wchar_t *__wcsncpy_alias (wchar_t *__restrict __dest, __const wchar_t *__restrict __src, size_t __n) throw () __asm__ ("" "wcsncpy") ; extern wchar_t *__wcsncpy_chk_warn (wchar_t *__restrict __dest, __const wchar_t *__restrict __src, size_t __n, size_t __destlen) throw () __asm__ ("" "__wcsncpy_chk") __attribute__((__warning__ ("wcsncpy called with length bigger than size of destination " "buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) wchar_t * __attribute__ ((__leaf__)) wcsncpy (wchar_t *__restrict __dest, __const wchar_t *__restrict __src, size_t __n) throw () { if (__builtin_object_size (__dest, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__n)) return __wcsncpy_chk (__dest, __src, __n, __builtin_object_size (__dest, 2 > 1) / sizeof (wchar_t)); if (__n > __builtin_object_size (__dest, 2 > 1) / sizeof (wchar_t)) return __wcsncpy_chk_warn (__dest, __src, __n, __builtin_object_size (__dest, 2 > 1) / sizeof (wchar_t)); } return __wcsncpy_alias (__dest, __src, __n); } extern wchar_t *__wcpncpy_chk (wchar_t *__restrict __dest, __const wchar_t *__restrict __src, size_t __n, size_t __destlen) throw (); extern wchar_t *__wcpncpy_alias (wchar_t *__restrict __dest, __const wchar_t *__restrict __src, size_t __n) throw () __asm__ ("" "wcpncpy") ; extern wchar_t *__wcpncpy_chk_warn (wchar_t *__restrict __dest, __const wchar_t *__restrict __src, size_t __n, size_t __destlen) throw () __asm__ ("" "__wcpncpy_chk") __attribute__((__warning__ ("wcpncpy called with length bigger than size of destination " "buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) wchar_t * __attribute__ ((__leaf__)) wcpncpy (wchar_t *__restrict __dest, __const wchar_t *__restrict __src, size_t __n) throw () { if (__builtin_object_size (__dest, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__n)) return __wcpncpy_chk (__dest, __src, __n, __builtin_object_size (__dest, 2 > 1) / sizeof (wchar_t)); if (__n > __builtin_object_size (__dest, 2 > 1) / sizeof (wchar_t)) return __wcpncpy_chk_warn (__dest, __src, __n, __builtin_object_size (__dest, 2 > 1) / sizeof (wchar_t)); } return __wcpncpy_alias (__dest, __src, __n); } extern wchar_t *__wcscat_chk (wchar_t *__restrict __dest, __const wchar_t *__restrict __src, size_t __destlen) throw (); extern wchar_t *__wcscat_alias (wchar_t *__restrict __dest, __const wchar_t *__restrict __src) throw () __asm__ ("" "wcscat") ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) wchar_t * __attribute__ ((__leaf__)) wcscat (wchar_t *__restrict __dest, __const wchar_t *__restrict __src) throw () { if (__builtin_object_size (__dest, 2 > 1) != (size_t) -1) return __wcscat_chk (__dest, __src, __builtin_object_size (__dest, 2 > 1) / sizeof (wchar_t)); return __wcscat_alias (__dest, __src); } extern wchar_t *__wcsncat_chk (wchar_t *__restrict __dest, __const wchar_t *__restrict __src, size_t __n, size_t __destlen) throw (); extern wchar_t *__wcsncat_alias (wchar_t *__restrict __dest, __const wchar_t *__restrict __src, size_t __n) throw () __asm__ ("" "wcsncat") ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) wchar_t * __attribute__ ((__leaf__)) wcsncat (wchar_t *__restrict __dest, __const wchar_t *__restrict __src, size_t __n) throw () { if (__builtin_object_size (__dest, 2 > 1) != (size_t) -1) return __wcsncat_chk (__dest, __src, __n, __builtin_object_size (__dest, 2 > 1) / sizeof (wchar_t)); return __wcsncat_alias (__dest, __src, __n); } extern int __swprintf_chk (wchar_t *__restrict __s, size_t __n, int __flag, size_t __s_len, __const wchar_t *__restrict __format, ...) throw () ; extern int __swprintf_alias (wchar_t *__restrict __s, size_t __n, __const wchar_t *__restrict __fmt, ...) throw () __asm__ ("" "swprintf") ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int __attribute__ ((__leaf__)) swprintf (wchar_t *__restrict __s, size_t __n, __const wchar_t *__restrict __fmt, ...) throw () { if (__builtin_object_size (__s, 2 > 1) != (size_t) -1 || 2 > 1) return __swprintf_chk (__s, __n, 2 - 1, __builtin_object_size (__s, 2 > 1) / sizeof (wchar_t), __fmt, __builtin_va_arg_pack ()); return __swprintf_alias (__s, __n, __fmt, __builtin_va_arg_pack ()); } extern int __vswprintf_chk (wchar_t *__restrict __s, size_t __n, int __flag, size_t __s_len, __const wchar_t *__restrict __format, __gnuc_va_list __arg) throw () ; extern int __vswprintf_alias (wchar_t *__restrict __s, size_t __n, __const wchar_t *__restrict __fmt, __gnuc_va_list __ap) throw () __asm__ ("" "vswprintf") ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int __attribute__ ((__leaf__)) vswprintf (wchar_t *__restrict __s, size_t __n, __const wchar_t *__restrict __fmt, __gnuc_va_list __ap) throw () { if (__builtin_object_size (__s, 2 > 1) != (size_t) -1 || 2 > 1) return __vswprintf_chk (__s, __n, 2 - 1, __builtin_object_size (__s, 2 > 1) / sizeof (wchar_t), __fmt, __ap); return __vswprintf_alias (__s, __n, __fmt, __ap); } extern int __fwprintf_chk (__FILE *__restrict __stream, int __flag, __const wchar_t *__restrict __format, ...); extern int __wprintf_chk (int __flag, __const wchar_t *__restrict __format, ...); extern int __vfwprintf_chk (__FILE *__restrict __stream, int __flag, __const wchar_t *__restrict __format, __gnuc_va_list __ap); extern int __vwprintf_chk (int __flag, __const wchar_t *__restrict __format, __gnuc_va_list __ap); extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int wprintf (__const wchar_t *__restrict __fmt, ...) { return __wprintf_chk (2 - 1, __fmt, __builtin_va_arg_pack ()); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int fwprintf (__FILE *__restrict __stream, __const wchar_t *__restrict __fmt, ...) { return __fwprintf_chk (__stream, 2 - 1, __fmt, __builtin_va_arg_pack ()); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int vwprintf (__const wchar_t *__restrict __fmt, __gnuc_va_list __ap) { return __vwprintf_chk (2 - 1, __fmt, __ap); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int vfwprintf (__FILE *__restrict __stream, __const wchar_t *__restrict __fmt, __gnuc_va_list __ap) { return __vfwprintf_chk (__stream, 2 - 1, __fmt, __ap); } extern wchar_t *__fgetws_chk (wchar_t *__restrict __s, size_t __size, int __n, __FILE *__restrict __stream) __attribute__ ((__warn_unused_result__)); extern wchar_t *__fgetws_alias (wchar_t *__restrict __s, int __n, __FILE *__restrict __stream) __asm__ ("" "fgetws") __attribute__ ((__warn_unused_result__)); extern wchar_t *__fgetws_chk_warn (wchar_t *__restrict __s, size_t __size, int __n, __FILE *__restrict __stream) __asm__ ("" "__fgetws_chk") __attribute__ ((__warn_unused_result__)) __attribute__((__warning__ ("fgetws called with bigger size than length " "of destination buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __attribute__ ((__warn_unused_result__)) wchar_t * fgetws (wchar_t *__restrict __s, int __n, __FILE *__restrict __stream) { if (__builtin_object_size (__s, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__n) || __n <= 0) return __fgetws_chk (__s, __builtin_object_size (__s, 2 > 1) / sizeof (wchar_t), __n, __stream); if ((size_t) __n > __builtin_object_size (__s, 2 > 1) / sizeof (wchar_t)) return __fgetws_chk_warn (__s, __builtin_object_size (__s, 2 > 1) / sizeof (wchar_t), __n, __stream); } return __fgetws_alias (__s, __n, __stream); } extern wchar_t *__fgetws_unlocked_chk (wchar_t *__restrict __s, size_t __size, int __n, __FILE *__restrict __stream) __attribute__ ((__warn_unused_result__)); extern wchar_t *__fgetws_unlocked_alias (wchar_t *__restrict __s, int __n, __FILE *__restrict __stream) __asm__ ("" "fgetws_unlocked") __attribute__ ((__warn_unused_result__)); extern wchar_t *__fgetws_unlocked_chk_warn (wchar_t *__restrict __s, size_t __size, int __n, __FILE *__restrict __stream) __asm__ ("" "__fgetws_unlocked_chk") __attribute__ ((__warn_unused_result__)) __attribute__((__warning__ ("fgetws_unlocked called with bigger size than length " "of destination buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __attribute__ ((__warn_unused_result__)) wchar_t * fgetws_unlocked (wchar_t *__restrict __s, int __n, __FILE *__restrict __stream) { if (__builtin_object_size (__s, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__n) || __n <= 0) return __fgetws_unlocked_chk (__s, __builtin_object_size (__s, 2 > 1) / sizeof (wchar_t), __n, __stream); if ((size_t) __n > __builtin_object_size (__s, 2 > 1) / sizeof (wchar_t)) return __fgetws_unlocked_chk_warn (__s, __builtin_object_size (__s, 2 > 1) / sizeof (wchar_t), __n, __stream); } return __fgetws_unlocked_alias (__s, __n, __stream); } extern size_t __wcrtomb_chk (char *__restrict __s, wchar_t __wchar, mbstate_t *__restrict __p, size_t __buflen) throw () __attribute__ ((__warn_unused_result__)); extern size_t __wcrtomb_alias (char *__restrict __s, wchar_t __wchar, mbstate_t *__restrict __ps) throw () __asm__ ("" "wcrtomb") __attribute__ ((__warn_unused_result__)); extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __attribute__ ((__warn_unused_result__)) size_t __attribute__ ((__leaf__)) wcrtomb (char *__restrict __s, wchar_t __wchar, mbstate_t *__restrict __ps) throw () { if (__builtin_object_size (__s, 2 > 1) != (size_t) -1 && 16 > __builtin_object_size (__s, 2 > 1)) return __wcrtomb_chk (__s, __wchar, __ps, __builtin_object_size (__s, 2 > 1)); return __wcrtomb_alias (__s, __wchar, __ps); } extern size_t __mbsrtowcs_chk (wchar_t *__restrict __dst, __const char **__restrict __src, size_t __len, mbstate_t *__restrict __ps, size_t __dstlen) throw (); extern size_t __mbsrtowcs_alias (wchar_t *__restrict __dst, __const char **__restrict __src, size_t __len, mbstate_t *__restrict __ps) throw () __asm__ ("" "mbsrtowcs") ; extern size_t __mbsrtowcs_chk_warn (wchar_t *__restrict __dst, __const char **__restrict __src, size_t __len, mbstate_t *__restrict __ps, size_t __dstlen) throw () __asm__ ("" "__mbsrtowcs_chk") __attribute__((__warning__ ("mbsrtowcs called with dst buffer smaller than len " "* sizeof (wchar_t)"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) size_t __attribute__ ((__leaf__)) mbsrtowcs (wchar_t *__restrict __dst, __const char **__restrict __src, size_t __len, mbstate_t *__restrict __ps) throw () { if (__builtin_object_size (__dst, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__len)) return __mbsrtowcs_chk (__dst, __src, __len, __ps, __builtin_object_size (__dst, 2 > 1) / sizeof (wchar_t)); if (__len > __builtin_object_size (__dst, 2 > 1) / sizeof (wchar_t)) return __mbsrtowcs_chk_warn (__dst, __src, __len, __ps, __builtin_object_size (__dst, 2 > 1) / sizeof (wchar_t)); } return __mbsrtowcs_alias (__dst, __src, __len, __ps); } extern size_t __wcsrtombs_chk (char *__restrict __dst, __const wchar_t **__restrict __src, size_t __len, mbstate_t *__restrict __ps, size_t __dstlen) throw (); extern size_t __wcsrtombs_alias (char *__restrict __dst, __const wchar_t **__restrict __src, size_t __len, mbstate_t *__restrict __ps) throw () __asm__ ("" "wcsrtombs") ; extern size_t __wcsrtombs_chk_warn (char *__restrict __dst, __const wchar_t **__restrict __src, size_t __len, mbstate_t *__restrict __ps, size_t __dstlen) throw () __asm__ ("" "__wcsrtombs_chk") __attribute__((__warning__ ("wcsrtombs called with dst buffer smaller than len"))); extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) size_t __attribute__ ((__leaf__)) wcsrtombs (char *__restrict __dst, __const wchar_t **__restrict __src, size_t __len, mbstate_t *__restrict __ps) throw () { if (__builtin_object_size (__dst, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__len)) return __wcsrtombs_chk (__dst, __src, __len, __ps, __builtin_object_size (__dst, 2 > 1)); if (__len > __builtin_object_size (__dst, 2 > 1)) return __wcsrtombs_chk_warn (__dst, __src, __len, __ps, __builtin_object_size (__dst, 2 > 1)); } return __wcsrtombs_alias (__dst, __src, __len, __ps); } extern size_t __mbsnrtowcs_chk (wchar_t *__restrict __dst, __const char **__restrict __src, size_t __nmc, size_t __len, mbstate_t *__restrict __ps, size_t __dstlen) throw (); extern size_t __mbsnrtowcs_alias (wchar_t *__restrict __dst, __const char **__restrict __src, size_t __nmc, size_t __len, mbstate_t *__restrict __ps) throw () __asm__ ("" "mbsnrtowcs") ; extern size_t __mbsnrtowcs_chk_warn (wchar_t *__restrict __dst, __const char **__restrict __src, size_t __nmc, size_t __len, mbstate_t *__restrict __ps, size_t __dstlen) throw () __asm__ ("" "__mbsnrtowcs_chk") __attribute__((__warning__ ("mbsnrtowcs called with dst buffer smaller than len " "* sizeof (wchar_t)"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) size_t __attribute__ ((__leaf__)) mbsnrtowcs (wchar_t *__restrict __dst, __const char **__restrict __src, size_t __nmc, size_t __len, mbstate_t *__restrict __ps) throw () { if (__builtin_object_size (__dst, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__len)) return __mbsnrtowcs_chk (__dst, __src, __nmc, __len, __ps, __builtin_object_size (__dst, 2 > 1) / sizeof (wchar_t)); if (__len > __builtin_object_size (__dst, 2 > 1) / sizeof (wchar_t)) return __mbsnrtowcs_chk_warn (__dst, __src, __nmc, __len, __ps, __builtin_object_size (__dst, 2 > 1) / sizeof (wchar_t)); } return __mbsnrtowcs_alias (__dst, __src, __nmc, __len, __ps); } extern size_t __wcsnrtombs_chk (char *__restrict __dst, __const wchar_t **__restrict __src, size_t __nwc, size_t __len, mbstate_t *__restrict __ps, size_t __dstlen) throw (); extern size_t __wcsnrtombs_alias (char *__restrict __dst, __const wchar_t **__restrict __src, size_t __nwc, size_t __len, mbstate_t *__restrict __ps) throw () __asm__ ("" "wcsnrtombs") ; extern size_t __wcsnrtombs_chk_warn (char *__restrict __dst, __const wchar_t **__restrict __src, size_t __nwc, size_t __len, mbstate_t *__restrict __ps, size_t __dstlen) throw () __asm__ ("" "__wcsnrtombs_chk") __attribute__((__warning__ ("wcsnrtombs called with dst buffer smaller than len"))); extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) size_t __attribute__ ((__leaf__)) wcsnrtombs (char *__restrict __dst, __const wchar_t **__restrict __src, size_t __nwc, size_t __len, mbstate_t *__restrict __ps) throw () { if (__builtin_object_size (__dst, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__len)) return __wcsnrtombs_chk (__dst, __src, __nwc, __len, __ps, __builtin_object_size (__dst, 2 > 1)); if (__len > __builtin_object_size (__dst, 2 > 1)) return __wcsnrtombs_chk_warn (__dst, __src, __nwc, __len, __ps, __builtin_object_size (__dst, 2 > 1)); } return __wcsnrtombs_alias (__dst, __src, __nwc, __len, __ps); } } namespace std { using ::mbstate_t; } namespace std __attribute__ ((__visibility__ ("default"))) { using ::wint_t; using ::btowc; using ::fgetwc; using ::fgetws; using ::fputwc; using ::fputws; using ::fwide; using ::fwprintf; using ::fwscanf; using ::getwc; using ::getwchar; using ::mbrlen; using ::mbrtowc; using ::mbsinit; using ::mbsrtowcs; using ::putwc; using ::putwchar; using ::swprintf; using ::swscanf; using ::ungetwc; using ::vfwprintf; using ::vfwscanf; using ::vswprintf; using ::vswscanf; using ::vwprintf; using ::vwscanf; using ::wcrtomb; using ::wcscat; using ::wcscmp; using ::wcscoll; using ::wcscpy; using ::wcscspn; using ::wcsftime; using ::wcslen; using ::wcsncat; using ::wcsncmp; using ::wcsncpy; using ::wcsrtombs; using ::wcsspn; using ::wcstod; using ::wcstof; using ::wcstok; using ::wcstol; using ::wcstoul; using ::wcsxfrm; using ::wctob; using ::wmemcmp; using ::wmemcpy; using ::wmemmove; using ::wmemset; using ::wprintf; using ::wscanf; using ::wcschr; using ::wcspbrk; using ::wcsrchr; using ::wcsstr; using ::wmemchr; } namespace __gnu_cxx { using ::wcstold; using ::wcstoll; using ::wcstoull; } namespace std { using ::__gnu_cxx::wcstold; using ::__gnu_cxx::wcstoll; using ::__gnu_cxx::wcstoull; } namespace std __attribute__ ((__visibility__ ("default"))) { typedef long streamoff; typedef ptrdiff_t streamsize; template class fpos { private: streamoff _M_off; _StateT _M_state; public: fpos() : _M_off(0), _M_state() { } fpos(streamoff __off) : _M_off(__off), _M_state() { } operator streamoff() const { return _M_off; } void state(_StateT __st) { _M_state = __st; } _StateT state() const { return _M_state; } fpos& operator+=(streamoff __off) { _M_off += __off; return *this; } fpos& operator-=(streamoff __off) { _M_off -= __off; return *this; } fpos operator+(streamoff __off) const { fpos __pos(*this); __pos += __off; return __pos; } fpos operator-(streamoff __off) const { fpos __pos(*this); __pos -= __off; return __pos; } streamoff operator-(const fpos& __other) const { return _M_off - __other._M_off; } }; template inline bool operator==(const fpos<_StateT>& __lhs, const fpos<_StateT>& __rhs) { return streamoff(__lhs) == streamoff(__rhs); } template inline bool operator!=(const fpos<_StateT>& __lhs, const fpos<_StateT>& __rhs) { return streamoff(__lhs) != streamoff(__rhs); } typedef fpos streampos; typedef fpos wstreampos; } namespace __gnu_cxx __attribute__ ((__visibility__ ("default"))) { template struct _Char_types { typedef unsigned long int_type; typedef std::streampos pos_type; typedef std::streamoff off_type; typedef std::mbstate_t state_type; }; template struct char_traits { typedef _CharT char_type; typedef typename _Char_types<_CharT>::int_type int_type; typedef typename _Char_types<_CharT>::pos_type pos_type; typedef typename _Char_types<_CharT>::off_type off_type; typedef typename _Char_types<_CharT>::state_type state_type; static void assign(char_type& __c1, const char_type& __c2) { __c1 = __c2; } static bool eq(const char_type& __c1, const char_type& __c2) { return __c1 == __c2; } static bool lt(const char_type& __c1, const char_type& __c2) { return __c1 < __c2; } static int compare(const char_type* __s1, const char_type* __s2, std::size_t __n); static std::size_t length(const char_type* __s); static const char_type* find(const char_type* __s, std::size_t __n, const char_type& __a); static char_type* move(char_type* __s1, const char_type* __s2, std::size_t __n); static char_type* copy(char_type* __s1, const char_type* __s2, std::size_t __n); static char_type* assign(char_type* __s, std::size_t __n, char_type __a); static char_type to_char_type(const int_type& __c) { return static_cast(__c); } static int_type to_int_type(const char_type& __c) { return static_cast(__c); } static bool eq_int_type(const int_type& __c1, const int_type& __c2) { return __c1 == __c2; } static int_type eof() { return static_cast(-1); } static int_type not_eof(const int_type& __c) { return !eq_int_type(__c, eof()) ? __c : to_int_type(char_type()); } }; template int char_traits<_CharT>:: compare(const char_type* __s1, const char_type* __s2, std::size_t __n) { for (std::size_t __i = 0; __i < __n; ++__i) if (lt(__s1[__i], __s2[__i])) return -1; else if (lt(__s2[__i], __s1[__i])) return 1; return 0; } template std::size_t char_traits<_CharT>:: length(const char_type* __p) { std::size_t __i = 0; while (!eq(__p[__i], char_type())) ++__i; return __i; } template const typename char_traits<_CharT>::char_type* char_traits<_CharT>:: find(const char_type* __s, std::size_t __n, const char_type& __a) { for (std::size_t __i = 0; __i < __n; ++__i) if (eq(__s[__i], __a)) return __s + __i; return 0; } template typename char_traits<_CharT>::char_type* char_traits<_CharT>:: move(char_type* __s1, const char_type* __s2, std::size_t __n) { return static_cast<_CharT*>(__builtin_memmove(__s1, __s2, __n * sizeof(char_type))); } template typename char_traits<_CharT>::char_type* char_traits<_CharT>:: copy(char_type* __s1, const char_type* __s2, std::size_t __n) { std::copy(__s2, __s2 + __n, __s1); return __s1; } template typename char_traits<_CharT>::char_type* char_traits<_CharT>:: assign(char_type* __s, std::size_t __n, char_type __a) { std::fill_n(__s, __n, __a); return __s; } } namespace std __attribute__ ((__visibility__ ("default"))) { template struct char_traits : public __gnu_cxx::char_traits<_CharT> { }; template<> struct char_traits { typedef char char_type; typedef int int_type; typedef streampos pos_type; typedef streamoff off_type; typedef mbstate_t state_type; static void assign(char_type& __c1, const char_type& __c2) { __c1 = __c2; } static bool eq(const char_type& __c1, const char_type& __c2) { return __c1 == __c2; } static bool lt(const char_type& __c1, const char_type& __c2) { return __c1 < __c2; } static int compare(const char_type* __s1, const char_type* __s2, size_t __n) { return __builtin_memcmp(__s1, __s2, __n); } static size_t length(const char_type* __s) { return __builtin_strlen(__s); } static const char_type* find(const char_type* __s, size_t __n, const char_type& __a) { return static_cast(__builtin_memchr(__s, __a, __n)); } static char_type* move(char_type* __s1, const char_type* __s2, size_t __n) { return static_cast(__builtin_memmove(__s1, __s2, __n)); } static char_type* copy(char_type* __s1, const char_type* __s2, size_t __n) { return static_cast(__builtin_memcpy(__s1, __s2, __n)); } static char_type* assign(char_type* __s, size_t __n, char_type __a) { return static_cast(__builtin_memset(__s, __a, __n)); } static char_type to_char_type(const int_type& __c) { return static_cast(__c); } static int_type to_int_type(const char_type& __c) { return static_cast(static_cast(__c)); } static bool eq_int_type(const int_type& __c1, const int_type& __c2) { return __c1 == __c2; } static int_type eof() { return static_cast(-1); } static int_type not_eof(const int_type& __c) { return (__c == eof()) ? 0 : __c; } }; template<> struct char_traits { typedef wchar_t char_type; typedef wint_t int_type; typedef streamoff off_type; typedef wstreampos pos_type; typedef mbstate_t state_type; static void assign(char_type& __c1, const char_type& __c2) { __c1 = __c2; } static bool eq(const char_type& __c1, const char_type& __c2) { return __c1 == __c2; } static bool lt(const char_type& __c1, const char_type& __c2) { return __c1 < __c2; } static int compare(const char_type* __s1, const char_type* __s2, size_t __n) { return wmemcmp(__s1, __s2, __n); } static size_t length(const char_type* __s) { return wcslen(__s); } static const char_type* find(const char_type* __s, size_t __n, const char_type& __a) { return wmemchr(__s, __a, __n); } static char_type* move(char_type* __s1, const char_type* __s2, size_t __n) { return wmemmove(__s1, __s2, __n); } static char_type* copy(char_type* __s1, const char_type* __s2, size_t __n) { return wmemcpy(__s1, __s2, __n); } static char_type* assign(char_type* __s, size_t __n, char_type __a) { return wmemset(__s, __a, __n); } static char_type to_char_type(const int_type& __c) { return char_type(__c); } static int_type to_int_type(const char_type& __c) { return int_type(__c); } static bool eq_int_type(const int_type& __c1, const int_type& __c2) { return __c1 == __c2; } static int_type eof() { return static_cast((0xffffffffu)); } static int_type not_eof(const int_type& __c) { return eq_int_type(__c, eof()) ? 0 : __c; } }; } #pragma GCC visibility push(default) extern "C++" { namespace std { class exception { public: exception() throw() { } virtual ~exception() throw(); virtual const char* what() const throw(); }; class bad_exception : public exception { public: bad_exception() throw() { } virtual ~bad_exception() throw(); virtual const char* what() const throw(); }; typedef void (*terminate_handler) (); typedef void (*unexpected_handler) (); terminate_handler set_terminate(terminate_handler) throw(); void terminate() throw() __attribute__ ((__noreturn__)); unexpected_handler set_unexpected(unexpected_handler) throw(); void unexpected() __attribute__ ((__noreturn__)); bool uncaught_exception() throw() __attribute__ ((__pure__)); } namespace __gnu_cxx { void __verbose_terminate_handler(); } } #pragma GCC visibility pop #pragma GCC visibility push(default) extern "C++" { namespace std { class bad_alloc : public exception { public: bad_alloc() throw() { } virtual ~bad_alloc() throw(); virtual const char* what() const throw(); }; struct nothrow_t { }; extern const nothrow_t nothrow; typedef void (*new_handler)(); new_handler set_new_handler(new_handler) throw(); } void* operator new(std::size_t) throw (std::bad_alloc); void* operator new[](std::size_t) throw (std::bad_alloc); void operator delete(void*) throw(); void operator delete[](void*) throw(); void* operator new(std::size_t, const std::nothrow_t&) throw(); void* operator new[](std::size_t, const std::nothrow_t&) throw(); void operator delete(void*, const std::nothrow_t&) throw(); void operator delete[](void*, const std::nothrow_t&) throw(); inline void* operator new(std::size_t, void* __p) throw() { return __p; } inline void* operator new[](std::size_t, void* __p) throw() { return __p; } inline void operator delete (void*, void*) throw() { } inline void operator delete[](void*, void*) throw() { } } #pragma GCC visibility pop namespace __gnu_cxx __attribute__ ((__visibility__ ("default"))) { using std::size_t; using std::ptrdiff_t; template class new_allocator { public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Tp* pointer; typedef const _Tp* const_pointer; typedef _Tp& reference; typedef const _Tp& const_reference; typedef _Tp value_type; template struct rebind { typedef new_allocator<_Tp1> other; }; new_allocator() throw() { } new_allocator(const new_allocator&) throw() { } template new_allocator(const new_allocator<_Tp1>&) throw() { } ~new_allocator() throw() { } pointer address(reference __x) const { return std::__addressof(__x); } const_pointer address(const_reference __x) const { return std::__addressof(__x); } pointer allocate(size_type __n, const void* = 0) { if (__n > this->max_size()) std::__throw_bad_alloc(); return static_cast<_Tp*>(::operator new(__n * sizeof(_Tp))); } void deallocate(pointer __p, size_type) { ::operator delete(__p); } size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); } void construct(pointer __p, const _Tp& __val) { ::new((void *)__p) _Tp(__val); } void destroy(pointer __p) { __p->~_Tp(); } }; template inline bool operator==(const new_allocator<_Tp>&, const new_allocator<_Tp>&) { return true; } template inline bool operator!=(const new_allocator<_Tp>&, const new_allocator<_Tp>&) { return false; } } namespace std __attribute__ ((__visibility__ ("default"))) { template class allocator; template<> class allocator { public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef void* pointer; typedef const void* const_pointer; typedef void value_type; template struct rebind { typedef allocator<_Tp1> other; }; }; template class allocator: public __gnu_cxx::new_allocator<_Tp> { public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Tp* pointer; typedef const _Tp* const_pointer; typedef _Tp& reference; typedef const _Tp& const_reference; typedef _Tp value_type; template struct rebind { typedef allocator<_Tp1> other; }; allocator() throw() { } allocator(const allocator& __a) throw() : __gnu_cxx::new_allocator<_Tp>(__a) { } template allocator(const allocator<_Tp1>&) throw() { } ~allocator() throw() { } }; template inline bool operator==(const allocator<_T1>&, const allocator<_T2>&) { return true; } template inline bool operator==(const allocator<_Tp>&, const allocator<_Tp>&) { return true; } template inline bool operator!=(const allocator<_T1>&, const allocator<_T2>&) { return false; } template inline bool operator!=(const allocator<_Tp>&, const allocator<_Tp>&) { return false; } extern template class allocator; extern template class allocator; template struct __alloc_swap { static void _S_do_it(_Alloc&, _Alloc&) { } }; template struct __alloc_swap<_Alloc, false> { static void _S_do_it(_Alloc& __one, _Alloc& __two) { if (__one != __two) swap(__one, __two); } }; template struct __alloc_neq { static bool _S_do_it(const _Alloc&, const _Alloc&) { return false; } }; template struct __alloc_neq<_Alloc, false> { static bool _S_do_it(const _Alloc& __one, const _Alloc& __two) { return __one != __two; } }; } enum { __LC_CTYPE = 0, __LC_NUMERIC = 1, __LC_TIME = 2, __LC_COLLATE = 3, __LC_MONETARY = 4, __LC_MESSAGES = 5, __LC_ALL = 6, __LC_PAPER = 7, __LC_NAME = 8, __LC_ADDRESS = 9, __LC_TELEPHONE = 10, __LC_MEASUREMENT = 11, __LC_IDENTIFICATION = 12 }; extern "C" { struct lconv { char *decimal_point; char *thousands_sep; char *grouping; char *int_curr_symbol; char *currency_symbol; char *mon_decimal_point; char *mon_thousands_sep; char *mon_grouping; char *positive_sign; char *negative_sign; char int_frac_digits; char frac_digits; char p_cs_precedes; char p_sep_by_space; char n_cs_precedes; char n_sep_by_space; char p_sign_posn; char n_sign_posn; char int_p_cs_precedes; char int_p_sep_by_space; char int_n_cs_precedes; char int_n_sep_by_space; char int_p_sign_posn; char int_n_sign_posn; }; extern char *setlocale (int __category, __const char *__locale) throw (); extern struct lconv *localeconv (void) throw (); extern __locale_t newlocale (int __category_mask, __const char *__locale, __locale_t __base) throw (); extern __locale_t duplocale (__locale_t __dataset) throw (); extern void freelocale (__locale_t __dataset) throw (); extern __locale_t uselocale (__locale_t __dataset) throw (); } namespace std { using ::lconv; using ::setlocale; using ::localeconv; } namespace __gnu_cxx __attribute__ ((__visibility__ ("default"))) { extern "C" __typeof(uselocale) __uselocale; } namespace std __attribute__ ((__visibility__ ("default"))) { typedef __locale_t __c_locale; inline int __convert_from_v(const __c_locale& __cloc __attribute__ ((__unused__)), char* __out, const int __size __attribute__ ((__unused__)), const char* __fmt, ...) { __c_locale __old = __gnu_cxx::__uselocale(__cloc); __builtin_va_list __args; __builtin_va_start(__args, __fmt); const int __ret = __builtin_vsnprintf(__out, __size, __fmt, __args); __builtin_va_end(__args); __gnu_cxx::__uselocale(__old); return __ret; } } namespace std __attribute__ ((__visibility__ ("default"))) { class ios_base; template > class basic_ios; template > class basic_streambuf; template > class basic_istream; template > class basic_ostream; template > class basic_iostream; template, typename _Alloc = allocator<_CharT> > class basic_stringbuf; template, typename _Alloc = allocator<_CharT> > class basic_istringstream; template, typename _Alloc = allocator<_CharT> > class basic_ostringstream; template, typename _Alloc = allocator<_CharT> > class basic_stringstream; template > class basic_filebuf; template > class basic_ifstream; template > class basic_ofstream; template > class basic_fstream; template > class istreambuf_iterator; template > class ostreambuf_iterator; typedef basic_ios ios; typedef basic_streambuf streambuf; typedef basic_istream istream; typedef basic_ostream ostream; typedef basic_iostream iostream; typedef basic_stringbuf stringbuf; typedef basic_istringstream istringstream; typedef basic_ostringstream ostringstream; typedef basic_stringstream stringstream; typedef basic_filebuf filebuf; typedef basic_ifstream ifstream; typedef basic_ofstream ofstream; typedef basic_fstream fstream; typedef basic_ios wios; typedef basic_streambuf wstreambuf; typedef basic_istream wistream; typedef basic_ostream wostream; typedef basic_iostream wiostream; typedef basic_stringbuf wstringbuf; typedef basic_istringstream wistringstream; typedef basic_ostringstream wostringstream; typedef basic_stringstream wstringstream; typedef basic_filebuf wfilebuf; typedef basic_ifstream wifstream; typedef basic_ofstream wofstream; typedef basic_fstream wfstream; } typedef unsigned char __u_char; typedef unsigned short int __u_short; typedef unsigned int __u_int; typedef unsigned long int __u_long; typedef signed char __int8_t; typedef unsigned char __uint8_t; typedef signed short int __int16_t; typedef unsigned short int __uint16_t; typedef signed int __int32_t; typedef unsigned int __uint32_t; typedef signed long int __int64_t; typedef unsigned long int __uint64_t; typedef long int __quad_t; typedef unsigned long int __u_quad_t; typedef unsigned long int __dev_t; typedef unsigned int __uid_t; typedef unsigned int __gid_t; typedef unsigned long int __ino_t; typedef unsigned long int __ino64_t; typedef unsigned int __mode_t; typedef unsigned long int __nlink_t; typedef long int __off_t; typedef long int __off64_t; typedef int __pid_t; typedef struct { int __val[2]; } __fsid_t; typedef long int __clock_t; typedef unsigned long int __rlim_t; typedef unsigned long int __rlim64_t; typedef unsigned int __id_t; typedef long int __time_t; typedef unsigned int __useconds_t; typedef long int __suseconds_t; typedef int __daddr_t; typedef long int __swblk_t; typedef int __key_t; typedef int __clockid_t; typedef void * __timer_t; typedef long int __blksize_t; typedef long int __blkcnt_t; typedef long int __blkcnt64_t; typedef unsigned long int __fsblkcnt_t; typedef unsigned long int __fsblkcnt64_t; typedef unsigned long int __fsfilcnt_t; typedef unsigned long int __fsfilcnt64_t; typedef long int __ssize_t; typedef __off64_t __loff_t; typedef __quad_t *__qaddr_t; typedef char *__caddr_t; typedef long int __intptr_t; typedef unsigned int __socklen_t; extern "C" { enum { _ISupper = (1 << (0)), _ISlower = (1 << (1)), _ISalpha = (1 << (2)), _ISdigit = (1 << (3)), _ISxdigit = (1 << (4)), _ISspace = (1 << (5)), _ISprint = (1 << (6)), _ISgraph = (1 << (7)), _ISblank = (1 << (8)), _IScntrl = (1 << (9)), _ISpunct = (1 << (10)), _ISalnum = (1 << (11)) }; extern __const unsigned short int **__ctype_b_loc (void) throw () __attribute__ ((__const)); extern __const __int32_t **__ctype_tolower_loc (void) throw () __attribute__ ((__const)); extern __const __int32_t **__ctype_toupper_loc (void) throw () __attribute__ ((__const)); extern int isalnum (int) throw (); extern int isalpha (int) throw (); extern int iscntrl (int) throw (); extern int isdigit (int) throw (); extern int islower (int) throw (); extern int isgraph (int) throw (); extern int isprint (int) throw (); extern int ispunct (int) throw (); extern int isspace (int) throw (); extern int isupper (int) throw (); extern int isxdigit (int) throw (); extern int tolower (int __c) throw (); extern int toupper (int __c) throw (); extern int isblank (int) throw (); extern int isctype (int __c, int __mask) throw (); extern int isascii (int __c) throw (); extern int toascii (int __c) throw (); extern int _toupper (int) throw (); extern int _tolower (int) throw (); extern int isalnum_l (int, __locale_t) throw (); extern int isalpha_l (int, __locale_t) throw (); extern int iscntrl_l (int, __locale_t) throw (); extern int isdigit_l (int, __locale_t) throw (); extern int islower_l (int, __locale_t) throw (); extern int isgraph_l (int, __locale_t) throw (); extern int isprint_l (int, __locale_t) throw (); extern int ispunct_l (int, __locale_t) throw (); extern int isspace_l (int, __locale_t) throw (); extern int isupper_l (int, __locale_t) throw (); extern int isxdigit_l (int, __locale_t) throw (); extern int isblank_l (int, __locale_t) throw (); extern int __tolower_l (int __c, __locale_t __l) throw (); extern int tolower_l (int __c, __locale_t __l) throw (); extern int __toupper_l (int __c, __locale_t __l) throw (); extern int toupper_l (int __c, __locale_t __l) throw (); } namespace std { using ::isalnum; using ::isalpha; using ::iscntrl; using ::isdigit; using ::isgraph; using ::islower; using ::isprint; using ::ispunct; using ::isspace; using ::isupper; using ::isxdigit; using ::tolower; using ::toupper; } namespace std __attribute__ ((__visibility__ ("default"))) { class locale; template bool has_facet(const locale&) throw(); template const _Facet& use_facet(const locale&); template bool isspace(_CharT, const locale&); template bool isprint(_CharT, const locale&); template bool iscntrl(_CharT, const locale&); template bool isupper(_CharT, const locale&); template bool islower(_CharT, const locale&); template bool isalpha(_CharT, const locale&); template bool isdigit(_CharT, const locale&); template bool ispunct(_CharT, const locale&); template bool isxdigit(_CharT, const locale&); template bool isalnum(_CharT, const locale&); template bool isgraph(_CharT, const locale&); template _CharT toupper(_CharT, const locale&); template _CharT tolower(_CharT, const locale&); class ctype_base; template class ctype; template<> class ctype; template<> class ctype; template class ctype_byname; class codecvt_base; template class codecvt; template<> class codecvt; template<> class codecvt; template class codecvt_byname; namespace __gnu_cxx_ldbl128 { template > class num_get; template > class num_put; } template class numpunct; template class numpunct_byname; template class collate; template class collate_byname; class time_base; template > class time_get; template > class time_get_byname; template > class time_put; template > class time_put_byname; class money_base; namespace __gnu_cxx_ldbl128 { template > class money_get; template > class money_put; } template class moneypunct; template class moneypunct_byname; class messages_base; template class messages; template class messages_byname; } #pragma GCC visibility push(default) namespace __cxxabiv1 { class __forced_unwind { virtual ~__forced_unwind() throw(); virtual void __pure_dummy() = 0; }; } #pragma GCC visibility pop namespace std __attribute__ ((__visibility__ ("default"))) { template inline void __ostream_write(basic_ostream<_CharT, _Traits>& __out, const _CharT* __s, streamsize __n) { typedef basic_ostream<_CharT, _Traits> __ostream_type; typedef typename __ostream_type::ios_base __ios_base; const streamsize __put = __out.rdbuf()->sputn(__s, __n); if (__put != __n) __out.setstate(__ios_base::badbit); } template inline void __ostream_fill(basic_ostream<_CharT, _Traits>& __out, streamsize __n) { typedef basic_ostream<_CharT, _Traits> __ostream_type; typedef typename __ostream_type::ios_base __ios_base; const _CharT __c = __out.fill(); for (; __n > 0; --__n) { const typename _Traits::int_type __put = __out.rdbuf()->sputc(__c); if (_Traits::eq_int_type(__put, _Traits::eof())) { __out.setstate(__ios_base::badbit); break; } } } template basic_ostream<_CharT, _Traits>& __ostream_insert(basic_ostream<_CharT, _Traits>& __out, const _CharT* __s, streamsize __n) { typedef basic_ostream<_CharT, _Traits> __ostream_type; typedef typename __ostream_type::ios_base __ios_base; typename __ostream_type::sentry __cerb(__out); if (__cerb) { try { const streamsize __w = __out.width(); if (__w > __n) { const bool __left = ((__out.flags() & __ios_base::adjustfield) == __ios_base::left); if (!__left) __ostream_fill(__out, __w - __n); if (__out.good()) __ostream_write(__out, __s, __n); if (__left && __out.good()) __ostream_fill(__out, __w - __n); } else __ostream_write(__out, __s, __n); __out.width(0); } catch(__cxxabiv1::__forced_unwind&) { __out._M_setstate(__ios_base::badbit); throw; } catch(...) { __out._M_setstate(__ios_base::badbit); } } return __out; } extern template ostream& __ostream_insert(ostream&, const char*, streamsize); extern template wostream& __ostream_insert(wostream&, const wchar_t*, streamsize); } namespace std __attribute__ ((__visibility__ ("default"))) { template struct unary_function { typedef _Arg argument_type; typedef _Result result_type; }; template struct binary_function { typedef _Arg1 first_argument_type; typedef _Arg2 second_argument_type; typedef _Result result_type; }; template struct plus : public binary_function<_Tp, _Tp, _Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; } }; template struct minus : public binary_function<_Tp, _Tp, _Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; } }; template struct multiplies : public binary_function<_Tp, _Tp, _Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; } }; template struct divides : public binary_function<_Tp, _Tp, _Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; } }; template struct modulus : public binary_function<_Tp, _Tp, _Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; } }; template struct negate : public unary_function<_Tp, _Tp> { _Tp operator()(const _Tp& __x) const { return -__x; } }; template struct equal_to : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; } }; template struct not_equal_to : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; } }; template struct greater : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; } }; template struct less : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; } }; template struct greater_equal : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; } }; template struct less_equal : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; } }; template struct logical_and : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; } }; template struct logical_or : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; } }; template struct logical_not : public unary_function<_Tp, bool> { bool operator()(const _Tp& __x) const { return !__x; } }; template struct bit_and : public binary_function<_Tp, _Tp, _Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x & __y; } }; template struct bit_or : public binary_function<_Tp, _Tp, _Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x | __y; } }; template struct bit_xor : public binary_function<_Tp, _Tp, _Tp> { _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x ^ __y; } }; template class unary_negate : public unary_function { protected: _Predicate _M_pred; public: explicit unary_negate(const _Predicate& __x) : _M_pred(__x) { } bool operator()(const typename _Predicate::argument_type& __x) const { return !_M_pred(__x); } }; template inline unary_negate<_Predicate> not1(const _Predicate& __pred) { return unary_negate<_Predicate>(__pred); } template class binary_negate : public binary_function { protected: _Predicate _M_pred; public: explicit binary_negate(const _Predicate& __x) : _M_pred(__x) { } bool operator()(const typename _Predicate::first_argument_type& __x, const typename _Predicate::second_argument_type& __y) const { return !_M_pred(__x, __y); } }; template inline binary_negate<_Predicate> not2(const _Predicate& __pred) { return binary_negate<_Predicate>(__pred); } template class pointer_to_unary_function : public unary_function<_Arg, _Result> { protected: _Result (*_M_ptr)(_Arg); public: pointer_to_unary_function() { } explicit pointer_to_unary_function(_Result (*__x)(_Arg)) : _M_ptr(__x) { } _Result operator()(_Arg __x) const { return _M_ptr(__x); } }; template inline pointer_to_unary_function<_Arg, _Result> ptr_fun(_Result (*__x)(_Arg)) { return pointer_to_unary_function<_Arg, _Result>(__x); } template class pointer_to_binary_function : public binary_function<_Arg1, _Arg2, _Result> { protected: _Result (*_M_ptr)(_Arg1, _Arg2); public: pointer_to_binary_function() { } explicit pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2)) : _M_ptr(__x) { } _Result operator()(_Arg1 __x, _Arg2 __y) const { return _M_ptr(__x, __y); } }; template inline pointer_to_binary_function<_Arg1, _Arg2, _Result> ptr_fun(_Result (*__x)(_Arg1, _Arg2)) { return pointer_to_binary_function<_Arg1, _Arg2, _Result>(__x); } template struct _Identity : public unary_function<_Tp,_Tp> { _Tp& operator()(_Tp& __x) const { return __x; } const _Tp& operator()(const _Tp& __x) const { return __x; } }; template struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> { typename _Pair::first_type& operator()(_Pair& __x) const { return __x.first; } const typename _Pair::first_type& operator()(const _Pair& __x) const { return __x.first; } }; template struct _Select2nd : public unary_function<_Pair, typename _Pair::second_type> { typename _Pair::second_type& operator()(_Pair& __x) const { return __x.second; } const typename _Pair::second_type& operator()(const _Pair& __x) const { return __x.second; } }; template class mem_fun_t : public unary_function<_Tp*, _Ret> { public: explicit mem_fun_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) { } _Ret operator()(_Tp* __p) const { return (__p->*_M_f)(); } private: _Ret (_Tp::*_M_f)(); }; template class const_mem_fun_t : public unary_function { public: explicit const_mem_fun_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) { } _Ret operator()(const _Tp* __p) const { return (__p->*_M_f)(); } private: _Ret (_Tp::*_M_f)() const; }; template class mem_fun_ref_t : public unary_function<_Tp, _Ret> { public: explicit mem_fun_ref_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) { } _Ret operator()(_Tp& __r) const { return (__r.*_M_f)(); } private: _Ret (_Tp::*_M_f)(); }; template class const_mem_fun_ref_t : public unary_function<_Tp, _Ret> { public: explicit const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) { } _Ret operator()(const _Tp& __r) const { return (__r.*_M_f)(); } private: _Ret (_Tp::*_M_f)() const; }; template class mem_fun1_t : public binary_function<_Tp*, _Arg, _Ret> { public: explicit mem_fun1_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) { } _Ret operator()(_Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg); }; template class const_mem_fun1_t : public binary_function { public: explicit const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) { } _Ret operator()(const _Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg) const; }; template class mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret> { public: explicit mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) { } _Ret operator()(_Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg); }; template class const_mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret> { public: explicit const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) { } _Ret operator()(const _Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg) const; }; template inline mem_fun_t<_Ret, _Tp> mem_fun(_Ret (_Tp::*__f)()) { return mem_fun_t<_Ret, _Tp>(__f); } template inline const_mem_fun_t<_Ret, _Tp> mem_fun(_Ret (_Tp::*__f)() const) { return const_mem_fun_t<_Ret, _Tp>(__f); } template inline mem_fun_ref_t<_Ret, _Tp> mem_fun_ref(_Ret (_Tp::*__f)()) { return mem_fun_ref_t<_Ret, _Tp>(__f); } template inline const_mem_fun_ref_t<_Ret, _Tp> mem_fun_ref(_Ret (_Tp::*__f)() const) { return const_mem_fun_ref_t<_Ret, _Tp>(__f); } template inline mem_fun1_t<_Ret, _Tp, _Arg> mem_fun(_Ret (_Tp::*__f)(_Arg)) { return mem_fun1_t<_Ret, _Tp, _Arg>(__f); } template inline const_mem_fun1_t<_Ret, _Tp, _Arg> mem_fun(_Ret (_Tp::*__f)(_Arg) const) { return const_mem_fun1_t<_Ret, _Tp, _Arg>(__f); } template inline mem_fun1_ref_t<_Ret, _Tp, _Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg)) { return mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); } template inline const_mem_fun1_ref_t<_Ret, _Tp, _Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const) { return const_mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); } } namespace std __attribute__ ((__visibility__ ("default"))) { template class binder1st : public unary_function { protected: _Operation op; typename _Operation::first_argument_type value; public: binder1st(const _Operation& __x, const typename _Operation::first_argument_type& __y) : op(__x), value(__y) { } typename _Operation::result_type operator()(const typename _Operation::second_argument_type& __x) const { return op(value, __x); } typename _Operation::result_type operator()(typename _Operation::second_argument_type& __x) const { return op(value, __x); } } ; template inline binder1st<_Operation> bind1st(const _Operation& __fn, const _Tp& __x) { typedef typename _Operation::first_argument_type _Arg1_type; return binder1st<_Operation>(__fn, _Arg1_type(__x)); } template class binder2nd : public unary_function { protected: _Operation op; typename _Operation::second_argument_type value; public: binder2nd(const _Operation& __x, const typename _Operation::second_argument_type& __y) : op(__x), value(__y) { } typename _Operation::result_type operator()(const typename _Operation::first_argument_type& __x) const { return op(__x, value); } typename _Operation::result_type operator()(typename _Operation::first_argument_type& __x) const { return op(__x, value); } } ; template inline binder2nd<_Operation> bind2nd(const _Operation& __fn, const _Tp& __x) { typedef typename _Operation::second_argument_type _Arg2_type; return binder2nd<_Operation>(__fn, _Arg2_type(__x)); } } #pragma GCC visibility push(default) typedef __time_t time_t; struct timespec { __time_t tv_sec; long int tv_nsec; }; typedef __pid_t pid_t; struct sched_param { int __sched_priority; }; extern "C" { extern int clone (int (*__fn) (void *__arg), void *__child_stack, int __flags, void *__arg, ...) throw (); extern int unshare (int __flags) throw (); extern int sched_getcpu (void) throw (); extern int setns (int __fd, int __nstype) throw (); } struct __sched_param { int __sched_priority; }; typedef unsigned long int __cpu_mask; typedef struct { __cpu_mask __bits[1024 / (8 * sizeof (__cpu_mask))]; } cpu_set_t; extern "C" { extern int __sched_cpucount (size_t __setsize, const cpu_set_t *__setp) throw (); extern cpu_set_t *__sched_cpualloc (size_t __count) throw () __attribute__ ((__warn_unused_result__)); extern void __sched_cpufree (cpu_set_t *__set) throw (); } extern "C" { extern int sched_setparam (__pid_t __pid, __const struct sched_param *__param) throw (); extern int sched_getparam (__pid_t __pid, struct sched_param *__param) throw (); extern int sched_setscheduler (__pid_t __pid, int __policy, __const struct sched_param *__param) throw (); extern int sched_getscheduler (__pid_t __pid) throw (); extern int sched_yield (void) throw (); extern int sched_get_priority_max (int __algorithm) throw (); extern int sched_get_priority_min (int __algorithm) throw (); extern int sched_rr_get_interval (__pid_t __pid, struct timespec *__t) throw (); extern int sched_setaffinity (__pid_t __pid, size_t __cpusetsize, __const cpu_set_t *__cpuset) throw (); extern int sched_getaffinity (__pid_t __pid, size_t __cpusetsize, cpu_set_t *__cpuset) throw (); } extern "C" { struct timeval { __time_t tv_sec; __suseconds_t tv_usec; }; struct timex { unsigned int modes; long int offset; long int freq; long int maxerror; long int esterror; int status; long int constant; long int precision; long int tolerance; struct timeval time; long int tick; long int ppsfreq; long int jitter; int shift; long int stabil; long int jitcnt; long int calcnt; long int errcnt; long int stbcnt; int tai; int :32; int :32; int :32; int :32; int :32; int :32; int :32; int :32; int :32; int :32; int :32; }; extern "C" { extern int clock_adjtime (__clockid_t __clock_id, struct timex *__utx) throw (); } typedef __clock_t clock_t; typedef __clockid_t clockid_t; typedef __timer_t timer_t; struct tm { int tm_sec; int tm_min; int tm_hour; int tm_mday; int tm_mon; int tm_year; int tm_wday; int tm_yday; int tm_isdst; long int tm_gmtoff; __const char *tm_zone; }; struct itimerspec { struct timespec it_interval; struct timespec it_value; }; struct sigevent; extern clock_t clock (void) throw (); extern time_t time (time_t *__timer) throw (); extern double difftime (time_t __time1, time_t __time0) throw () __attribute__ ((__const__)); extern time_t mktime (struct tm *__tp) throw (); extern size_t strftime (char *__restrict __s, size_t __maxsize, __const char *__restrict __format, __const struct tm *__restrict __tp) throw (); extern char *strptime (__const char *__restrict __s, __const char *__restrict __fmt, struct tm *__tp) throw (); extern size_t strftime_l (char *__restrict __s, size_t __maxsize, __const char *__restrict __format, __const struct tm *__restrict __tp, __locale_t __loc) throw (); extern char *strptime_l (__const char *__restrict __s, __const char *__restrict __fmt, struct tm *__tp, __locale_t __loc) throw (); extern struct tm *gmtime (__const time_t *__timer) throw (); extern struct tm *localtime (__const time_t *__timer) throw (); extern struct tm *gmtime_r (__const time_t *__restrict __timer, struct tm *__restrict __tp) throw (); extern struct tm *localtime_r (__const time_t *__restrict __timer, struct tm *__restrict __tp) throw (); extern char *asctime (__const struct tm *__tp) throw (); extern char *ctime (__const time_t *__timer) throw (); extern char *asctime_r (__const struct tm *__restrict __tp, char *__restrict __buf) throw (); extern char *ctime_r (__const time_t *__restrict __timer, char *__restrict __buf) throw (); extern char *__tzname[2]; extern int __daylight; extern long int __timezone; extern char *tzname[2]; extern void tzset (void) throw (); extern int daylight; extern long int timezone; extern int stime (__const time_t *__when) throw (); extern time_t timegm (struct tm *__tp) throw (); extern time_t timelocal (struct tm *__tp) throw (); extern int dysize (int __year) throw () __attribute__ ((__const__)); extern int nanosleep (__const struct timespec *__requested_time, struct timespec *__remaining); extern int clock_getres (clockid_t __clock_id, struct timespec *__res) throw (); extern int clock_gettime (clockid_t __clock_id, struct timespec *__tp) throw (); extern int clock_settime (clockid_t __clock_id, __const struct timespec *__tp) throw (); extern int clock_nanosleep (clockid_t __clock_id, int __flags, __const struct timespec *__req, struct timespec *__rem); extern int clock_getcpuclockid (pid_t __pid, clockid_t *__clock_id) throw (); extern int timer_create (clockid_t __clock_id, struct sigevent *__restrict __evp, timer_t *__restrict __timerid) throw (); extern int timer_delete (timer_t __timerid) throw (); extern int timer_settime (timer_t __timerid, int __flags, __const struct itimerspec *__restrict __value, struct itimerspec *__restrict __ovalue) throw (); extern int timer_gettime (timer_t __timerid, struct itimerspec *__value) throw (); extern int timer_getoverrun (timer_t __timerid) throw (); extern int getdate_err; extern struct tm *getdate (__const char *__string); extern int getdate_r (__const char *__restrict __string, struct tm *__restrict __resbufp); } typedef unsigned long int pthread_t; typedef union { char __size[56]; long int __align; } pthread_attr_t; typedef struct __pthread_internal_list { struct __pthread_internal_list *__prev; struct __pthread_internal_list *__next; } __pthread_list_t; typedef union { struct __pthread_mutex_s { int __lock; unsigned int __count; int __owner; unsigned int __nusers; int __kind; int __spins; __pthread_list_t __list; } __data; char __size[40]; long int __align; } pthread_mutex_t; typedef union { char __size[4]; int __align; } pthread_mutexattr_t; typedef union { struct { int __lock; unsigned int __futex; __extension__ unsigned long long int __total_seq; __extension__ unsigned long long int __wakeup_seq; __extension__ unsigned long long int __woken_seq; void *__mutex; unsigned int __nwaiters; unsigned int __broadcast_seq; } __data; char __size[48]; __extension__ long long int __align; } pthread_cond_t; typedef union { char __size[4]; int __align; } pthread_condattr_t; typedef unsigned int pthread_key_t; typedef int pthread_once_t; typedef union { struct { int __lock; unsigned int __nr_readers; unsigned int __readers_wakeup; unsigned int __writer_wakeup; unsigned int __nr_readers_queued; unsigned int __nr_writers_queued; int __writer; int __shared; unsigned long int __pad1; unsigned long int __pad2; unsigned int __flags; } __data; char __size[56]; long int __align; } pthread_rwlock_t; typedef union { char __size[8]; long int __align; } pthread_rwlockattr_t; typedef volatile int pthread_spinlock_t; typedef union { char __size[32]; long int __align; } pthread_barrier_t; typedef union { char __size[4]; int __align; } pthread_barrierattr_t; typedef long int __jmp_buf[64] __attribute__ ((__aligned__ (16))); enum { PTHREAD_CREATE_JOINABLE, PTHREAD_CREATE_DETACHED }; enum { PTHREAD_MUTEX_TIMED_NP, PTHREAD_MUTEX_RECURSIVE_NP, PTHREAD_MUTEX_ERRORCHECK_NP, PTHREAD_MUTEX_ADAPTIVE_NP , PTHREAD_MUTEX_NORMAL = PTHREAD_MUTEX_TIMED_NP, PTHREAD_MUTEX_RECURSIVE = PTHREAD_MUTEX_RECURSIVE_NP, PTHREAD_MUTEX_ERRORCHECK = PTHREAD_MUTEX_ERRORCHECK_NP, PTHREAD_MUTEX_DEFAULT = PTHREAD_MUTEX_NORMAL , PTHREAD_MUTEX_FAST_NP = PTHREAD_MUTEX_TIMED_NP }; enum { PTHREAD_MUTEX_STALLED, PTHREAD_MUTEX_STALLED_NP = PTHREAD_MUTEX_STALLED, PTHREAD_MUTEX_ROBUST, PTHREAD_MUTEX_ROBUST_NP = PTHREAD_MUTEX_ROBUST }; enum { PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT, PTHREAD_PRIO_PROTECT }; enum { PTHREAD_RWLOCK_PREFER_READER_NP, PTHREAD_RWLOCK_PREFER_WRITER_NP, PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP, PTHREAD_RWLOCK_DEFAULT_NP = PTHREAD_RWLOCK_PREFER_READER_NP }; enum { PTHREAD_INHERIT_SCHED, PTHREAD_EXPLICIT_SCHED }; enum { PTHREAD_SCOPE_SYSTEM, PTHREAD_SCOPE_PROCESS }; enum { PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED }; struct _pthread_cleanup_buffer { void (*__routine) (void *); void *__arg; int __canceltype; struct _pthread_cleanup_buffer *__prev; }; enum { PTHREAD_CANCEL_ENABLE, PTHREAD_CANCEL_DISABLE }; enum { PTHREAD_CANCEL_DEFERRED, PTHREAD_CANCEL_ASYNCHRONOUS }; extern "C" { extern int pthread_create (pthread_t *__restrict __newthread, __const pthread_attr_t *__restrict __attr, void *(*__start_routine) (void *), void *__restrict __arg) throw () __attribute__ ((__nonnull__ (1, 3))); extern void pthread_exit (void *__retval) __attribute__ ((__noreturn__)); extern int pthread_join (pthread_t __th, void **__thread_return); extern int pthread_tryjoin_np (pthread_t __th, void **__thread_return) throw (); extern int pthread_timedjoin_np (pthread_t __th, void **__thread_return, __const struct timespec *__abstime); extern int pthread_detach (pthread_t __th) throw (); extern pthread_t pthread_self (void) throw () __attribute__ ((__const__)); extern int pthread_equal (pthread_t __thread1, pthread_t __thread2) throw (); extern int pthread_attr_init (pthread_attr_t *__attr) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_attr_destroy (pthread_attr_t *__attr) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_attr_getdetachstate (__const pthread_attr_t *__attr, int *__detachstate) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_attr_setdetachstate (pthread_attr_t *__attr, int __detachstate) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_attr_getguardsize (__const pthread_attr_t *__attr, size_t *__guardsize) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_attr_setguardsize (pthread_attr_t *__attr, size_t __guardsize) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_attr_getschedparam (__const pthread_attr_t *__restrict __attr, struct sched_param *__restrict __param) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_attr_setschedparam (pthread_attr_t *__restrict __attr, __const struct sched_param *__restrict __param) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_attr_getschedpolicy (__const pthread_attr_t *__restrict __attr, int *__restrict __policy) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_attr_setschedpolicy (pthread_attr_t *__attr, int __policy) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_attr_getinheritsched (__const pthread_attr_t *__restrict __attr, int *__restrict __inherit) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_attr_setinheritsched (pthread_attr_t *__attr, int __inherit) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_attr_getscope (__const pthread_attr_t *__restrict __attr, int *__restrict __scope) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_attr_setscope (pthread_attr_t *__attr, int __scope) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_attr_getstackaddr (__const pthread_attr_t *__restrict __attr, void **__restrict __stackaddr) throw () __attribute__ ((__nonnull__ (1, 2))) __attribute__ ((__deprecated__)); extern int pthread_attr_setstackaddr (pthread_attr_t *__attr, void *__stackaddr) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__deprecated__)); extern int pthread_attr_getstacksize (__const pthread_attr_t *__restrict __attr, size_t *__restrict __stacksize) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_attr_setstacksize (pthread_attr_t *__attr, size_t __stacksize) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_attr_getstack (__const pthread_attr_t *__restrict __attr, void **__restrict __stackaddr, size_t *__restrict __stacksize) throw () __attribute__ ((__nonnull__ (1, 2, 3))); extern int pthread_attr_setstack (pthread_attr_t *__attr, void *__stackaddr, size_t __stacksize) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_attr_setaffinity_np (pthread_attr_t *__attr, size_t __cpusetsize, __const cpu_set_t *__cpuset) throw () __attribute__ ((__nonnull__ (1, 3))); extern int pthread_attr_getaffinity_np (__const pthread_attr_t *__attr, size_t __cpusetsize, cpu_set_t *__cpuset) throw () __attribute__ ((__nonnull__ (1, 3))); extern int pthread_getattr_np (pthread_t __th, pthread_attr_t *__attr) throw () __attribute__ ((__nonnull__ (2))); extern int pthread_setschedparam (pthread_t __target_thread, int __policy, __const struct sched_param *__param) throw () __attribute__ ((__nonnull__ (3))); extern int pthread_getschedparam (pthread_t __target_thread, int *__restrict __policy, struct sched_param *__restrict __param) throw () __attribute__ ((__nonnull__ (2, 3))); extern int pthread_setschedprio (pthread_t __target_thread, int __prio) throw (); extern int pthread_getname_np (pthread_t __target_thread, char *__buf, size_t __buflen) throw () __attribute__ ((__nonnull__ (2))); extern int pthread_setname_np (pthread_t __target_thread, __const char *__name) throw () __attribute__ ((__nonnull__ (2))); extern int pthread_getconcurrency (void) throw (); extern int pthread_setconcurrency (int __level) throw (); extern int pthread_yield (void) throw (); extern int pthread_setaffinity_np (pthread_t __th, size_t __cpusetsize, __const cpu_set_t *__cpuset) throw () __attribute__ ((__nonnull__ (3))); extern int pthread_getaffinity_np (pthread_t __th, size_t __cpusetsize, cpu_set_t *__cpuset) throw () __attribute__ ((__nonnull__ (3))); extern int pthread_once (pthread_once_t *__once_control, void (*__init_routine) (void)) __attribute__ ((__nonnull__ (1, 2))); extern int pthread_setcancelstate (int __state, int *__oldstate); extern int pthread_setcanceltype (int __type, int *__oldtype); extern int pthread_cancel (pthread_t __th); extern void pthread_testcancel (void); typedef struct { struct { __jmp_buf __cancel_jmp_buf; int __mask_was_saved; } __cancel_jmp_buf[1]; void *__pad[4]; } __pthread_unwind_buf_t __attribute__ ((__aligned__)); struct __pthread_cleanup_frame { void (*__cancel_routine) (void *); void *__cancel_arg; int __do_it; int __cancel_type; }; class __pthread_cleanup_class { void (*__cancel_routine) (void *); void *__cancel_arg; int __do_it; int __cancel_type; public: __pthread_cleanup_class (void (*__fct) (void *), void *__arg) : __cancel_routine (__fct), __cancel_arg (__arg), __do_it (1) { } ~__pthread_cleanup_class () { if (__do_it) __cancel_routine (__cancel_arg); } void __setdoit (int __newval) { __do_it = __newval; } void __defer () { pthread_setcanceltype (PTHREAD_CANCEL_DEFERRED, &__cancel_type); } void __restore () const { pthread_setcanceltype (__cancel_type, 0); } }; struct __jmp_buf_tag; extern int __sigsetjmp (struct __jmp_buf_tag *__env, int __savemask) throw (); extern int pthread_mutex_init (pthread_mutex_t *__mutex, __const pthread_mutexattr_t *__mutexattr) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_mutex_destroy (pthread_mutex_t *__mutex) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_mutex_trylock (pthread_mutex_t *__mutex) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_mutex_lock (pthread_mutex_t *__mutex) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_mutex_timedlock (pthread_mutex_t *__restrict __mutex, __const struct timespec *__restrict __abstime) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_mutex_unlock (pthread_mutex_t *__mutex) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_mutex_getprioceiling (__const pthread_mutex_t * __restrict __mutex, int *__restrict __prioceiling) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_mutex_setprioceiling (pthread_mutex_t *__restrict __mutex, int __prioceiling, int *__restrict __old_ceiling) throw () __attribute__ ((__nonnull__ (1, 3))); extern int pthread_mutex_consistent (pthread_mutex_t *__mutex) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_mutex_consistent_np (pthread_mutex_t *__mutex) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_mutexattr_init (pthread_mutexattr_t *__attr) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_mutexattr_destroy (pthread_mutexattr_t *__attr) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_mutexattr_getpshared (__const pthread_mutexattr_t * __restrict __attr, int *__restrict __pshared) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_mutexattr_setpshared (pthread_mutexattr_t *__attr, int __pshared) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_mutexattr_gettype (__const pthread_mutexattr_t *__restrict __attr, int *__restrict __kind) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_mutexattr_settype (pthread_mutexattr_t *__attr, int __kind) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_mutexattr_getprotocol (__const pthread_mutexattr_t * __restrict __attr, int *__restrict __protocol) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_mutexattr_setprotocol (pthread_mutexattr_t *__attr, int __protocol) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_mutexattr_getprioceiling (__const pthread_mutexattr_t * __restrict __attr, int *__restrict __prioceiling) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_mutexattr_setprioceiling (pthread_mutexattr_t *__attr, int __prioceiling) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_mutexattr_getrobust (__const pthread_mutexattr_t *__attr, int *__robustness) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_mutexattr_getrobust_np (__const pthread_mutexattr_t *__attr, int *__robustness) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_mutexattr_setrobust (pthread_mutexattr_t *__attr, int __robustness) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_mutexattr_setrobust_np (pthread_mutexattr_t *__attr, int __robustness) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_rwlock_init (pthread_rwlock_t *__restrict __rwlock, __const pthread_rwlockattr_t *__restrict __attr) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_rwlock_destroy (pthread_rwlock_t *__rwlock) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_rwlock_rdlock (pthread_rwlock_t *__rwlock) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_rwlock_tryrdlock (pthread_rwlock_t *__rwlock) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_rwlock_timedrdlock (pthread_rwlock_t *__restrict __rwlock, __const struct timespec *__restrict __abstime) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_rwlock_wrlock (pthread_rwlock_t *__rwlock) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_rwlock_trywrlock (pthread_rwlock_t *__rwlock) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_rwlock_timedwrlock (pthread_rwlock_t *__restrict __rwlock, __const struct timespec *__restrict __abstime) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_rwlock_unlock (pthread_rwlock_t *__rwlock) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_rwlockattr_init (pthread_rwlockattr_t *__attr) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_rwlockattr_destroy (pthread_rwlockattr_t *__attr) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_rwlockattr_getpshared (__const pthread_rwlockattr_t * __restrict __attr, int *__restrict __pshared) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_rwlockattr_setpshared (pthread_rwlockattr_t *__attr, int __pshared) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_rwlockattr_getkind_np (__const pthread_rwlockattr_t * __restrict __attr, int *__restrict __pref) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_rwlockattr_setkind_np (pthread_rwlockattr_t *__attr, int __pref) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_cond_init (pthread_cond_t *__restrict __cond, __const pthread_condattr_t *__restrict __cond_attr) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_cond_destroy (pthread_cond_t *__cond) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_cond_signal (pthread_cond_t *__cond) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_cond_broadcast (pthread_cond_t *__cond) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_cond_wait (pthread_cond_t *__restrict __cond, pthread_mutex_t *__restrict __mutex) __attribute__ ((__nonnull__ (1, 2))); extern int pthread_cond_timedwait (pthread_cond_t *__restrict __cond, pthread_mutex_t *__restrict __mutex, __const struct timespec *__restrict __abstime) __attribute__ ((__nonnull__ (1, 2, 3))); extern int pthread_condattr_init (pthread_condattr_t *__attr) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_condattr_destroy (pthread_condattr_t *__attr) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_condattr_getpshared (__const pthread_condattr_t * __restrict __attr, int *__restrict __pshared) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_condattr_setpshared (pthread_condattr_t *__attr, int __pshared) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_condattr_getclock (__const pthread_condattr_t * __restrict __attr, __clockid_t *__restrict __clock_id) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_condattr_setclock (pthread_condattr_t *__attr, __clockid_t __clock_id) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_spin_init (pthread_spinlock_t *__lock, int __pshared) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_spin_destroy (pthread_spinlock_t *__lock) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_spin_lock (pthread_spinlock_t *__lock) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_spin_trylock (pthread_spinlock_t *__lock) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_spin_unlock (pthread_spinlock_t *__lock) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_barrier_init (pthread_barrier_t *__restrict __barrier, __const pthread_barrierattr_t *__restrict __attr, unsigned int __count) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_barrier_destroy (pthread_barrier_t *__barrier) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_barrier_wait (pthread_barrier_t *__barrier) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_barrierattr_init (pthread_barrierattr_t *__attr) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_barrierattr_destroy (pthread_barrierattr_t *__attr) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_barrierattr_getpshared (__const pthread_barrierattr_t * __restrict __attr, int *__restrict __pshared) throw () __attribute__ ((__nonnull__ (1, 2))); extern int pthread_barrierattr_setpshared (pthread_barrierattr_t *__attr, int __pshared) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_key_create (pthread_key_t *__key, void (*__destr_function) (void *)) throw () __attribute__ ((__nonnull__ (1))); extern int pthread_key_delete (pthread_key_t __key) throw (); extern void *pthread_getspecific (pthread_key_t __key) throw (); extern int pthread_setspecific (pthread_key_t __key, __const void *__pointer) throw () ; extern int pthread_getcpuclockid (pthread_t __thread_id, __clockid_t *__clock_id) throw () __attribute__ ((__nonnull__ (2))); extern int pthread_atfork (void (*__prepare) (void), void (*__parent) (void), void (*__child) (void)) throw (); extern __inline __attribute__ ((__gnu_inline__)) int __attribute__ ((__leaf__)) pthread_equal (pthread_t __thread1, pthread_t __thread2) throw () { return __thread1 == __thread2; } } extern "C" { typedef __ssize_t ssize_t; typedef __gid_t gid_t; typedef __uid_t uid_t; typedef __off_t off_t; typedef __off64_t off64_t; typedef __useconds_t useconds_t; typedef __intptr_t intptr_t; typedef __socklen_t socklen_t; extern int access (__const char *__name, int __type) throw () __attribute__ ((__nonnull__ (1))); extern int euidaccess (__const char *__name, int __type) throw () __attribute__ ((__nonnull__ (1))); extern int eaccess (__const char *__name, int __type) throw () __attribute__ ((__nonnull__ (1))); extern int faccessat (int __fd, __const char *__file, int __type, int __flag) throw () __attribute__ ((__nonnull__ (2))) __attribute__ ((__warn_unused_result__)); extern __off_t lseek (int __fd, __off_t __offset, int __whence) throw (); extern __off64_t lseek64 (int __fd, __off64_t __offset, int __whence) throw (); extern int close (int __fd); extern ssize_t read (int __fd, void *__buf, size_t __nbytes) __attribute__ ((__warn_unused_result__)); extern ssize_t write (int __fd, __const void *__buf, size_t __n) __attribute__ ((__warn_unused_result__)); extern ssize_t pread (int __fd, void *__buf, size_t __nbytes, __off_t __offset) __attribute__ ((__warn_unused_result__)); extern ssize_t pwrite (int __fd, __const void *__buf, size_t __n, __off_t __offset) __attribute__ ((__warn_unused_result__)); extern ssize_t pread64 (int __fd, void *__buf, size_t __nbytes, __off64_t __offset) __attribute__ ((__warn_unused_result__)); extern ssize_t pwrite64 (int __fd, __const void *__buf, size_t __n, __off64_t __offset) __attribute__ ((__warn_unused_result__)); extern int pipe (int __pipedes[2]) throw () __attribute__ ((__warn_unused_result__)); extern int pipe2 (int __pipedes[2], int __flags) throw () __attribute__ ((__warn_unused_result__)); extern unsigned int alarm (unsigned int __seconds) throw (); extern unsigned int sleep (unsigned int __seconds); extern __useconds_t ualarm (__useconds_t __value, __useconds_t __interval) throw (); extern int usleep (__useconds_t __useconds); extern int pause (void); extern int chown (__const char *__file, __uid_t __owner, __gid_t __group) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int fchown (int __fd, __uid_t __owner, __gid_t __group) throw () __attribute__ ((__warn_unused_result__)); extern int lchown (__const char *__file, __uid_t __owner, __gid_t __group) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int fchownat (int __fd, __const char *__file, __uid_t __owner, __gid_t __group, int __flag) throw () __attribute__ ((__nonnull__ (2))) __attribute__ ((__warn_unused_result__)); extern int chdir (__const char *__path) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int fchdir (int __fd) throw () __attribute__ ((__warn_unused_result__)); extern char *getcwd (char *__buf, size_t __size) throw () __attribute__ ((__warn_unused_result__)); extern char *get_current_dir_name (void) throw (); extern char *getwd (char *__buf) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__deprecated__)) __attribute__ ((__warn_unused_result__)); extern int dup (int __fd) throw () __attribute__ ((__warn_unused_result__)); extern int dup2 (int __fd, int __fd2) throw (); extern int dup3 (int __fd, int __fd2, int __flags) throw (); extern char **__environ; extern char **environ; extern int execve (__const char *__path, char *__const __argv[], char *__const __envp[]) throw () __attribute__ ((__nonnull__ (1, 2))); extern int fexecve (int __fd, char *__const __argv[], char *__const __envp[]) throw () __attribute__ ((__nonnull__ (2))); extern int execv (__const char *__path, char *__const __argv[]) throw () __attribute__ ((__nonnull__ (1, 2))); extern int execle (__const char *__path, __const char *__arg, ...) throw () __attribute__ ((__nonnull__ (1, 2))); extern int execl (__const char *__path, __const char *__arg, ...) throw () __attribute__ ((__nonnull__ (1, 2))); extern int execvp (__const char *__file, char *__const __argv[]) throw () __attribute__ ((__nonnull__ (1, 2))); extern int execlp (__const char *__file, __const char *__arg, ...) throw () __attribute__ ((__nonnull__ (1, 2))); extern int execvpe (__const char *__file, char *__const __argv[], char *__const __envp[]) throw () __attribute__ ((__nonnull__ (1, 2))); extern int nice (int __inc) throw () __attribute__ ((__warn_unused_result__)); extern void _exit (int __status) __attribute__ ((__noreturn__)); enum { _PC_LINK_MAX, _PC_MAX_CANON, _PC_MAX_INPUT, _PC_NAME_MAX, _PC_PATH_MAX, _PC_PIPE_BUF, _PC_CHOWN_RESTRICTED, _PC_NO_TRUNC, _PC_VDISABLE, _PC_SYNC_IO, _PC_ASYNC_IO, _PC_PRIO_IO, _PC_SOCK_MAXBUF, _PC_FILESIZEBITS, _PC_REC_INCR_XFER_SIZE, _PC_REC_MAX_XFER_SIZE, _PC_REC_MIN_XFER_SIZE, _PC_REC_XFER_ALIGN, _PC_ALLOC_SIZE_MIN, _PC_SYMLINK_MAX, _PC_2_SYMLINKS }; enum { _SC_ARG_MAX, _SC_CHILD_MAX, _SC_CLK_TCK, _SC_NGROUPS_MAX, _SC_OPEN_MAX, _SC_STREAM_MAX, _SC_TZNAME_MAX, _SC_JOB_CONTROL, _SC_SAVED_IDS, _SC_REALTIME_SIGNALS, _SC_PRIORITY_SCHEDULING, _SC_TIMERS, _SC_ASYNCHRONOUS_IO, _SC_PRIORITIZED_IO, _SC_SYNCHRONIZED_IO, _SC_FSYNC, _SC_MAPPED_FILES, _SC_MEMLOCK, _SC_MEMLOCK_RANGE, _SC_MEMORY_PROTECTION, _SC_MESSAGE_PASSING, _SC_SEMAPHORES, _SC_SHARED_MEMORY_OBJECTS, _SC_AIO_LISTIO_MAX, _SC_AIO_MAX, _SC_AIO_PRIO_DELTA_MAX, _SC_DELAYTIMER_MAX, _SC_MQ_OPEN_MAX, _SC_MQ_PRIO_MAX, _SC_VERSION, _SC_PAGESIZE, _SC_RTSIG_MAX, _SC_SEM_NSEMS_MAX, _SC_SEM_VALUE_MAX, _SC_SIGQUEUE_MAX, _SC_TIMER_MAX, _SC_BC_BASE_MAX, _SC_BC_DIM_MAX, _SC_BC_SCALE_MAX, _SC_BC_STRING_MAX, _SC_COLL_WEIGHTS_MAX, _SC_EQUIV_CLASS_MAX, _SC_EXPR_NEST_MAX, _SC_LINE_MAX, _SC_RE_DUP_MAX, _SC_CHARCLASS_NAME_MAX, _SC_2_VERSION, _SC_2_C_BIND, _SC_2_C_DEV, _SC_2_FORT_DEV, _SC_2_FORT_RUN, _SC_2_SW_DEV, _SC_2_LOCALEDEF, _SC_PII, _SC_PII_XTI, _SC_PII_SOCKET, _SC_PII_INTERNET, _SC_PII_OSI, _SC_POLL, _SC_SELECT, _SC_UIO_MAXIOV, _SC_IOV_MAX = _SC_UIO_MAXIOV, _SC_PII_INTERNET_STREAM, _SC_PII_INTERNET_DGRAM, _SC_PII_OSI_COTS, _SC_PII_OSI_CLTS, _SC_PII_OSI_M, _SC_T_IOV_MAX, _SC_THREADS, _SC_THREAD_SAFE_FUNCTIONS, _SC_GETGR_R_SIZE_MAX, _SC_GETPW_R_SIZE_MAX, _SC_LOGIN_NAME_MAX, _SC_TTY_NAME_MAX, _SC_THREAD_DESTRUCTOR_ITERATIONS, _SC_THREAD_KEYS_MAX, _SC_THREAD_STACK_MIN, _SC_THREAD_THREADS_MAX, _SC_THREAD_ATTR_STACKADDR, _SC_THREAD_ATTR_STACKSIZE, _SC_THREAD_PRIORITY_SCHEDULING, _SC_THREAD_PRIO_INHERIT, _SC_THREAD_PRIO_PROTECT, _SC_THREAD_PROCESS_SHARED, _SC_NPROCESSORS_CONF, _SC_NPROCESSORS_ONLN, _SC_PHYS_PAGES, _SC_AVPHYS_PAGES, _SC_ATEXIT_MAX, _SC_PASS_MAX, _SC_XOPEN_VERSION, _SC_XOPEN_XCU_VERSION, _SC_XOPEN_UNIX, _SC_XOPEN_CRYPT, _SC_XOPEN_ENH_I18N, _SC_XOPEN_SHM, _SC_2_CHAR_TERM, _SC_2_C_VERSION, _SC_2_UPE, _SC_XOPEN_XPG2, _SC_XOPEN_XPG3, _SC_XOPEN_XPG4, _SC_CHAR_BIT, _SC_CHAR_MAX, _SC_CHAR_MIN, _SC_INT_MAX, _SC_INT_MIN, _SC_LONG_BIT, _SC_WORD_BIT, _SC_MB_LEN_MAX, _SC_NZERO, _SC_SSIZE_MAX, _SC_SCHAR_MAX, _SC_SCHAR_MIN, _SC_SHRT_MAX, _SC_SHRT_MIN, _SC_UCHAR_MAX, _SC_UINT_MAX, _SC_ULONG_MAX, _SC_USHRT_MAX, _SC_NL_ARGMAX, _SC_NL_LANGMAX, _SC_NL_MSGMAX, _SC_NL_NMAX, _SC_NL_SETMAX, _SC_NL_TEXTMAX, _SC_XBS5_ILP32_OFF32, _SC_XBS5_ILP32_OFFBIG, _SC_XBS5_LP64_OFF64, _SC_XBS5_LPBIG_OFFBIG, _SC_XOPEN_LEGACY, _SC_XOPEN_REALTIME, _SC_XOPEN_REALTIME_THREADS, _SC_ADVISORY_INFO, _SC_BARRIERS, _SC_BASE, _SC_C_LANG_SUPPORT, _SC_C_LANG_SUPPORT_R, _SC_CLOCK_SELECTION, _SC_CPUTIME, _SC_THREAD_CPUTIME, _SC_DEVICE_IO, _SC_DEVICE_SPECIFIC, _SC_DEVICE_SPECIFIC_R, _SC_FD_MGMT, _SC_FIFO, _SC_PIPE, _SC_FILE_ATTRIBUTES, _SC_FILE_LOCKING, _SC_FILE_SYSTEM, _SC_MONOTONIC_CLOCK, _SC_MULTI_PROCESS, _SC_SINGLE_PROCESS, _SC_NETWORKING, _SC_READER_WRITER_LOCKS, _SC_SPIN_LOCKS, _SC_REGEXP, _SC_REGEX_VERSION, _SC_SHELL, _SC_SIGNALS, _SC_SPAWN, _SC_SPORADIC_SERVER, _SC_THREAD_SPORADIC_SERVER, _SC_SYSTEM_DATABASE, _SC_SYSTEM_DATABASE_R, _SC_TIMEOUTS, _SC_TYPED_MEMORY_OBJECTS, _SC_USER_GROUPS, _SC_USER_GROUPS_R, _SC_2_PBS, _SC_2_PBS_ACCOUNTING, _SC_2_PBS_LOCATE, _SC_2_PBS_MESSAGE, _SC_2_PBS_TRACK, _SC_SYMLOOP_MAX, _SC_STREAMS, _SC_2_PBS_CHECKPOINT, _SC_V6_ILP32_OFF32, _SC_V6_ILP32_OFFBIG, _SC_V6_LP64_OFF64, _SC_V6_LPBIG_OFFBIG, _SC_HOST_NAME_MAX, _SC_TRACE, _SC_TRACE_EVENT_FILTER, _SC_TRACE_INHERIT, _SC_TRACE_LOG, _SC_LEVEL1_ICACHE_SIZE, _SC_LEVEL1_ICACHE_ASSOC, _SC_LEVEL1_ICACHE_LINESIZE, _SC_LEVEL1_DCACHE_SIZE, _SC_LEVEL1_DCACHE_ASSOC, _SC_LEVEL1_DCACHE_LINESIZE, _SC_LEVEL2_CACHE_SIZE, _SC_LEVEL2_CACHE_ASSOC, _SC_LEVEL2_CACHE_LINESIZE, _SC_LEVEL3_CACHE_SIZE, _SC_LEVEL3_CACHE_ASSOC, _SC_LEVEL3_CACHE_LINESIZE, _SC_LEVEL4_CACHE_SIZE, _SC_LEVEL4_CACHE_ASSOC, _SC_LEVEL4_CACHE_LINESIZE, _SC_IPV6 = _SC_LEVEL1_ICACHE_SIZE + 50, _SC_RAW_SOCKETS, _SC_V7_ILP32_OFF32, _SC_V7_ILP32_OFFBIG, _SC_V7_LP64_OFF64, _SC_V7_LPBIG_OFFBIG, _SC_SS_REPL_MAX, _SC_TRACE_EVENT_NAME_MAX, _SC_TRACE_NAME_MAX, _SC_TRACE_SYS_MAX, _SC_TRACE_USER_EVENT_MAX, _SC_XOPEN_STREAMS, _SC_THREAD_ROBUST_PRIO_INHERIT, _SC_THREAD_ROBUST_PRIO_PROTECT }; enum { _CS_PATH, _CS_V6_WIDTH_RESTRICTED_ENVS, _CS_GNU_LIBC_VERSION, _CS_GNU_LIBPTHREAD_VERSION, _CS_V5_WIDTH_RESTRICTED_ENVS, _CS_V7_WIDTH_RESTRICTED_ENVS, _CS_LFS_CFLAGS = 1000, _CS_LFS_LDFLAGS, _CS_LFS_LIBS, _CS_LFS_LINTFLAGS, _CS_LFS64_CFLAGS, _CS_LFS64_LDFLAGS, _CS_LFS64_LIBS, _CS_LFS64_LINTFLAGS, _CS_XBS5_ILP32_OFF32_CFLAGS = 1100, _CS_XBS5_ILP32_OFF32_LDFLAGS, _CS_XBS5_ILP32_OFF32_LIBS, _CS_XBS5_ILP32_OFF32_LINTFLAGS, _CS_XBS5_ILP32_OFFBIG_CFLAGS, _CS_XBS5_ILP32_OFFBIG_LDFLAGS, _CS_XBS5_ILP32_OFFBIG_LIBS, _CS_XBS5_ILP32_OFFBIG_LINTFLAGS, _CS_XBS5_LP64_OFF64_CFLAGS, _CS_XBS5_LP64_OFF64_LDFLAGS, _CS_XBS5_LP64_OFF64_LIBS, _CS_XBS5_LP64_OFF64_LINTFLAGS, _CS_XBS5_LPBIG_OFFBIG_CFLAGS, _CS_XBS5_LPBIG_OFFBIG_LDFLAGS, _CS_XBS5_LPBIG_OFFBIG_LIBS, _CS_XBS5_LPBIG_OFFBIG_LINTFLAGS, _CS_POSIX_V6_ILP32_OFF32_CFLAGS, _CS_POSIX_V6_ILP32_OFF32_LDFLAGS, _CS_POSIX_V6_ILP32_OFF32_LIBS, _CS_POSIX_V6_ILP32_OFF32_LINTFLAGS, _CS_POSIX_V6_ILP32_OFFBIG_CFLAGS, _CS_POSIX_V6_ILP32_OFFBIG_LDFLAGS, _CS_POSIX_V6_ILP32_OFFBIG_LIBS, _CS_POSIX_V6_ILP32_OFFBIG_LINTFLAGS, _CS_POSIX_V6_LP64_OFF64_CFLAGS, _CS_POSIX_V6_LP64_OFF64_LDFLAGS, _CS_POSIX_V6_LP64_OFF64_LIBS, _CS_POSIX_V6_LP64_OFF64_LINTFLAGS, _CS_POSIX_V6_LPBIG_OFFBIG_CFLAGS, _CS_POSIX_V6_LPBIG_OFFBIG_LDFLAGS, _CS_POSIX_V6_LPBIG_OFFBIG_LIBS, _CS_POSIX_V6_LPBIG_OFFBIG_LINTFLAGS, _CS_POSIX_V7_ILP32_OFF32_CFLAGS, _CS_POSIX_V7_ILP32_OFF32_LDFLAGS, _CS_POSIX_V7_ILP32_OFF32_LIBS, _CS_POSIX_V7_ILP32_OFF32_LINTFLAGS, _CS_POSIX_V7_ILP32_OFFBIG_CFLAGS, _CS_POSIX_V7_ILP32_OFFBIG_LDFLAGS, _CS_POSIX_V7_ILP32_OFFBIG_LIBS, _CS_POSIX_V7_ILP32_OFFBIG_LINTFLAGS, _CS_POSIX_V7_LP64_OFF64_CFLAGS, _CS_POSIX_V7_LP64_OFF64_LDFLAGS, _CS_POSIX_V7_LP64_OFF64_LIBS, _CS_POSIX_V7_LP64_OFF64_LINTFLAGS, _CS_POSIX_V7_LPBIG_OFFBIG_CFLAGS, _CS_POSIX_V7_LPBIG_OFFBIG_LDFLAGS, _CS_POSIX_V7_LPBIG_OFFBIG_LIBS, _CS_POSIX_V7_LPBIG_OFFBIG_LINTFLAGS, _CS_V6_ENV, _CS_V7_ENV }; extern long int pathconf (__const char *__path, int __name) throw () __attribute__ ((__nonnull__ (1))); extern long int fpathconf (int __fd, int __name) throw (); extern long int sysconf (int __name) throw (); extern size_t confstr (int __name, char *__buf, size_t __len) throw (); extern __pid_t getpid (void) throw (); extern __pid_t getppid (void) throw (); extern __pid_t getpgrp (void) throw (); extern __pid_t __getpgid (__pid_t __pid) throw (); extern __pid_t getpgid (__pid_t __pid) throw (); extern int setpgid (__pid_t __pid, __pid_t __pgid) throw (); extern int setpgrp (void) throw (); extern __pid_t setsid (void) throw (); extern __pid_t getsid (__pid_t __pid) throw (); extern __uid_t getuid (void) throw (); extern __uid_t geteuid (void) throw (); extern __gid_t getgid (void) throw (); extern __gid_t getegid (void) throw (); extern int getgroups (int __size, __gid_t __list[]) throw () __attribute__ ((__warn_unused_result__)); extern int group_member (__gid_t __gid) throw (); extern int setuid (__uid_t __uid) throw (); extern int setreuid (__uid_t __ruid, __uid_t __euid) throw (); extern int seteuid (__uid_t __uid) throw (); extern int setgid (__gid_t __gid) throw (); extern int setregid (__gid_t __rgid, __gid_t __egid) throw (); extern int setegid (__gid_t __gid) throw (); extern int getresuid (__uid_t *__ruid, __uid_t *__euid, __uid_t *__suid) throw (); extern int getresgid (__gid_t *__rgid, __gid_t *__egid, __gid_t *__sgid) throw (); extern int setresuid (__uid_t __ruid, __uid_t __euid, __uid_t __suid) throw (); extern int setresgid (__gid_t __rgid, __gid_t __egid, __gid_t __sgid) throw (); extern __pid_t fork (void) throw (); extern __pid_t vfork (void) throw (); extern char *ttyname (int __fd) throw (); extern int ttyname_r (int __fd, char *__buf, size_t __buflen) throw () __attribute__ ((__nonnull__ (2))) __attribute__ ((__warn_unused_result__)); extern int isatty (int __fd) throw (); extern int ttyslot (void) throw (); extern int link (__const char *__from, __const char *__to) throw () __attribute__ ((__nonnull__ (1, 2))) __attribute__ ((__warn_unused_result__)); extern int linkat (int __fromfd, __const char *__from, int __tofd, __const char *__to, int __flags) throw () __attribute__ ((__nonnull__ (2, 4))) __attribute__ ((__warn_unused_result__)); extern int symlink (__const char *__from, __const char *__to) throw () __attribute__ ((__nonnull__ (1, 2))) __attribute__ ((__warn_unused_result__)); extern ssize_t readlink (__const char *__restrict __path, char *__restrict __buf, size_t __len) throw () __attribute__ ((__nonnull__ (1, 2))) __attribute__ ((__warn_unused_result__)); extern int symlinkat (__const char *__from, int __tofd, __const char *__to) throw () __attribute__ ((__nonnull__ (1, 3))) __attribute__ ((__warn_unused_result__)); extern ssize_t readlinkat (int __fd, __const char *__restrict __path, char *__restrict __buf, size_t __len) throw () __attribute__ ((__nonnull__ (2, 3))) __attribute__ ((__warn_unused_result__)); extern int unlink (__const char *__name) throw () __attribute__ ((__nonnull__ (1))); extern int unlinkat (int __fd, __const char *__name, int __flag) throw () __attribute__ ((__nonnull__ (2))); extern int rmdir (__const char *__path) throw () __attribute__ ((__nonnull__ (1))); extern __pid_t tcgetpgrp (int __fd) throw (); extern int tcsetpgrp (int __fd, __pid_t __pgrp_id) throw (); extern char *getlogin (void); extern int getlogin_r (char *__name, size_t __name_len) __attribute__ ((__nonnull__ (1))); extern int setlogin (__const char *__name) throw () __attribute__ ((__nonnull__ (1))); extern "C" { extern char *optarg; extern int optind; extern int opterr; extern int optopt; extern int getopt (int ___argc, char *const *___argv, const char *__shortopts) throw (); } extern int gethostname (char *__name, size_t __len) throw () __attribute__ ((__nonnull__ (1))); extern int sethostname (__const char *__name, size_t __len) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int sethostid (long int __id) throw () __attribute__ ((__warn_unused_result__)); extern int getdomainname (char *__name, size_t __len) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int setdomainname (__const char *__name, size_t __len) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int vhangup (void) throw (); extern int revoke (__const char *__file) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int profil (unsigned short int *__sample_buffer, size_t __size, size_t __offset, unsigned int __scale) throw () __attribute__ ((__nonnull__ (1))); extern int acct (__const char *__name) throw (); extern char *getusershell (void) throw (); extern void endusershell (void) throw (); extern void setusershell (void) throw (); extern int daemon (int __nochdir, int __noclose) throw () __attribute__ ((__warn_unused_result__)); extern int chroot (__const char *__path) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern char *getpass (__const char *__prompt) __attribute__ ((__nonnull__ (1))); extern int fsync (int __fd); extern int syncfs (int __fd) throw (); extern long int gethostid (void); extern void sync (void) throw (); extern int getpagesize (void) throw () __attribute__ ((__const__)); extern int getdtablesize (void) throw (); extern int truncate (__const char *__file, __off_t __length) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int truncate64 (__const char *__file, __off64_t __length) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int ftruncate (int __fd, __off_t __length) throw () __attribute__ ((__warn_unused_result__)); extern int ftruncate64 (int __fd, __off64_t __length) throw () __attribute__ ((__warn_unused_result__)); extern int brk (void *__addr) throw () __attribute__ ((__warn_unused_result__)); extern void *sbrk (intptr_t __delta) throw (); extern long int syscall (long int __sysno, ...) throw (); extern int lockf (int __fd, int __cmd, __off_t __len) __attribute__ ((__warn_unused_result__)); extern int lockf64 (int __fd, int __cmd, __off64_t __len) __attribute__ ((__warn_unused_result__)); extern int fdatasync (int __fildes); extern char *crypt (__const char *__key, __const char *__salt) throw () __attribute__ ((__nonnull__ (1, 2))); extern void encrypt (char *__block, int __edflag) throw () __attribute__ ((__nonnull__ (1))); extern void swab (__const void *__restrict __from, void *__restrict __to, ssize_t __n) throw () __attribute__ ((__nonnull__ (1, 2))); extern char *ctermid (char *__s) throw (); extern ssize_t __read_chk (int __fd, void *__buf, size_t __nbytes, size_t __buflen) __attribute__ ((__warn_unused_result__)); extern ssize_t __read_alias (int __fd, void *__buf, size_t __nbytes) __asm__ ("" "read") __attribute__ ((__warn_unused_result__)); extern ssize_t __read_chk_warn (int __fd, void *__buf, size_t __nbytes, size_t __buflen) __asm__ ("" "__read_chk") __attribute__ ((__warn_unused_result__)) __attribute__((__warning__ ("read called with bigger length than size of " "the destination buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __attribute__ ((__warn_unused_result__)) ssize_t read (int __fd, void *__buf, size_t __nbytes) { if (__builtin_object_size (__buf, 0) != (size_t) -1) { if (!__builtin_constant_p (__nbytes)) return __read_chk (__fd, __buf, __nbytes, __builtin_object_size (__buf, 0)); if (__nbytes > __builtin_object_size (__buf, 0)) return __read_chk_warn (__fd, __buf, __nbytes, __builtin_object_size (__buf, 0)); } return __read_alias (__fd, __buf, __nbytes); } extern ssize_t __pread_chk (int __fd, void *__buf, size_t __nbytes, __off_t __offset, size_t __bufsize) __attribute__ ((__warn_unused_result__)); extern ssize_t __pread64_chk (int __fd, void *__buf, size_t __nbytes, __off64_t __offset, size_t __bufsize) __attribute__ ((__warn_unused_result__)); extern ssize_t __pread_alias (int __fd, void *__buf, size_t __nbytes, __off_t __offset) __asm__ ("" "pread") __attribute__ ((__warn_unused_result__)); extern ssize_t __pread64_alias (int __fd, void *__buf, size_t __nbytes, __off64_t __offset) __asm__ ("" "pread64") __attribute__ ((__warn_unused_result__)); extern ssize_t __pread_chk_warn (int __fd, void *__buf, size_t __nbytes, __off_t __offset, size_t __bufsize) __asm__ ("" "__pread_chk") __attribute__ ((__warn_unused_result__)) __attribute__((__warning__ ("pread called with bigger length than size of " "the destination buffer"))) ; extern ssize_t __pread64_chk_warn (int __fd, void *__buf, size_t __nbytes, __off64_t __offset, size_t __bufsize) __asm__ ("" "__pread64_chk") __attribute__ ((__warn_unused_result__)) __attribute__((__warning__ ("pread64 called with bigger length than size of " "the destination buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __attribute__ ((__warn_unused_result__)) ssize_t pread (int __fd, void *__buf, size_t __nbytes, __off_t __offset) { if (__builtin_object_size (__buf, 0) != (size_t) -1) { if (!__builtin_constant_p (__nbytes)) return __pread_chk (__fd, __buf, __nbytes, __offset, __builtin_object_size (__buf, 0)); if ( __nbytes > __builtin_object_size (__buf, 0)) return __pread_chk_warn (__fd, __buf, __nbytes, __offset, __builtin_object_size (__buf, 0)); } return __pread_alias (__fd, __buf, __nbytes, __offset); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __attribute__ ((__warn_unused_result__)) ssize_t pread64 (int __fd, void *__buf, size_t __nbytes, __off64_t __offset) { if (__builtin_object_size (__buf, 0) != (size_t) -1) { if (!__builtin_constant_p (__nbytes)) return __pread64_chk (__fd, __buf, __nbytes, __offset, __builtin_object_size (__buf, 0)); if ( __nbytes > __builtin_object_size (__buf, 0)) return __pread64_chk_warn (__fd, __buf, __nbytes, __offset, __builtin_object_size (__buf, 0)); } return __pread64_alias (__fd, __buf, __nbytes, __offset); } extern ssize_t __readlink_chk (__const char *__restrict __path, char *__restrict __buf, size_t __len, size_t __buflen) throw () __attribute__ ((__nonnull__ (1, 2))) __attribute__ ((__warn_unused_result__)); extern ssize_t __readlink_alias (__const char *__restrict __path, char *__restrict __buf, size_t __len) throw () __asm__ ("" "readlink") __attribute__ ((__nonnull__ (1, 2))) __attribute__ ((__warn_unused_result__)); extern ssize_t __readlink_chk_warn (__const char *__restrict __path, char *__restrict __buf, size_t __len, size_t __buflen) throw () __asm__ ("" "__readlink_chk") __attribute__ ((__nonnull__ (1, 2))) __attribute__ ((__warn_unused_result__)) __attribute__((__warning__ ("readlink called with bigger length " "than size of destination buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __attribute__ ((__nonnull__ (1, 2))) __attribute__ ((__warn_unused_result__)) ssize_t __attribute__ ((__leaf__)) readlink (__const char *__restrict __path, char *__restrict __buf, size_t __len) throw () { if (__builtin_object_size (__buf, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__len)) return __readlink_chk (__path, __buf, __len, __builtin_object_size (__buf, 2 > 1)); if ( __len > __builtin_object_size (__buf, 2 > 1)) return __readlink_chk_warn (__path, __buf, __len, __builtin_object_size (__buf, 2 > 1)); } return __readlink_alias (__path, __buf, __len); } extern ssize_t __readlinkat_chk (int __fd, __const char *__restrict __path, char *__restrict __buf, size_t __len, size_t __buflen) throw () __attribute__ ((__nonnull__ (2, 3))) __attribute__ ((__warn_unused_result__)); extern ssize_t __readlinkat_alias (int __fd, __const char *__restrict __path, char *__restrict __buf, size_t __len) throw () __asm__ ("" "readlinkat") __attribute__ ((__nonnull__ (2, 3))) __attribute__ ((__warn_unused_result__)); extern ssize_t __readlinkat_chk_warn (int __fd, __const char *__restrict __path, char *__restrict __buf, size_t __len, size_t __buflen) throw () __asm__ ("" "__readlinkat_chk") __attribute__ ((__nonnull__ (2, 3))) __attribute__ ((__warn_unused_result__)) __attribute__((__warning__ ("readlinkat called with bigger " "length than size of destination " "buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __attribute__ ((__nonnull__ (2, 3))) __attribute__ ((__warn_unused_result__)) ssize_t __attribute__ ((__leaf__)) readlinkat (int __fd, __const char *__restrict __path, char *__restrict __buf, size_t __len) throw () { if (__builtin_object_size (__buf, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__len)) return __readlinkat_chk (__fd, __path, __buf, __len, __builtin_object_size (__buf, 2 > 1)); if (__len > __builtin_object_size (__buf, 2 > 1)) return __readlinkat_chk_warn (__fd, __path, __buf, __len, __builtin_object_size (__buf, 2 > 1)); } return __readlinkat_alias (__fd, __path, __buf, __len); } extern char *__getcwd_chk (char *__buf, size_t __size, size_t __buflen) throw () __attribute__ ((__warn_unused_result__)); extern char *__getcwd_alias (char *__buf, size_t __size) throw () __asm__ ("" "getcwd") __attribute__ ((__warn_unused_result__)); extern char *__getcwd_chk_warn (char *__buf, size_t __size, size_t __buflen) throw () __asm__ ("" "__getcwd_chk") __attribute__ ((__warn_unused_result__)) __attribute__((__warning__ ("getcwd caller with bigger length than size of " "destination buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __attribute__ ((__warn_unused_result__)) char * __attribute__ ((__leaf__)) getcwd (char *__buf, size_t __size) throw () { if (__builtin_object_size (__buf, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__size)) return __getcwd_chk (__buf, __size, __builtin_object_size (__buf, 2 > 1)); if (__size > __builtin_object_size (__buf, 2 > 1)) return __getcwd_chk_warn (__buf, __size, __builtin_object_size (__buf, 2 > 1)); } return __getcwd_alias (__buf, __size); } extern char *__getwd_chk (char *__buf, size_t buflen) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern char *__getwd_warn (char *__buf) throw () __asm__ ("" "getwd") __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)) __attribute__((__warning__ ("please use getcwd instead, as getwd " "doesn't specify buffer size"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __attribute__ ((__nonnull__ (1))) __attribute__ ((__deprecated__)) __attribute__ ((__warn_unused_result__)) char * __attribute__ ((__leaf__)) getwd (char *__buf) throw () { if (__builtin_object_size (__buf, 2 > 1) != (size_t) -1) return __getwd_chk (__buf, __builtin_object_size (__buf, 2 > 1)); return __getwd_warn (__buf); } extern size_t __confstr_chk (int __name, char *__buf, size_t __len, size_t __buflen) throw (); extern size_t __confstr_alias (int __name, char *__buf, size_t __len) throw () __asm__ ("" "confstr") ; extern size_t __confstr_chk_warn (int __name, char *__buf, size_t __len, size_t __buflen) throw () __asm__ ("" "__confstr_chk") __attribute__((__warning__ ("confstr called with bigger length than size of destination " "buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) size_t __attribute__ ((__leaf__)) confstr (int __name, char *__buf, size_t __len) throw () { if (__builtin_object_size (__buf, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__len)) return __confstr_chk (__name, __buf, __len, __builtin_object_size (__buf, 2 > 1)); if (__builtin_object_size (__buf, 2 > 1) < __len) return __confstr_chk_warn (__name, __buf, __len, __builtin_object_size (__buf, 2 > 1)); } return __confstr_alias (__name, __buf, __len); } extern int __getgroups_chk (int __size, __gid_t __list[], size_t __listlen) throw () __attribute__ ((__warn_unused_result__)); extern int __getgroups_alias (int __size, __gid_t __list[]) throw () __asm__ ("" "getgroups") __attribute__ ((__warn_unused_result__)); extern int __getgroups_chk_warn (int __size, __gid_t __list[], size_t __listlen) throw () __asm__ ("" "__getgroups_chk") __attribute__ ((__warn_unused_result__)) __attribute__((__warning__ ("getgroups called with bigger group count than what " "can fit into destination buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int __attribute__ ((__leaf__)) getgroups (int __size, __gid_t __list[]) throw () { if (__builtin_object_size (__list, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__size) || __size < 0) return __getgroups_chk (__size, __list, __builtin_object_size (__list, 2 > 1)); if (__size * sizeof (__gid_t) > __builtin_object_size (__list, 2 > 1)) return __getgroups_chk_warn (__size, __list, __builtin_object_size (__list, 2 > 1)); } return __getgroups_alias (__size, __list); } extern int __ttyname_r_chk (int __fd, char *__buf, size_t __buflen, size_t __nreal) throw () __attribute__ ((__nonnull__ (2))); extern int __ttyname_r_alias (int __fd, char *__buf, size_t __buflen) throw () __asm__ ("" "ttyname_r") __attribute__ ((__nonnull__ (2))); extern int __ttyname_r_chk_warn (int __fd, char *__buf, size_t __buflen, size_t __nreal) throw () __asm__ ("" "__ttyname_r_chk") __attribute__ ((__nonnull__ (2))) __attribute__((__warning__ ("ttyname_r called with bigger buflen than " "size of destination buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int __attribute__ ((__leaf__)) ttyname_r (int __fd, char *__buf, size_t __buflen) throw () { if (__builtin_object_size (__buf, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__buflen)) return __ttyname_r_chk (__fd, __buf, __buflen, __builtin_object_size (__buf, 2 > 1)); if (__buflen > __builtin_object_size (__buf, 2 > 1)) return __ttyname_r_chk_warn (__fd, __buf, __buflen, __builtin_object_size (__buf, 2 > 1)); } return __ttyname_r_alias (__fd, __buf, __buflen); } extern int __getlogin_r_chk (char *__buf, size_t __buflen, size_t __nreal) __attribute__ ((__nonnull__ (1))); extern int __getlogin_r_alias (char *__buf, size_t __buflen) __asm__ ("" "getlogin_r") __attribute__ ((__nonnull__ (1))); extern int __getlogin_r_chk_warn (char *__buf, size_t __buflen, size_t __nreal) __asm__ ("" "__getlogin_r_chk") __attribute__ ((__nonnull__ (1))) __attribute__((__warning__ ("getlogin_r called with bigger buflen than " "size of destination buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int getlogin_r (char *__buf, size_t __buflen) { if (__builtin_object_size (__buf, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__buflen)) return __getlogin_r_chk (__buf, __buflen, __builtin_object_size (__buf, 2 > 1)); if (__buflen > __builtin_object_size (__buf, 2 > 1)) return __getlogin_r_chk_warn (__buf, __buflen, __builtin_object_size (__buf, 2 > 1)); } return __getlogin_r_alias (__buf, __buflen); } extern int __gethostname_chk (char *__buf, size_t __buflen, size_t __nreal) throw () __attribute__ ((__nonnull__ (1))); extern int __gethostname_alias (char *__buf, size_t __buflen) throw () __asm__ ("" "gethostname") __attribute__ ((__nonnull__ (1))); extern int __gethostname_chk_warn (char *__buf, size_t __buflen, size_t __nreal) throw () __asm__ ("" "__gethostname_chk") __attribute__ ((__nonnull__ (1))) __attribute__((__warning__ ("gethostname called with bigger buflen than " "size of destination buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int __attribute__ ((__leaf__)) gethostname (char *__buf, size_t __buflen) throw () { if (__builtin_object_size (__buf, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__buflen)) return __gethostname_chk (__buf, __buflen, __builtin_object_size (__buf, 2 > 1)); if (__buflen > __builtin_object_size (__buf, 2 > 1)) return __gethostname_chk_warn (__buf, __buflen, __builtin_object_size (__buf, 2 > 1)); } return __gethostname_alias (__buf, __buflen); } extern int __getdomainname_chk (char *__buf, size_t __buflen, size_t __nreal) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int __getdomainname_alias (char *__buf, size_t __buflen) throw () __asm__ ("" "getdomainname") __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int __getdomainname_chk_warn (char *__buf, size_t __buflen, size_t __nreal) throw () __asm__ ("" "__getdomainname_chk") __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)) __attribute__((__warning__ ("getdomainname called with bigger " "buflen than size of destination " "buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int __attribute__ ((__leaf__)) getdomainname (char *__buf, size_t __buflen) throw () { if (__builtin_object_size (__buf, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__buflen)) return __getdomainname_chk (__buf, __buflen, __builtin_object_size (__buf, 2 > 1)); if (__buflen > __builtin_object_size (__buf, 2 > 1)) return __getdomainname_chk_warn (__buf, __buflen, __builtin_object_size (__buf, 2 > 1)); } return __getdomainname_alias (__buf, __buflen); } } typedef pthread_t __gthread_t; typedef pthread_key_t __gthread_key_t; typedef pthread_once_t __gthread_once_t; typedef pthread_mutex_t __gthread_mutex_t; typedef pthread_mutex_t __gthread_recursive_mutex_t; typedef pthread_cond_t __gthread_cond_t; typedef struct timespec __gthread_time_t; static __typeof(pthread_once) __gthrw_pthread_once __attribute__ ((__weakref__("pthread_once"))); static __typeof(pthread_getspecific) __gthrw_pthread_getspecific __attribute__ ((__weakref__("pthread_getspecific"))); static __typeof(pthread_setspecific) __gthrw_pthread_setspecific __attribute__ ((__weakref__("pthread_setspecific"))); static __typeof(pthread_create) __gthrw_pthread_create __attribute__ ((__weakref__("pthread_create"))); static __typeof(pthread_join) __gthrw_pthread_join __attribute__ ((__weakref__("pthread_join"))); static __typeof(pthread_equal) __gthrw_pthread_equal __attribute__ ((__weakref__("pthread_equal"))); static __typeof(pthread_self) __gthrw_pthread_self __attribute__ ((__weakref__("pthread_self"))); static __typeof(pthread_detach) __gthrw_pthread_detach __attribute__ ((__weakref__("pthread_detach"))); static __typeof(pthread_cancel) __gthrw_pthread_cancel __attribute__ ((__weakref__("pthread_cancel"))); static __typeof(sched_yield) __gthrw_sched_yield __attribute__ ((__weakref__("sched_yield"))); static __typeof(pthread_mutex_lock) __gthrw_pthread_mutex_lock __attribute__ ((__weakref__("pthread_mutex_lock"))); static __typeof(pthread_mutex_trylock) __gthrw_pthread_mutex_trylock __attribute__ ((__weakref__("pthread_mutex_trylock"))); static __typeof(pthread_mutex_timedlock) __gthrw_pthread_mutex_timedlock __attribute__ ((__weakref__("pthread_mutex_timedlock"))); static __typeof(pthread_mutex_unlock) __gthrw_pthread_mutex_unlock __attribute__ ((__weakref__("pthread_mutex_unlock"))); static __typeof(pthread_mutex_init) __gthrw_pthread_mutex_init __attribute__ ((__weakref__("pthread_mutex_init"))); static __typeof(pthread_mutex_destroy) __gthrw_pthread_mutex_destroy __attribute__ ((__weakref__("pthread_mutex_destroy"))); static __typeof(pthread_cond_broadcast) __gthrw_pthread_cond_broadcast __attribute__ ((__weakref__("pthread_cond_broadcast"))); static __typeof(pthread_cond_signal) __gthrw_pthread_cond_signal __attribute__ ((__weakref__("pthread_cond_signal"))); static __typeof(pthread_cond_wait) __gthrw_pthread_cond_wait __attribute__ ((__weakref__("pthread_cond_wait"))); static __typeof(pthread_cond_timedwait) __gthrw_pthread_cond_timedwait __attribute__ ((__weakref__("pthread_cond_timedwait"))); static __typeof(pthread_cond_destroy) __gthrw_pthread_cond_destroy __attribute__ ((__weakref__("pthread_cond_destroy"))); static __typeof(pthread_key_create) __gthrw_pthread_key_create __attribute__ ((__weakref__("pthread_key_create"))); static __typeof(pthread_key_delete) __gthrw_pthread_key_delete __attribute__ ((__weakref__("pthread_key_delete"))); static __typeof(pthread_mutexattr_init) __gthrw_pthread_mutexattr_init __attribute__ ((__weakref__("pthread_mutexattr_init"))); static __typeof(pthread_mutexattr_settype) __gthrw_pthread_mutexattr_settype __attribute__ ((__weakref__("pthread_mutexattr_settype"))); static __typeof(pthread_mutexattr_destroy) __gthrw_pthread_mutexattr_destroy __attribute__ ((__weakref__("pthread_mutexattr_destroy"))); static inline int __gthread_active_p (void) { static void *const __gthread_active_ptr = __extension__ (void *) & __gthrw_pthread_cancel; return __gthread_active_ptr != 0; } static inline int __gthread_create (__gthread_t *__threadid, void *(*__func) (void*), void *__args) { return __gthrw_pthread_create (__threadid, __null, __func, __args); } static inline int __gthread_join (__gthread_t __threadid, void **__value_ptr) { return __gthrw_pthread_join (__threadid, __value_ptr); } static inline int __gthread_detach (__gthread_t __threadid) { return __gthrw_pthread_detach (__threadid); } static inline int __gthread_equal (__gthread_t __t1, __gthread_t __t2) { return __gthrw_pthread_equal (__t1, __t2); } static inline __gthread_t __gthread_self (void) { return __gthrw_pthread_self (); } static inline int __gthread_yield (void) { return __gthrw_sched_yield (); } static inline int __gthread_once (__gthread_once_t *__once, void (*__func) (void)) { if (__gthread_active_p ()) return __gthrw_pthread_once (__once, __func); else return -1; } static inline int __gthread_key_create (__gthread_key_t *__key, void (*__dtor) (void *)) { return __gthrw_pthread_key_create (__key, __dtor); } static inline int __gthread_key_delete (__gthread_key_t __key) { return __gthrw_pthread_key_delete (__key); } static inline void * __gthread_getspecific (__gthread_key_t __key) { return __gthrw_pthread_getspecific (__key); } static inline int __gthread_setspecific (__gthread_key_t __key, const void *__ptr) { return __gthrw_pthread_setspecific (__key, __ptr); } static inline int __gthread_mutex_destroy (__gthread_mutex_t *__mutex) { if (__gthread_active_p ()) return __gthrw_pthread_mutex_destroy (__mutex); else return 0; } static inline int __gthread_mutex_lock (__gthread_mutex_t *__mutex) { if (__gthread_active_p ()) return __gthrw_pthread_mutex_lock (__mutex); else return 0; } static inline int __gthread_mutex_trylock (__gthread_mutex_t *__mutex) { if (__gthread_active_p ()) return __gthrw_pthread_mutex_trylock (__mutex); else return 0; } static inline int __gthread_mutex_timedlock (__gthread_mutex_t *__mutex, const __gthread_time_t *__abs_timeout) { if (__gthread_active_p ()) return __gthrw_pthread_mutex_timedlock (__mutex, __abs_timeout); else return 0; } static inline int __gthread_mutex_unlock (__gthread_mutex_t *__mutex) { if (__gthread_active_p ()) return __gthrw_pthread_mutex_unlock (__mutex); else return 0; } static inline int __gthread_recursive_mutex_lock (__gthread_recursive_mutex_t *__mutex) { return __gthread_mutex_lock (__mutex); } static inline int __gthread_recursive_mutex_trylock (__gthread_recursive_mutex_t *__mutex) { return __gthread_mutex_trylock (__mutex); } static inline int __gthread_recursive_mutex_timedlock (__gthread_recursive_mutex_t *__mutex, const __gthread_time_t *__abs_timeout) { return __gthread_mutex_timedlock (__mutex, __abs_timeout); } static inline int __gthread_recursive_mutex_unlock (__gthread_recursive_mutex_t *__mutex) { return __gthread_mutex_unlock (__mutex); } static inline int __gthread_cond_broadcast (__gthread_cond_t *__cond) { return __gthrw_pthread_cond_broadcast (__cond); } static inline int __gthread_cond_signal (__gthread_cond_t *__cond) { return __gthrw_pthread_cond_signal (__cond); } static inline int __gthread_cond_wait (__gthread_cond_t *__cond, __gthread_mutex_t *__mutex) { return __gthrw_pthread_cond_wait (__cond, __mutex); } static inline int __gthread_cond_timedwait (__gthread_cond_t *__cond, __gthread_mutex_t *__mutex, const __gthread_time_t *__abs_timeout) { return __gthrw_pthread_cond_timedwait (__cond, __mutex, __abs_timeout); } static inline int __gthread_cond_wait_recursive (__gthread_cond_t *__cond, __gthread_recursive_mutex_t *__mutex) { return __gthread_cond_wait (__cond, __mutex); } static inline int __gthread_cond_timedwait_recursive (__gthread_cond_t *__cond, __gthread_recursive_mutex_t *__mutex, const __gthread_time_t *__abs_timeout) { return __gthread_cond_timedwait (__cond, __mutex, __abs_timeout); } static inline int __gthread_cond_destroy (__gthread_cond_t* __cond) { return __gthrw_pthread_cond_destroy (__cond); } #pragma GCC visibility pop typedef int _Atomic_word; namespace __gnu_cxx __attribute__ ((__visibility__ ("default"))) { static inline _Atomic_word __exchange_and_add(volatile _Atomic_word* __mem, int __val) { return __sync_fetch_and_add(__mem, __val); } static inline void __atomic_add(volatile _Atomic_word* __mem, int __val) { __sync_fetch_and_add(__mem, __val); } static inline _Atomic_word __exchange_and_add_single(_Atomic_word* __mem, int __val) { _Atomic_word __result = *__mem; *__mem += __val; return __result; } static inline void __atomic_add_single(_Atomic_word* __mem, int __val) { *__mem += __val; } static inline _Atomic_word __attribute__ ((__unused__)) __exchange_and_add_dispatch(_Atomic_word* __mem, int __val) { if (__gthread_active_p()) return __exchange_and_add(__mem, __val); else return __exchange_and_add_single(__mem, __val); } static inline void __attribute__ ((__unused__)) __atomic_add_dispatch(_Atomic_word* __mem, int __val) { if (__gthread_active_p()) __atomic_add(__mem, __val); else __atomic_add_single(__mem, __val); } } namespace std __attribute__ ((__visibility__ ("default"))) { template class basic_string { typedef typename _Alloc::template rebind<_CharT>::other _CharT_alloc_type; public: typedef _Traits traits_type; typedef typename _Traits::char_type value_type; typedef _Alloc allocator_type; typedef typename _CharT_alloc_type::size_type size_type; typedef typename _CharT_alloc_type::difference_type difference_type; typedef typename _CharT_alloc_type::reference reference; typedef typename _CharT_alloc_type::const_reference const_reference; typedef typename _CharT_alloc_type::pointer pointer; typedef typename _CharT_alloc_type::const_pointer const_pointer; typedef __gnu_cxx::__normal_iterator iterator; typedef __gnu_cxx::__normal_iterator const_iterator; typedef std::reverse_iterator const_reverse_iterator; typedef std::reverse_iterator reverse_iterator; private: struct _Rep_base { size_type _M_length; size_type _M_capacity; _Atomic_word _M_refcount; }; struct _Rep : _Rep_base { typedef typename _Alloc::template rebind::other _Raw_bytes_alloc; static const size_type _S_max_size; static const _CharT _S_terminal; static size_type _S_empty_rep_storage[]; static _Rep& _S_empty_rep() { void* __p = reinterpret_cast(&_S_empty_rep_storage); return *reinterpret_cast<_Rep*>(__p); } bool _M_is_leaked() const { return this->_M_refcount < 0; } bool _M_is_shared() const { return this->_M_refcount > 0; } void _M_set_leaked() { this->_M_refcount = -1; } void _M_set_sharable() { this->_M_refcount = 0; } void _M_set_length_and_sharable(size_type __n) { if (__builtin_expect(this != &_S_empty_rep(), false)) { this->_M_set_sharable(); this->_M_length = __n; traits_type::assign(this->_M_refdata()[__n], _S_terminal); } } _CharT* _M_refdata() throw() { return reinterpret_cast<_CharT*>(this + 1); } _CharT* _M_grab(const _Alloc& __alloc1, const _Alloc& __alloc2) { return (!_M_is_leaked() && __alloc1 == __alloc2) ? _M_refcopy() : _M_clone(__alloc1); } static _Rep* _S_create(size_type, size_type, const _Alloc&); void _M_dispose(const _Alloc& __a) { if (__builtin_expect(this != &_S_empty_rep(), false)) { ; if (__gnu_cxx::__exchange_and_add_dispatch(&this->_M_refcount, -1) <= 0) { ; _M_destroy(__a); } } } void _M_destroy(const _Alloc&) throw(); _CharT* _M_refcopy() throw() { if (__builtin_expect(this != &_S_empty_rep(), false)) __gnu_cxx::__atomic_add_dispatch(&this->_M_refcount, 1); return _M_refdata(); } _CharT* _M_clone(const _Alloc&, size_type __res = 0); }; struct _Alloc_hider : _Alloc { _Alloc_hider(_CharT* __dat, const _Alloc& __a) : _Alloc(__a), _M_p(__dat) { } _CharT* _M_p; }; public: static const size_type npos = static_cast(-1); private: mutable _Alloc_hider _M_dataplus; _CharT* _M_data() const { return _M_dataplus._M_p; } _CharT* _M_data(_CharT* __p) { return (_M_dataplus._M_p = __p); } _Rep* _M_rep() const { return &((reinterpret_cast<_Rep*> (_M_data()))[-1]); } iterator _M_ibegin() const { return iterator(_M_data()); } iterator _M_iend() const { return iterator(_M_data() + this->size()); } void _M_leak() { if (!_M_rep()->_M_is_leaked()) _M_leak_hard(); } size_type _M_check(size_type __pos, const char* __s) const { if (__pos > this->size()) __throw_out_of_range((__s)); return __pos; } void _M_check_length(size_type __n1, size_type __n2, const char* __s) const { if (this->max_size() - (this->size() - __n1) < __n2) __throw_length_error((__s)); } size_type _M_limit(size_type __pos, size_type __off) const { const bool __testoff = __off < this->size() - __pos; return __testoff ? __off : this->size() - __pos; } bool _M_disjunct(const _CharT* __s) const { return (less()(__s, _M_data()) || less()(_M_data() + this->size(), __s)); } static void _M_copy(_CharT* __d, const _CharT* __s, size_type __n) { if (__n == 1) traits_type::assign(*__d, *__s); else traits_type::copy(__d, __s, __n); } static void _M_move(_CharT* __d, const _CharT* __s, size_type __n) { if (__n == 1) traits_type::assign(*__d, *__s); else traits_type::move(__d, __s, __n); } static void _M_assign(_CharT* __d, size_type __n, _CharT __c) { if (__n == 1) traits_type::assign(*__d, __c); else traits_type::assign(__d, __n, __c); } template static void _S_copy_chars(_CharT* __p, _Iterator __k1, _Iterator __k2) { for (; __k1 != __k2; ++__k1, ++__p) traits_type::assign(*__p, *__k1); } static void _S_copy_chars(_CharT* __p, iterator __k1, iterator __k2) { _S_copy_chars(__p, __k1.base(), __k2.base()); } static void _S_copy_chars(_CharT* __p, const_iterator __k1, const_iterator __k2) { _S_copy_chars(__p, __k1.base(), __k2.base()); } static void _S_copy_chars(_CharT* __p, _CharT* __k1, _CharT* __k2) { _M_copy(__p, __k1, __k2 - __k1); } static void _S_copy_chars(_CharT* __p, const _CharT* __k1, const _CharT* __k2) { _M_copy(__p, __k1, __k2 - __k1); } static int _S_compare(size_type __n1, size_type __n2) { const difference_type __d = difference_type(__n1 - __n2); if (__d > __gnu_cxx::__numeric_traits::__max) return __gnu_cxx::__numeric_traits::__max; else if (__d < __gnu_cxx::__numeric_traits::__min) return __gnu_cxx::__numeric_traits::__min; else return int(__d); } void _M_mutate(size_type __pos, size_type __len1, size_type __len2); void _M_leak_hard(); static _Rep& _S_empty_rep() { return _Rep::_S_empty_rep(); } public: basic_string() : _M_dataplus(_S_empty_rep()._M_refdata(), _Alloc()) { } explicit basic_string(const _Alloc& __a); basic_string(const basic_string& __str); basic_string(const basic_string& __str, size_type __pos, size_type __n = npos); basic_string(const basic_string& __str, size_type __pos, size_type __n, const _Alloc& __a); basic_string(const _CharT* __s, size_type __n, const _Alloc& __a = _Alloc()); basic_string(const _CharT* __s, const _Alloc& __a = _Alloc()); basic_string(size_type __n, _CharT __c, const _Alloc& __a = _Alloc()); template basic_string(_InputIterator __beg, _InputIterator __end, const _Alloc& __a = _Alloc()); ~basic_string() { _M_rep()->_M_dispose(this->get_allocator()); } basic_string& operator=(const basic_string& __str) { return this->assign(__str); } basic_string& operator=(const _CharT* __s) { return this->assign(__s); } basic_string& operator=(_CharT __c) { this->assign(1, __c); return *this; } iterator begin() { _M_leak(); return iterator(_M_data()); } const_iterator begin() const { return const_iterator(_M_data()); } iterator end() { _M_leak(); return iterator(_M_data() + this->size()); } const_iterator end() const { return const_iterator(_M_data() + this->size()); } reverse_iterator rbegin() { return reverse_iterator(this->end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(this->end()); } reverse_iterator rend() { return reverse_iterator(this->begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(this->begin()); } public: size_type size() const { return _M_rep()->_M_length; } size_type length() const { return _M_rep()->_M_length; } size_type max_size() const { return _Rep::_S_max_size; } void resize(size_type __n, _CharT __c); void resize(size_type __n) { this->resize(__n, _CharT()); } size_type capacity() const { return _M_rep()->_M_capacity; } void reserve(size_type __res_arg = 0); void clear() { _M_mutate(0, this->size(), 0); } bool empty() const { return this->size() == 0; } const_reference operator[] (size_type __pos) const { ; return _M_data()[__pos]; } reference operator[](size_type __pos) { ; ; _M_leak(); return _M_data()[__pos]; } const_reference at(size_type __n) const { if (__n >= this->size()) __throw_out_of_range(("basic_string::at")); return _M_data()[__n]; } reference at(size_type __n) { if (__n >= size()) __throw_out_of_range(("basic_string::at")); _M_leak(); return _M_data()[__n]; } basic_string& operator+=(const basic_string& __str) { return this->append(__str); } basic_string& operator+=(const _CharT* __s) { return this->append(__s); } basic_string& operator+=(_CharT __c) { this->push_back(__c); return *this; } basic_string& append(const basic_string& __str); basic_string& append(const basic_string& __str, size_type __pos, size_type __n); basic_string& append(const _CharT* __s, size_type __n); basic_string& append(const _CharT* __s) { ; return this->append(__s, traits_type::length(__s)); } basic_string& append(size_type __n, _CharT __c); template basic_string& append(_InputIterator __first, _InputIterator __last) { return this->replace(_M_iend(), _M_iend(), __first, __last); } void push_back(_CharT __c) { const size_type __len = 1 + this->size(); if (__len > this->capacity() || _M_rep()->_M_is_shared()) this->reserve(__len); traits_type::assign(_M_data()[this->size()], __c); _M_rep()->_M_set_length_and_sharable(__len); } basic_string& assign(const basic_string& __str); basic_string& assign(const basic_string& __str, size_type __pos, size_type __n) { return this->assign(__str._M_data() + __str._M_check(__pos, "basic_string::assign"), __str._M_limit(__pos, __n)); } basic_string& assign(const _CharT* __s, size_type __n); basic_string& assign(const _CharT* __s) { ; return this->assign(__s, traits_type::length(__s)); } basic_string& assign(size_type __n, _CharT __c) { return _M_replace_aux(size_type(0), this->size(), __n, __c); } template basic_string& assign(_InputIterator __first, _InputIterator __last) { return this->replace(_M_ibegin(), _M_iend(), __first, __last); } void insert(iterator __p, size_type __n, _CharT __c) { this->replace(__p, __p, __n, __c); } template void insert(iterator __p, _InputIterator __beg, _InputIterator __end) { this->replace(__p, __p, __beg, __end); } basic_string& insert(size_type __pos1, const basic_string& __str) { return this->insert(__pos1, __str, size_type(0), __str.size()); } basic_string& insert(size_type __pos1, const basic_string& __str, size_type __pos2, size_type __n) { return this->insert(__pos1, __str._M_data() + __str._M_check(__pos2, "basic_string::insert"), __str._M_limit(__pos2, __n)); } basic_string& insert(size_type __pos, const _CharT* __s, size_type __n); basic_string& insert(size_type __pos, const _CharT* __s) { ; return this->insert(__pos, __s, traits_type::length(__s)); } basic_string& insert(size_type __pos, size_type __n, _CharT __c) { return _M_replace_aux(_M_check(__pos, "basic_string::insert"), size_type(0), __n, __c); } iterator insert(iterator __p, _CharT __c) { ; const size_type __pos = __p - _M_ibegin(); _M_replace_aux(__pos, size_type(0), size_type(1), __c); _M_rep()->_M_set_leaked(); return iterator(_M_data() + __pos); } basic_string& erase(size_type __pos = 0, size_type __n = npos) { _M_mutate(_M_check(__pos, "basic_string::erase"), _M_limit(__pos, __n), size_type(0)); return *this; } iterator erase(iterator __position) { ; const size_type __pos = __position - _M_ibegin(); _M_mutate(__pos, size_type(1), size_type(0)); _M_rep()->_M_set_leaked(); return iterator(_M_data() + __pos); } iterator erase(iterator __first, iterator __last); basic_string& replace(size_type __pos, size_type __n, const basic_string& __str) { return this->replace(__pos, __n, __str._M_data(), __str.size()); } basic_string& replace(size_type __pos1, size_type __n1, const basic_string& __str, size_type __pos2, size_type __n2) { return this->replace(__pos1, __n1, __str._M_data() + __str._M_check(__pos2, "basic_string::replace"), __str._M_limit(__pos2, __n2)); } basic_string& replace(size_type __pos, size_type __n1, const _CharT* __s, size_type __n2); basic_string& replace(size_type __pos, size_type __n1, const _CharT* __s) { ; return this->replace(__pos, __n1, __s, traits_type::length(__s)); } basic_string& replace(size_type __pos, size_type __n1, size_type __n2, _CharT __c) { return _M_replace_aux(_M_check(__pos, "basic_string::replace"), _M_limit(__pos, __n1), __n2, __c); } basic_string& replace(iterator __i1, iterator __i2, const basic_string& __str) { return this->replace(__i1, __i2, __str._M_data(), __str.size()); } basic_string& replace(iterator __i1, iterator __i2, const _CharT* __s, size_type __n) { ; return this->replace(__i1 - _M_ibegin(), __i2 - __i1, __s, __n); } basic_string& replace(iterator __i1, iterator __i2, const _CharT* __s) { ; return this->replace(__i1, __i2, __s, traits_type::length(__s)); } basic_string& replace(iterator __i1, iterator __i2, size_type __n, _CharT __c) { ; return _M_replace_aux(__i1 - _M_ibegin(), __i2 - __i1, __n, __c); } template basic_string& replace(iterator __i1, iterator __i2, _InputIterator __k1, _InputIterator __k2) { ; ; typedef typename std::__is_integer<_InputIterator>::__type _Integral; return _M_replace_dispatch(__i1, __i2, __k1, __k2, _Integral()); } basic_string& replace(iterator __i1, iterator __i2, _CharT* __k1, _CharT* __k2) { ; ; return this->replace(__i1 - _M_ibegin(), __i2 - __i1, __k1, __k2 - __k1); } basic_string& replace(iterator __i1, iterator __i2, const _CharT* __k1, const _CharT* __k2) { ; ; return this->replace(__i1 - _M_ibegin(), __i2 - __i1, __k1, __k2 - __k1); } basic_string& replace(iterator __i1, iterator __i2, iterator __k1, iterator __k2) { ; ; return this->replace(__i1 - _M_ibegin(), __i2 - __i1, __k1.base(), __k2 - __k1); } basic_string& replace(iterator __i1, iterator __i2, const_iterator __k1, const_iterator __k2) { ; ; return this->replace(__i1 - _M_ibegin(), __i2 - __i1, __k1.base(), __k2 - __k1); } private: template basic_string& _M_replace_dispatch(iterator __i1, iterator __i2, _Integer __n, _Integer __val, __true_type) { return _M_replace_aux(__i1 - _M_ibegin(), __i2 - __i1, __n, __val); } template basic_string& _M_replace_dispatch(iterator __i1, iterator __i2, _InputIterator __k1, _InputIterator __k2, __false_type); basic_string& _M_replace_aux(size_type __pos1, size_type __n1, size_type __n2, _CharT __c); basic_string& _M_replace_safe(size_type __pos1, size_type __n1, const _CharT* __s, size_type __n2); template static _CharT* _S_construct_aux(_InIterator __beg, _InIterator __end, const _Alloc& __a, __false_type) { typedef typename iterator_traits<_InIterator>::iterator_category _Tag; return _S_construct(__beg, __end, __a, _Tag()); } template static _CharT* _S_construct_aux(_Integer __beg, _Integer __end, const _Alloc& __a, __true_type) { return _S_construct_aux_2(static_cast(__beg), __end, __a); } static _CharT* _S_construct_aux_2(size_type __req, _CharT __c, const _Alloc& __a) { return _S_construct(__req, __c, __a); } template static _CharT* _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a) { typedef typename std::__is_integer<_InIterator>::__type _Integral; return _S_construct_aux(__beg, __end, __a, _Integral()); } template static _CharT* _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a, input_iterator_tag); template static _CharT* _S_construct(_FwdIterator __beg, _FwdIterator __end, const _Alloc& __a, forward_iterator_tag); static _CharT* _S_construct(size_type __req, _CharT __c, const _Alloc& __a); public: size_type copy(_CharT* __s, size_type __n, size_type __pos = 0) const; void swap(basic_string& __s); const _CharT* c_str() const { return _M_data(); } const _CharT* data() const { return _M_data(); } allocator_type get_allocator() const { return _M_dataplus; } size_type find(const _CharT* __s, size_type __pos, size_type __n) const; size_type find(const basic_string& __str, size_type __pos = 0) const { return this->find(__str.data(), __pos, __str.size()); } size_type find(const _CharT* __s, size_type __pos = 0) const { ; return this->find(__s, __pos, traits_type::length(__s)); } size_type find(_CharT __c, size_type __pos = 0) const; size_type rfind(const basic_string& __str, size_type __pos = npos) const { return this->rfind(__str.data(), __pos, __str.size()); } size_type rfind(const _CharT* __s, size_type __pos, size_type __n) const; size_type rfind(const _CharT* __s, size_type __pos = npos) const { ; return this->rfind(__s, __pos, traits_type::length(__s)); } size_type rfind(_CharT __c, size_type __pos = npos) const; size_type find_first_of(const basic_string& __str, size_type __pos = 0) const { return this->find_first_of(__str.data(), __pos, __str.size()); } size_type find_first_of(const _CharT* __s, size_type __pos, size_type __n) const; size_type find_first_of(const _CharT* __s, size_type __pos = 0) const { ; return this->find_first_of(__s, __pos, traits_type::length(__s)); } size_type find_first_of(_CharT __c, size_type __pos = 0) const { return this->find(__c, __pos); } size_type find_last_of(const basic_string& __str, size_type __pos = npos) const { return this->find_last_of(__str.data(), __pos, __str.size()); } size_type find_last_of(const _CharT* __s, size_type __pos, size_type __n) const; size_type find_last_of(const _CharT* __s, size_type __pos = npos) const { ; return this->find_last_of(__s, __pos, traits_type::length(__s)); } size_type find_last_of(_CharT __c, size_type __pos = npos) const { return this->rfind(__c, __pos); } size_type find_first_not_of(const basic_string& __str, size_type __pos = 0) const { return this->find_first_not_of(__str.data(), __pos, __str.size()); } size_type find_first_not_of(const _CharT* __s, size_type __pos, size_type __n) const; size_type find_first_not_of(const _CharT* __s, size_type __pos = 0) const { ; return this->find_first_not_of(__s, __pos, traits_type::length(__s)); } size_type find_first_not_of(_CharT __c, size_type __pos = 0) const; size_type find_last_not_of(const basic_string& __str, size_type __pos = npos) const { return this->find_last_not_of(__str.data(), __pos, __str.size()); } size_type find_last_not_of(const _CharT* __s, size_type __pos, size_type __n) const; size_type find_last_not_of(const _CharT* __s, size_type __pos = npos) const { ; return this->find_last_not_of(__s, __pos, traits_type::length(__s)); } size_type find_last_not_of(_CharT __c, size_type __pos = npos) const; basic_string substr(size_type __pos = 0, size_type __n = npos) const { return basic_string(*this, _M_check(__pos, "basic_string::substr"), __n); } int compare(const basic_string& __str) const { const size_type __size = this->size(); const size_type __osize = __str.size(); const size_type __len = std::min(__size, __osize); int __r = traits_type::compare(_M_data(), __str.data(), __len); if (!__r) __r = _S_compare(__size, __osize); return __r; } int compare(size_type __pos, size_type __n, const basic_string& __str) const; int compare(size_type __pos1, size_type __n1, const basic_string& __str, size_type __pos2, size_type __n2) const; int compare(const _CharT* __s) const; int compare(size_type __pos, size_type __n1, const _CharT* __s) const; int compare(size_type __pos, size_type __n1, const _CharT* __s, size_type __n2) const; }; template basic_string<_CharT, _Traits, _Alloc> operator+(const basic_string<_CharT, _Traits, _Alloc>& __lhs, const basic_string<_CharT, _Traits, _Alloc>& __rhs) { basic_string<_CharT, _Traits, _Alloc> __str(__lhs); __str.append(__rhs); return __str; } template basic_string<_CharT,_Traits,_Alloc> operator+(const _CharT* __lhs, const basic_string<_CharT,_Traits,_Alloc>& __rhs); template basic_string<_CharT,_Traits,_Alloc> operator+(_CharT __lhs, const basic_string<_CharT,_Traits,_Alloc>& __rhs); template inline basic_string<_CharT, _Traits, _Alloc> operator+(const basic_string<_CharT, _Traits, _Alloc>& __lhs, const _CharT* __rhs) { basic_string<_CharT, _Traits, _Alloc> __str(__lhs); __str.append(__rhs); return __str; } template inline basic_string<_CharT, _Traits, _Alloc> operator+(const basic_string<_CharT, _Traits, _Alloc>& __lhs, _CharT __rhs) { typedef basic_string<_CharT, _Traits, _Alloc> __string_type; typedef typename __string_type::size_type __size_type; __string_type __str(__lhs); __str.append(__size_type(1), __rhs); return __str; } template inline bool operator==(const basic_string<_CharT, _Traits, _Alloc>& __lhs, const basic_string<_CharT, _Traits, _Alloc>& __rhs) { return __lhs.compare(__rhs) == 0; } template inline typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, bool>::__type operator==(const basic_string<_CharT>& __lhs, const basic_string<_CharT>& __rhs) { return (__lhs.size() == __rhs.size() && !std::char_traits<_CharT>::compare(__lhs.data(), __rhs.data(), __lhs.size())); } template inline bool operator==(const _CharT* __lhs, const basic_string<_CharT, _Traits, _Alloc>& __rhs) { return __rhs.compare(__lhs) == 0; } template inline bool operator==(const basic_string<_CharT, _Traits, _Alloc>& __lhs, const _CharT* __rhs) { return __lhs.compare(__rhs) == 0; } template inline bool operator!=(const basic_string<_CharT, _Traits, _Alloc>& __lhs, const basic_string<_CharT, _Traits, _Alloc>& __rhs) { return !(__lhs == __rhs); } template inline bool operator!=(const _CharT* __lhs, const basic_string<_CharT, _Traits, _Alloc>& __rhs) { return !(__lhs == __rhs); } template inline bool operator!=(const basic_string<_CharT, _Traits, _Alloc>& __lhs, const _CharT* __rhs) { return !(__lhs == __rhs); } template inline bool operator<(const basic_string<_CharT, _Traits, _Alloc>& __lhs, const basic_string<_CharT, _Traits, _Alloc>& __rhs) { return __lhs.compare(__rhs) < 0; } template inline bool operator<(const basic_string<_CharT, _Traits, _Alloc>& __lhs, const _CharT* __rhs) { return __lhs.compare(__rhs) < 0; } template inline bool operator<(const _CharT* __lhs, const basic_string<_CharT, _Traits, _Alloc>& __rhs) { return __rhs.compare(__lhs) > 0; } template inline bool operator>(const basic_string<_CharT, _Traits, _Alloc>& __lhs, const basic_string<_CharT, _Traits, _Alloc>& __rhs) { return __lhs.compare(__rhs) > 0; } template inline bool operator>(const basic_string<_CharT, _Traits, _Alloc>& __lhs, const _CharT* __rhs) { return __lhs.compare(__rhs) > 0; } template inline bool operator>(const _CharT* __lhs, const basic_string<_CharT, _Traits, _Alloc>& __rhs) { return __rhs.compare(__lhs) < 0; } template inline bool operator<=(const basic_string<_CharT, _Traits, _Alloc>& __lhs, const basic_string<_CharT, _Traits, _Alloc>& __rhs) { return __lhs.compare(__rhs) <= 0; } template inline bool operator<=(const basic_string<_CharT, _Traits, _Alloc>& __lhs, const _CharT* __rhs) { return __lhs.compare(__rhs) <= 0; } template inline bool operator<=(const _CharT* __lhs, const basic_string<_CharT, _Traits, _Alloc>& __rhs) { return __rhs.compare(__lhs) >= 0; } template inline bool operator>=(const basic_string<_CharT, _Traits, _Alloc>& __lhs, const basic_string<_CharT, _Traits, _Alloc>& __rhs) { return __lhs.compare(__rhs) >= 0; } template inline bool operator>=(const basic_string<_CharT, _Traits, _Alloc>& __lhs, const _CharT* __rhs) { return __lhs.compare(__rhs) >= 0; } template inline bool operator>=(const _CharT* __lhs, const basic_string<_CharT, _Traits, _Alloc>& __rhs) { return __rhs.compare(__lhs) <= 0; } template inline void swap(basic_string<_CharT, _Traits, _Alloc>& __lhs, basic_string<_CharT, _Traits, _Alloc>& __rhs) { __lhs.swap(__rhs); } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, basic_string<_CharT, _Traits, _Alloc>& __str); template<> basic_istream& operator>>(basic_istream& __is, basic_string& __str); template inline basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const basic_string<_CharT, _Traits, _Alloc>& __str) { return __ostream_insert(__os, __str.data(), __str.size()); } template basic_istream<_CharT, _Traits>& getline(basic_istream<_CharT, _Traits>& __is, basic_string<_CharT, _Traits, _Alloc>& __str, _CharT __delim); template inline basic_istream<_CharT, _Traits>& getline(basic_istream<_CharT, _Traits>& __is, basic_string<_CharT, _Traits, _Alloc>& __str) { return getline(__is, __str, __is.widen('\n')); } template<> basic_istream& getline(basic_istream& __in, basic_string& __str, char __delim); template<> basic_istream& getline(basic_istream& __in, basic_string& __str, wchar_t __delim); } namespace std __attribute__ ((__visibility__ ("default"))) { template const typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: _Rep::_S_max_size = (((npos - sizeof(_Rep_base))/sizeof(_CharT)) - 1) / 4; template const _CharT basic_string<_CharT, _Traits, _Alloc>:: _Rep::_S_terminal = _CharT(); template const typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>::npos; template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>::_Rep::_S_empty_rep_storage[ (sizeof(_Rep_base) + sizeof(_CharT) + sizeof(size_type) - 1) / sizeof(size_type)]; template template _CharT* basic_string<_CharT, _Traits, _Alloc>:: _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a, input_iterator_tag) { if (__beg == __end && __a == _Alloc()) return _S_empty_rep()._M_refdata(); _CharT __buf[128]; size_type __len = 0; while (__beg != __end && __len < sizeof(__buf) / sizeof(_CharT)) { __buf[__len++] = *__beg; ++__beg; } _Rep* __r = _Rep::_S_create(__len, size_type(0), __a); _M_copy(__r->_M_refdata(), __buf, __len); try { while (__beg != __end) { if (__len == __r->_M_capacity) { _Rep* __another = _Rep::_S_create(__len + 1, __len, __a); _M_copy(__another->_M_refdata(), __r->_M_refdata(), __len); __r->_M_destroy(__a); __r = __another; } __r->_M_refdata()[__len++] = *__beg; ++__beg; } } catch(...) { __r->_M_destroy(__a); throw; } __r->_M_set_length_and_sharable(__len); return __r->_M_refdata(); } template template _CharT* basic_string<_CharT, _Traits, _Alloc>:: _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a, forward_iterator_tag) { if (__beg == __end && __a == _Alloc()) return _S_empty_rep()._M_refdata(); if (__gnu_cxx::__is_null_pointer(__beg) && __beg != __end) __throw_logic_error(("basic_string::_S_construct null not valid")); const size_type __dnew = static_cast(std::distance(__beg, __end)); _Rep* __r = _Rep::_S_create(__dnew, size_type(0), __a); try { _S_copy_chars(__r->_M_refdata(), __beg, __end); } catch(...) { __r->_M_destroy(__a); throw; } __r->_M_set_length_and_sharable(__dnew); return __r->_M_refdata(); } template _CharT* basic_string<_CharT, _Traits, _Alloc>:: _S_construct(size_type __n, _CharT __c, const _Alloc& __a) { if (__n == 0 && __a == _Alloc()) return _S_empty_rep()._M_refdata(); _Rep* __r = _Rep::_S_create(__n, size_type(0), __a); if (__n) _M_assign(__r->_M_refdata(), __n, __c); __r->_M_set_length_and_sharable(__n); return __r->_M_refdata(); } template basic_string<_CharT, _Traits, _Alloc>:: basic_string(const basic_string& __str) : _M_dataplus(__str._M_rep()->_M_grab(_Alloc(__str.get_allocator()), __str.get_allocator()), __str.get_allocator()) { } template basic_string<_CharT, _Traits, _Alloc>:: basic_string(const _Alloc& __a) : _M_dataplus(_S_construct(size_type(), _CharT(), __a), __a) { } template basic_string<_CharT, _Traits, _Alloc>:: basic_string(const basic_string& __str, size_type __pos, size_type __n) : _M_dataplus(_S_construct(__str._M_data() + __str._M_check(__pos, "basic_string::basic_string"), __str._M_data() + __str._M_limit(__pos, __n) + __pos, _Alloc()), _Alloc()) { } template basic_string<_CharT, _Traits, _Alloc>:: basic_string(const basic_string& __str, size_type __pos, size_type __n, const _Alloc& __a) : _M_dataplus(_S_construct(__str._M_data() + __str._M_check(__pos, "basic_string::basic_string"), __str._M_data() + __str._M_limit(__pos, __n) + __pos, __a), __a) { } template basic_string<_CharT, _Traits, _Alloc>:: basic_string(const _CharT* __s, size_type __n, const _Alloc& __a) : _M_dataplus(_S_construct(__s, __s + __n, __a), __a) { } template basic_string<_CharT, _Traits, _Alloc>:: basic_string(const _CharT* __s, const _Alloc& __a) : _M_dataplus(_S_construct(__s, __s ? __s + traits_type::length(__s) : __s + npos, __a), __a) { } template basic_string<_CharT, _Traits, _Alloc>:: basic_string(size_type __n, _CharT __c, const _Alloc& __a) : _M_dataplus(_S_construct(__n, __c, __a), __a) { } template template basic_string<_CharT, _Traits, _Alloc>:: basic_string(_InputIterator __beg, _InputIterator __end, const _Alloc& __a) : _M_dataplus(_S_construct(__beg, __end, __a), __a) { } template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: assign(const basic_string& __str) { if (_M_rep() != __str._M_rep()) { const allocator_type __a = this->get_allocator(); _CharT* __tmp = __str._M_rep()->_M_grab(__a, __str.get_allocator()); _M_rep()->_M_dispose(__a); _M_data(__tmp); } return *this; } template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: assign(const _CharT* __s, size_type __n) { ; _M_check_length(this->size(), __n, "basic_string::assign"); if (_M_disjunct(__s) || _M_rep()->_M_is_shared()) return _M_replace_safe(size_type(0), this->size(), __s, __n); else { const size_type __pos = __s - _M_data(); if (__pos >= __n) _M_copy(_M_data(), __s, __n); else if (__pos) _M_move(_M_data(), __s, __n); _M_rep()->_M_set_length_and_sharable(__n); return *this; } } template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: append(size_type __n, _CharT __c) { if (__n) { _M_check_length(size_type(0), __n, "basic_string::append"); const size_type __len = __n + this->size(); if (__len > this->capacity() || _M_rep()->_M_is_shared()) this->reserve(__len); _M_assign(_M_data() + this->size(), __n, __c); _M_rep()->_M_set_length_and_sharable(__len); } return *this; } template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: append(const _CharT* __s, size_type __n) { ; if (__n) { _M_check_length(size_type(0), __n, "basic_string::append"); const size_type __len = __n + this->size(); if (__len > this->capacity() || _M_rep()->_M_is_shared()) { if (_M_disjunct(__s)) this->reserve(__len); else { const size_type __off = __s - _M_data(); this->reserve(__len); __s = _M_data() + __off; } } _M_copy(_M_data() + this->size(), __s, __n); _M_rep()->_M_set_length_and_sharable(__len); } return *this; } template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: append(const basic_string& __str) { const size_type __size = __str.size(); if (__size) { const size_type __len = __size + this->size(); if (__len > this->capacity() || _M_rep()->_M_is_shared()) this->reserve(__len); _M_copy(_M_data() + this->size(), __str._M_data(), __size); _M_rep()->_M_set_length_and_sharable(__len); } return *this; } template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: append(const basic_string& __str, size_type __pos, size_type __n) { __str._M_check(__pos, "basic_string::append"); __n = __str._M_limit(__pos, __n); if (__n) { const size_type __len = __n + this->size(); if (__len > this->capacity() || _M_rep()->_M_is_shared()) this->reserve(__len); _M_copy(_M_data() + this->size(), __str._M_data() + __pos, __n); _M_rep()->_M_set_length_and_sharable(__len); } return *this; } template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: insert(size_type __pos, const _CharT* __s, size_type __n) { ; _M_check(__pos, "basic_string::insert"); _M_check_length(size_type(0), __n, "basic_string::insert"); if (_M_disjunct(__s) || _M_rep()->_M_is_shared()) return _M_replace_safe(__pos, size_type(0), __s, __n); else { const size_type __off = __s - _M_data(); _M_mutate(__pos, 0, __n); __s = _M_data() + __off; _CharT* __p = _M_data() + __pos; if (__s + __n <= __p) _M_copy(__p, __s, __n); else if (__s >= __p) _M_copy(__p, __s + __n, __n); else { const size_type __nleft = __p - __s; _M_copy(__p, __s, __nleft); _M_copy(__p + __nleft, __p + __n, __n - __nleft); } return *this; } } template typename basic_string<_CharT, _Traits, _Alloc>::iterator basic_string<_CharT, _Traits, _Alloc>:: erase(iterator __first, iterator __last) { ; const size_type __size = __last - __first; if (__size) { const size_type __pos = __first - _M_ibegin(); _M_mutate(__pos, __size, size_type(0)); _M_rep()->_M_set_leaked(); return iterator(_M_data() + __pos); } else return __first; } template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: replace(size_type __pos, size_type __n1, const _CharT* __s, size_type __n2) { ; _M_check(__pos, "basic_string::replace"); __n1 = _M_limit(__pos, __n1); _M_check_length(__n1, __n2, "basic_string::replace"); bool __left; if (_M_disjunct(__s) || _M_rep()->_M_is_shared()) return _M_replace_safe(__pos, __n1, __s, __n2); else if ((__left = __s + __n2 <= _M_data() + __pos) || _M_data() + __pos + __n1 <= __s) { size_type __off = __s - _M_data(); __left ? __off : (__off += __n2 - __n1); _M_mutate(__pos, __n1, __n2); _M_copy(_M_data() + __pos, _M_data() + __off, __n2); return *this; } else { const basic_string __tmp(__s, __n2); return _M_replace_safe(__pos, __n1, __tmp._M_data(), __n2); } } template void basic_string<_CharT, _Traits, _Alloc>::_Rep:: _M_destroy(const _Alloc& __a) throw () { const size_type __size = sizeof(_Rep_base) + (this->_M_capacity + 1) * sizeof(_CharT); _Raw_bytes_alloc(__a).deallocate(reinterpret_cast(this), __size); } template void basic_string<_CharT, _Traits, _Alloc>:: _M_leak_hard() { if (_M_rep() == &_S_empty_rep()) return; if (_M_rep()->_M_is_shared()) _M_mutate(0, 0, 0); _M_rep()->_M_set_leaked(); } template void basic_string<_CharT, _Traits, _Alloc>:: _M_mutate(size_type __pos, size_type __len1, size_type __len2) { const size_type __old_size = this->size(); const size_type __new_size = __old_size + __len2 - __len1; const size_type __how_much = __old_size - __pos - __len1; if (__new_size > this->capacity() || _M_rep()->_M_is_shared()) { const allocator_type __a = get_allocator(); _Rep* __r = _Rep::_S_create(__new_size, this->capacity(), __a); if (__pos) _M_copy(__r->_M_refdata(), _M_data(), __pos); if (__how_much) _M_copy(__r->_M_refdata() + __pos + __len2, _M_data() + __pos + __len1, __how_much); _M_rep()->_M_dispose(__a); _M_data(__r->_M_refdata()); } else if (__how_much && __len1 != __len2) { _M_move(_M_data() + __pos + __len2, _M_data() + __pos + __len1, __how_much); } _M_rep()->_M_set_length_and_sharable(__new_size); } template void basic_string<_CharT, _Traits, _Alloc>:: reserve(size_type __res) { if (__res != this->capacity() || _M_rep()->_M_is_shared()) { if (__res < this->size()) __res = this->size(); const allocator_type __a = get_allocator(); _CharT* __tmp = _M_rep()->_M_clone(__a, __res - this->size()); _M_rep()->_M_dispose(__a); _M_data(__tmp); } } template void basic_string<_CharT, _Traits, _Alloc>:: swap(basic_string& __s) { if (_M_rep()->_M_is_leaked()) _M_rep()->_M_set_sharable(); if (__s._M_rep()->_M_is_leaked()) __s._M_rep()->_M_set_sharable(); if (this->get_allocator() == __s.get_allocator()) { _CharT* __tmp = _M_data(); _M_data(__s._M_data()); __s._M_data(__tmp); } else { const basic_string __tmp1(_M_ibegin(), _M_iend(), __s.get_allocator()); const basic_string __tmp2(__s._M_ibegin(), __s._M_iend(), this->get_allocator()); *this = __tmp2; __s = __tmp1; } } template typename basic_string<_CharT, _Traits, _Alloc>::_Rep* basic_string<_CharT, _Traits, _Alloc>::_Rep:: _S_create(size_type __capacity, size_type __old_capacity, const _Alloc& __alloc) { if (__capacity > _S_max_size) __throw_length_error(("basic_string::_S_create")); const size_type __pagesize = 4096; const size_type __malloc_header_size = 4 * sizeof(void*); if (__capacity > __old_capacity && __capacity < 2 * __old_capacity) __capacity = 2 * __old_capacity; size_type __size = (__capacity + 1) * sizeof(_CharT) + sizeof(_Rep); const size_type __adj_size = __size + __malloc_header_size; if (__adj_size > __pagesize && __capacity > __old_capacity) { const size_type __extra = __pagesize - __adj_size % __pagesize; __capacity += __extra / sizeof(_CharT); if (__capacity > _S_max_size) __capacity = _S_max_size; __size = (__capacity + 1) * sizeof(_CharT) + sizeof(_Rep); } void* __place = _Raw_bytes_alloc(__alloc).allocate(__size); _Rep *__p = new (__place) _Rep; __p->_M_capacity = __capacity; __p->_M_set_sharable(); return __p; } template _CharT* basic_string<_CharT, _Traits, _Alloc>::_Rep:: _M_clone(const _Alloc& __alloc, size_type __res) { const size_type __requested_cap = this->_M_length + __res; _Rep* __r = _Rep::_S_create(__requested_cap, this->_M_capacity, __alloc); if (this->_M_length) _M_copy(__r->_M_refdata(), _M_refdata(), this->_M_length); __r->_M_set_length_and_sharable(this->_M_length); return __r->_M_refdata(); } template void basic_string<_CharT, _Traits, _Alloc>:: resize(size_type __n, _CharT __c) { const size_type __size = this->size(); _M_check_length(__size, __n, "basic_string::resize"); if (__size < __n) this->append(__n - __size, __c); else if (__n < __size) this->erase(__n); } template template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: _M_replace_dispatch(iterator __i1, iterator __i2, _InputIterator __k1, _InputIterator __k2, __false_type) { const basic_string __s(__k1, __k2); const size_type __n1 = __i2 - __i1; _M_check_length(__n1, __s.size(), "basic_string::_M_replace_dispatch"); return _M_replace_safe(__i1 - _M_ibegin(), __n1, __s._M_data(), __s.size()); } template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: _M_replace_aux(size_type __pos1, size_type __n1, size_type __n2, _CharT __c) { _M_check_length(__n1, __n2, "basic_string::_M_replace_aux"); _M_mutate(__pos1, __n1, __n2); if (__n2) _M_assign(_M_data() + __pos1, __n2, __c); return *this; } template basic_string<_CharT, _Traits, _Alloc>& basic_string<_CharT, _Traits, _Alloc>:: _M_replace_safe(size_type __pos1, size_type __n1, const _CharT* __s, size_type __n2) { _M_mutate(__pos1, __n1, __n2); if (__n2) _M_copy(_M_data() + __pos1, __s, __n2); return *this; } template basic_string<_CharT, _Traits, _Alloc> operator+(const _CharT* __lhs, const basic_string<_CharT, _Traits, _Alloc>& __rhs) { ; typedef basic_string<_CharT, _Traits, _Alloc> __string_type; typedef typename __string_type::size_type __size_type; const __size_type __len = _Traits::length(__lhs); __string_type __str; __str.reserve(__len + __rhs.size()); __str.append(__lhs, __len); __str.append(__rhs); return __str; } template basic_string<_CharT, _Traits, _Alloc> operator+(_CharT __lhs, const basic_string<_CharT, _Traits, _Alloc>& __rhs) { typedef basic_string<_CharT, _Traits, _Alloc> __string_type; typedef typename __string_type::size_type __size_type; __string_type __str; const __size_type __len = __rhs.size(); __str.reserve(__len + 1); __str.append(__size_type(1), __lhs); __str.append(__rhs); return __str; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: copy(_CharT* __s, size_type __n, size_type __pos) const { _M_check(__pos, "basic_string::copy"); __n = _M_limit(__pos, __n); ; if (__n) _M_copy(__s, _M_data() + __pos, __n); return __n; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: find(const _CharT* __s, size_type __pos, size_type __n) const { ; const size_type __size = this->size(); const _CharT* __data = _M_data(); if (__n == 0) return __pos <= __size ? __pos : npos; if (__n <= __size) { for (; __pos <= __size - __n; ++__pos) if (traits_type::eq(__data[__pos], __s[0]) && traits_type::compare(__data + __pos + 1, __s + 1, __n - 1) == 0) return __pos; } return npos; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: find(_CharT __c, size_type __pos) const { size_type __ret = npos; const size_type __size = this->size(); if (__pos < __size) { const _CharT* __data = _M_data(); const size_type __n = __size - __pos; const _CharT* __p = traits_type::find(__data + __pos, __n, __c); if (__p) __ret = __p - __data; } return __ret; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: rfind(const _CharT* __s, size_type __pos, size_type __n) const { ; const size_type __size = this->size(); if (__n <= __size) { __pos = std::min(size_type(__size - __n), __pos); const _CharT* __data = _M_data(); do { if (traits_type::compare(__data + __pos, __s, __n) == 0) return __pos; } while (__pos-- > 0); } return npos; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: rfind(_CharT __c, size_type __pos) const { size_type __size = this->size(); if (__size) { if (--__size > __pos) __size = __pos; for (++__size; __size-- > 0; ) if (traits_type::eq(_M_data()[__size], __c)) return __size; } return npos; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: find_first_of(const _CharT* __s, size_type __pos, size_type __n) const { ; for (; __n && __pos < this->size(); ++__pos) { const _CharT* __p = traits_type::find(__s, __n, _M_data()[__pos]); if (__p) return __pos; } return npos; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: find_last_of(const _CharT* __s, size_type __pos, size_type __n) const { ; size_type __size = this->size(); if (__size && __n) { if (--__size > __pos) __size = __pos; do { if (traits_type::find(__s, __n, _M_data()[__size])) return __size; } while (__size-- != 0); } return npos; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: find_first_not_of(const _CharT* __s, size_type __pos, size_type __n) const { ; for (; __pos < this->size(); ++__pos) if (!traits_type::find(__s, __n, _M_data()[__pos])) return __pos; return npos; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: find_first_not_of(_CharT __c, size_type __pos) const { for (; __pos < this->size(); ++__pos) if (!traits_type::eq(_M_data()[__pos], __c)) return __pos; return npos; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: find_last_not_of(const _CharT* __s, size_type __pos, size_type __n) const { ; size_type __size = this->size(); if (__size) { if (--__size > __pos) __size = __pos; do { if (!traits_type::find(__s, __n, _M_data()[__size])) return __size; } while (__size--); } return npos; } template typename basic_string<_CharT, _Traits, _Alloc>::size_type basic_string<_CharT, _Traits, _Alloc>:: find_last_not_of(_CharT __c, size_type __pos) const { size_type __size = this->size(); if (__size) { if (--__size > __pos) __size = __pos; do { if (!traits_type::eq(_M_data()[__size], __c)) return __size; } while (__size--); } return npos; } template int basic_string<_CharT, _Traits, _Alloc>:: compare(size_type __pos, size_type __n, const basic_string& __str) const { _M_check(__pos, "basic_string::compare"); __n = _M_limit(__pos, __n); const size_type __osize = __str.size(); const size_type __len = std::min(__n, __osize); int __r = traits_type::compare(_M_data() + __pos, __str.data(), __len); if (!__r) __r = _S_compare(__n, __osize); return __r; } template int basic_string<_CharT, _Traits, _Alloc>:: compare(size_type __pos1, size_type __n1, const basic_string& __str, size_type __pos2, size_type __n2) const { _M_check(__pos1, "basic_string::compare"); __str._M_check(__pos2, "basic_string::compare"); __n1 = _M_limit(__pos1, __n1); __n2 = __str._M_limit(__pos2, __n2); const size_type __len = std::min(__n1, __n2); int __r = traits_type::compare(_M_data() + __pos1, __str.data() + __pos2, __len); if (!__r) __r = _S_compare(__n1, __n2); return __r; } template int basic_string<_CharT, _Traits, _Alloc>:: compare(const _CharT* __s) const { ; const size_type __size = this->size(); const size_type __osize = traits_type::length(__s); const size_type __len = std::min(__size, __osize); int __r = traits_type::compare(_M_data(), __s, __len); if (!__r) __r = _S_compare(__size, __osize); return __r; } template int basic_string <_CharT, _Traits, _Alloc>:: compare(size_type __pos, size_type __n1, const _CharT* __s) const { ; _M_check(__pos, "basic_string::compare"); __n1 = _M_limit(__pos, __n1); const size_type __osize = traits_type::length(__s); const size_type __len = std::min(__n1, __osize); int __r = traits_type::compare(_M_data() + __pos, __s, __len); if (!__r) __r = _S_compare(__n1, __osize); return __r; } template int basic_string <_CharT, _Traits, _Alloc>:: compare(size_type __pos, size_type __n1, const _CharT* __s, size_type __n2) const { ; _M_check(__pos, "basic_string::compare"); __n1 = _M_limit(__pos, __n1); const size_type __len = std::min(__n1, __n2); int __r = traits_type::compare(_M_data() + __pos, __s, __len); if (!__r) __r = _S_compare(__n1, __n2); return __r; } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __in, basic_string<_CharT, _Traits, _Alloc>& __str) { typedef basic_istream<_CharT, _Traits> __istream_type; typedef basic_string<_CharT, _Traits, _Alloc> __string_type; typedef typename __istream_type::ios_base __ios_base; typedef typename __istream_type::int_type __int_type; typedef typename __string_type::size_type __size_type; typedef ctype<_CharT> __ctype_type; typedef typename __ctype_type::ctype_base __ctype_base; __size_type __extracted = 0; typename __ios_base::iostate __err = __ios_base::goodbit; typename __istream_type::sentry __cerb(__in, false); if (__cerb) { try { __str.erase(); _CharT __buf[128]; __size_type __len = 0; const streamsize __w = __in.width(); const __size_type __n = __w > 0 ? static_cast<__size_type>(__w) : __str.max_size(); const __ctype_type& __ct = use_facet<__ctype_type>(__in.getloc()); const __int_type __eof = _Traits::eof(); __int_type __c = __in.rdbuf()->sgetc(); while (__extracted < __n && !_Traits::eq_int_type(__c, __eof) && !__ct.is(__ctype_base::space, _Traits::to_char_type(__c))) { if (__len == sizeof(__buf) / sizeof(_CharT)) { __str.append(__buf, sizeof(__buf) / sizeof(_CharT)); __len = 0; } __buf[__len++] = _Traits::to_char_type(__c); ++__extracted; __c = __in.rdbuf()->snextc(); } __str.append(__buf, __len); if (_Traits::eq_int_type(__c, __eof)) __err |= __ios_base::eofbit; __in.width(0); } catch(__cxxabiv1::__forced_unwind&) { __in._M_setstate(__ios_base::badbit); throw; } catch(...) { __in._M_setstate(__ios_base::badbit); } } if (!__extracted) __err |= __ios_base::failbit; if (__err) __in.setstate(__err); return __in; } template basic_istream<_CharT, _Traits>& getline(basic_istream<_CharT, _Traits>& __in, basic_string<_CharT, _Traits, _Alloc>& __str, _CharT __delim) { typedef basic_istream<_CharT, _Traits> __istream_type; typedef basic_string<_CharT, _Traits, _Alloc> __string_type; typedef typename __istream_type::ios_base __ios_base; typedef typename __istream_type::int_type __int_type; typedef typename __string_type::size_type __size_type; __size_type __extracted = 0; const __size_type __n = __str.max_size(); typename __ios_base::iostate __err = __ios_base::goodbit; typename __istream_type::sentry __cerb(__in, true); if (__cerb) { try { __str.erase(); const __int_type __idelim = _Traits::to_int_type(__delim); const __int_type __eof = _Traits::eof(); __int_type __c = __in.rdbuf()->sgetc(); while (__extracted < __n && !_Traits::eq_int_type(__c, __eof) && !_Traits::eq_int_type(__c, __idelim)) { __str += _Traits::to_char_type(__c); ++__extracted; __c = __in.rdbuf()->snextc(); } if (_Traits::eq_int_type(__c, __eof)) __err |= __ios_base::eofbit; else if (_Traits::eq_int_type(__c, __idelim)) { ++__extracted; __in.rdbuf()->sbumpc(); } else __err |= __ios_base::failbit; } catch(__cxxabiv1::__forced_unwind&) { __in._M_setstate(__ios_base::badbit); throw; } catch(...) { __in._M_setstate(__ios_base::badbit); } } if (!__extracted) __err |= __ios_base::failbit; if (__err) __in.setstate(__err); return __in; } extern template class basic_string; extern template basic_istream& operator>>(basic_istream&, string&); extern template basic_ostream& operator<<(basic_ostream&, const string&); extern template basic_istream& getline(basic_istream&, string&, char); extern template basic_istream& getline(basic_istream&, string&); extern template class basic_string; extern template basic_istream& operator>>(basic_istream&, wstring&); extern template basic_ostream& operator<<(basic_ostream&, const wstring&); extern template basic_istream& getline(basic_istream&, wstring&, wchar_t); extern template basic_istream& getline(basic_istream&, wstring&); } namespace std __attribute__ ((__visibility__ ("default"))) { template inline void _Construct(_T1* __p, const _T2& __value) { ::new(static_cast(__p)) _T1(__value); } template inline void _Destroy(_Tp* __pointer) { __pointer->~_Tp(); } template struct _Destroy_aux { template static void __destroy(_ForwardIterator __first, _ForwardIterator __last) { for (; __first != __last; ++__first) std::_Destroy(std::__addressof(*__first)); } }; template<> struct _Destroy_aux { template static void __destroy(_ForwardIterator, _ForwardIterator) { } }; template inline void _Destroy(_ForwardIterator __first, _ForwardIterator __last) { typedef typename iterator_traits<_ForwardIterator>::value_type _Value_type; std::_Destroy_aux<__has_trivial_destructor(_Value_type)>:: __destroy(__first, __last); } template class allocator; template void _Destroy(_ForwardIterator __first, _ForwardIterator __last, _Allocator& __alloc) { for (; __first != __last; ++__first) __alloc.destroy(std::__addressof(*__first)); } template inline void _Destroy(_ForwardIterator __first, _ForwardIterator __last, allocator<_Tp>&) { _Destroy(__first, __last); } } namespace std __attribute__ ((__visibility__ ("default"))) { template struct __uninitialized_copy { template static _ForwardIterator __uninit_copy(_InputIterator __first, _InputIterator __last, _ForwardIterator __result) { _ForwardIterator __cur = __result; try { for (; __first != __last; ++__first, ++__cur) std::_Construct(std::__addressof(*__cur), *__first); return __cur; } catch(...) { std::_Destroy(__result, __cur); throw; } } }; template<> struct __uninitialized_copy { template static _ForwardIterator __uninit_copy(_InputIterator __first, _InputIterator __last, _ForwardIterator __result) { return std::copy(__first, __last, __result); } }; template inline _ForwardIterator uninitialized_copy(_InputIterator __first, _InputIterator __last, _ForwardIterator __result) { typedef typename iterator_traits<_InputIterator>::value_type _ValueType1; typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType2; return std::__uninitialized_copy<(__is_trivial(_ValueType1) && __is_trivial(_ValueType2))>:: __uninit_copy(__first, __last, __result); } template struct __uninitialized_fill { template static void __uninit_fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __x) { _ForwardIterator __cur = __first; try { for (; __cur != __last; ++__cur) std::_Construct(std::__addressof(*__cur), __x); } catch(...) { std::_Destroy(__first, __cur); throw; } } }; template<> struct __uninitialized_fill { template static void __uninit_fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __x) { std::fill(__first, __last, __x); } }; template inline void uninitialized_fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __x) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; std::__uninitialized_fill<__is_trivial(_ValueType)>:: __uninit_fill(__first, __last, __x); } template struct __uninitialized_fill_n { template static void __uninit_fill_n(_ForwardIterator __first, _Size __n, const _Tp& __x) { _ForwardIterator __cur = __first; try { for (; __n > 0; --__n, ++__cur) std::_Construct(std::__addressof(*__cur), __x); } catch(...) { std::_Destroy(__first, __cur); throw; } } }; template<> struct __uninitialized_fill_n { template static void __uninit_fill_n(_ForwardIterator __first, _Size __n, const _Tp& __x) { std::fill_n(__first, __n, __x); } }; template inline void uninitialized_fill_n(_ForwardIterator __first, _Size __n, const _Tp& __x) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; std::__uninitialized_fill_n<__is_trivial(_ValueType)>:: __uninit_fill_n(__first, __n, __x); } template _ForwardIterator __uninitialized_copy_a(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, _Allocator& __alloc) { _ForwardIterator __cur = __result; try { for (; __first != __last; ++__first, ++__cur) __alloc.construct(std::__addressof(*__cur), *__first); return __cur; } catch(...) { std::_Destroy(__result, __cur, __alloc); throw; } } template inline _ForwardIterator __uninitialized_copy_a(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, allocator<_Tp>&) { return std::uninitialized_copy(__first, __last, __result); } template inline _ForwardIterator __uninitialized_move_a(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, _Allocator& __alloc) { return std::__uninitialized_copy_a((__first), (__last), __result, __alloc); } template void __uninitialized_fill_a(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __x, _Allocator& __alloc) { _ForwardIterator __cur = __first; try { for (; __cur != __last; ++__cur) __alloc.construct(std::__addressof(*__cur), __x); } catch(...) { std::_Destroy(__first, __cur, __alloc); throw; } } template inline void __uninitialized_fill_a(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __x, allocator<_Tp2>&) { std::uninitialized_fill(__first, __last, __x); } template void __uninitialized_fill_n_a(_ForwardIterator __first, _Size __n, const _Tp& __x, _Allocator& __alloc) { _ForwardIterator __cur = __first; try { for (; __n > 0; --__n, ++__cur) __alloc.construct(std::__addressof(*__cur), __x); } catch(...) { std::_Destroy(__first, __cur, __alloc); throw; } } template inline void __uninitialized_fill_n_a(_ForwardIterator __first, _Size __n, const _Tp& __x, allocator<_Tp2>&) { std::uninitialized_fill_n(__first, __n, __x); } template inline _ForwardIterator __uninitialized_copy_move(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _ForwardIterator __result, _Allocator& __alloc) { _ForwardIterator __mid = std::__uninitialized_copy_a(__first1, __last1, __result, __alloc); try { return std::__uninitialized_move_a(__first2, __last2, __mid, __alloc); } catch(...) { std::_Destroy(__result, __mid, __alloc); throw; } } template inline _ForwardIterator __uninitialized_move_copy(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _ForwardIterator __result, _Allocator& __alloc) { _ForwardIterator __mid = std::__uninitialized_move_a(__first1, __last1, __result, __alloc); try { return std::__uninitialized_copy_a(__first2, __last2, __mid, __alloc); } catch(...) { std::_Destroy(__result, __mid, __alloc); throw; } } template inline _ForwardIterator __uninitialized_fill_move(_ForwardIterator __result, _ForwardIterator __mid, const _Tp& __x, _InputIterator __first, _InputIterator __last, _Allocator& __alloc) { std::__uninitialized_fill_a(__result, __mid, __x, __alloc); try { return std::__uninitialized_move_a(__first, __last, __mid, __alloc); } catch(...) { std::_Destroy(__result, __mid, __alloc); throw; } } template inline void __uninitialized_move_fill(_InputIterator __first1, _InputIterator __last1, _ForwardIterator __first2, _ForwardIterator __last2, const _Tp& __x, _Allocator& __alloc) { _ForwardIterator __mid2 = std::__uninitialized_move_a(__first1, __last1, __first2, __alloc); try { std::__uninitialized_fill_a(__mid2, __last2, __x, __alloc); } catch(...) { std::_Destroy(__first2, __mid2, __alloc); throw; } } } namespace std __attribute__ ((__visibility__ ("default"))) { template struct _Vector_base { typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type; struct _Vector_impl : public _Tp_alloc_type { typename _Tp_alloc_type::pointer _M_start; typename _Tp_alloc_type::pointer _M_finish; typename _Tp_alloc_type::pointer _M_end_of_storage; _Vector_impl() : _Tp_alloc_type(), _M_start(0), _M_finish(0), _M_end_of_storage(0) { } _Vector_impl(_Tp_alloc_type const& __a) : _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0) { } }; public: typedef _Alloc allocator_type; _Tp_alloc_type& _M_get_Tp_allocator() { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); } const _Tp_alloc_type& _M_get_Tp_allocator() const { return *static_cast(&this->_M_impl); } allocator_type get_allocator() const { return allocator_type(_M_get_Tp_allocator()); } _Vector_base() : _M_impl() { } _Vector_base(const allocator_type& __a) : _M_impl(__a) { } _Vector_base(size_t __n) : _M_impl() { this->_M_impl._M_start = this->_M_allocate(__n); this->_M_impl._M_finish = this->_M_impl._M_start; this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n; } _Vector_base(size_t __n, const allocator_type& __a) : _M_impl(__a) { this->_M_impl._M_start = this->_M_allocate(__n); this->_M_impl._M_finish = this->_M_impl._M_start; this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n; } ~_Vector_base() { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage - this->_M_impl._M_start); } public: _Vector_impl _M_impl; typename _Tp_alloc_type::pointer _M_allocate(size_t __n) { return __n != 0 ? _M_impl.allocate(__n) : 0; } void _M_deallocate(typename _Tp_alloc_type::pointer __p, size_t __n) { if (__p) _M_impl.deallocate(__p, __n); } }; template > class vector : protected _Vector_base<_Tp, _Alloc> { typedef typename _Alloc::value_type _Alloc_value_type; typedef _Vector_base<_Tp, _Alloc> _Base; typedef typename _Base::_Tp_alloc_type _Tp_alloc_type; public: typedef _Tp value_type; typedef typename _Tp_alloc_type::pointer pointer; typedef typename _Tp_alloc_type::const_pointer const_pointer; typedef typename _Tp_alloc_type::reference reference; typedef typename _Tp_alloc_type::const_reference const_reference; typedef __gnu_cxx::__normal_iterator iterator; typedef __gnu_cxx::__normal_iterator const_iterator; typedef std::reverse_iterator const_reverse_iterator; typedef std::reverse_iterator reverse_iterator; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Alloc allocator_type; protected: using _Base::_M_allocate; using _Base::_M_deallocate; using _Base::_M_impl; using _Base::_M_get_Tp_allocator; public: vector() : _Base() { } explicit vector(const allocator_type& __a) : _Base(__a) { } explicit vector(size_type __n, const value_type& __value = value_type(), const allocator_type& __a = allocator_type()) : _Base(__n, __a) { _M_fill_initialize(__n, __value); } vector(const vector& __x) : _Base(__x.size(), __x._M_get_Tp_allocator()) { this->_M_impl._M_finish = std::__uninitialized_copy_a(__x.begin(), __x.end(), this->_M_impl._M_start, _M_get_Tp_allocator()); } template vector(_InputIterator __first, _InputIterator __last, const allocator_type& __a = allocator_type()) : _Base(__a) { typedef typename std::__is_integer<_InputIterator>::__type _Integral; _M_initialize_dispatch(__first, __last, _Integral()); } ~vector() { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish, _M_get_Tp_allocator()); } vector& operator=(const vector& __x); void assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); } template void assign(_InputIterator __first, _InputIterator __last) { typedef typename std::__is_integer<_InputIterator>::__type _Integral; _M_assign_dispatch(__first, __last, _Integral()); } using _Base::get_allocator; iterator begin() { return iterator(this->_M_impl._M_start); } const_iterator begin() const { return const_iterator(this->_M_impl._M_start); } iterator end() { return iterator(this->_M_impl._M_finish); } const_iterator end() const { return const_iterator(this->_M_impl._M_finish); } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } size_type size() const { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); } size_type max_size() const { return _M_get_Tp_allocator().max_size(); } void resize(size_type __new_size, value_type __x = value_type()) { if (__new_size > size()) insert(end(), __new_size - size(), __x); else if (__new_size < size()) _M_erase_at_end(this->_M_impl._M_start + __new_size); } size_type capacity() const { return size_type(this->_M_impl._M_end_of_storage - this->_M_impl._M_start); } bool empty() const { return begin() == end(); } void reserve(size_type __n); reference operator[](size_type __n) { return *(this->_M_impl._M_start + __n); } const_reference operator[](size_type __n) const { return *(this->_M_impl._M_start + __n); } protected: void _M_range_check(size_type __n) const { if (__n >= this->size()) __throw_out_of_range(("vector::_M_range_check")); } public: reference at(size_type __n) { _M_range_check(__n); return (*this)[__n]; } const_reference at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; } reference front() { return *begin(); } const_reference front() const { return *begin(); } reference back() { return *(end() - 1); } const_reference back() const { return *(end() - 1); } pointer data() { return std::__addressof(front()); } const_pointer data() const { return std::__addressof(front()); } void push_back(const value_type& __x) { if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage) { this->_M_impl.construct(this->_M_impl._M_finish, __x); ++this->_M_impl._M_finish; } else _M_insert_aux(end(), __x); } void pop_back() { --this->_M_impl._M_finish; this->_M_impl.destroy(this->_M_impl._M_finish); } iterator insert(iterator __position, const value_type& __x); void insert(iterator __position, size_type __n, const value_type& __x) { _M_fill_insert(__position, __n, __x); } template void insert(iterator __position, _InputIterator __first, _InputIterator __last) { typedef typename std::__is_integer<_InputIterator>::__type _Integral; _M_insert_dispatch(__position, __first, __last, _Integral()); } iterator erase(iterator __position); iterator erase(iterator __first, iterator __last); void swap(vector& __x) { std::swap(this->_M_impl._M_start, __x._M_impl._M_start); std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish); std::swap(this->_M_impl._M_end_of_storage, __x._M_impl._M_end_of_storage); std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(), __x._M_get_Tp_allocator()); } void clear() { _M_erase_at_end(this->_M_impl._M_start); } protected: template pointer _M_allocate_and_copy(size_type __n, _ForwardIterator __first, _ForwardIterator __last) { pointer __result = this->_M_allocate(__n); try { std::__uninitialized_copy_a(__first, __last, __result, _M_get_Tp_allocator()); return __result; } catch(...) { _M_deallocate(__result, __n); throw; } } template void _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type) { this->_M_impl._M_start = _M_allocate(static_cast(__n)); this->_M_impl._M_end_of_storage = this->_M_impl._M_start + static_cast(__n); _M_fill_initialize(static_cast(__n), __value); } template void _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, __false_type) { typedef typename std::iterator_traits<_InputIterator>:: iterator_category _IterCategory; _M_range_initialize(__first, __last, _IterCategory()); } template void _M_range_initialize(_InputIterator __first, _InputIterator __last, std::input_iterator_tag) { for (; __first != __last; ++__first) push_back(*__first); } template void _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last, std::forward_iterator_tag) { const size_type __n = std::distance(__first, __last); this->_M_impl._M_start = this->_M_allocate(__n); this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n; this->_M_impl._M_finish = std::__uninitialized_copy_a(__first, __last, this->_M_impl._M_start, _M_get_Tp_allocator()); } void _M_fill_initialize(size_type __n, const value_type& __value) { std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value, _M_get_Tp_allocator()); this->_M_impl._M_finish = this->_M_impl._M_end_of_storage; } template void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) { _M_fill_assign(__n, __val); } template void _M_assign_dispatch(_InputIterator __first, _InputIterator __last, __false_type) { typedef typename std::iterator_traits<_InputIterator>:: iterator_category _IterCategory; _M_assign_aux(__first, __last, _IterCategory()); } template void _M_assign_aux(_InputIterator __first, _InputIterator __last, std::input_iterator_tag); template void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, std::forward_iterator_tag); void _M_fill_assign(size_type __n, const value_type& __val); template void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val, __true_type) { _M_fill_insert(__pos, __n, __val); } template void _M_insert_dispatch(iterator __pos, _InputIterator __first, _InputIterator __last, __false_type) { typedef typename std::iterator_traits<_InputIterator>:: iterator_category _IterCategory; _M_range_insert(__pos, __first, __last, _IterCategory()); } template void _M_range_insert(iterator __pos, _InputIterator __first, _InputIterator __last, std::input_iterator_tag); template void _M_range_insert(iterator __pos, _ForwardIterator __first, _ForwardIterator __last, std::forward_iterator_tag); void _M_fill_insert(iterator __pos, size_type __n, const value_type& __x); void _M_insert_aux(iterator __position, const value_type& __x); size_type _M_check_len(size_type __n, const char* __s) const { if (max_size() - size() < __n) __throw_length_error((__s)); const size_type __len = size() + std::max(size(), __n); return (__len < size() || __len > max_size()) ? max_size() : __len; } void _M_erase_at_end(pointer __pos) { std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator()); this->_M_impl._M_finish = __pos; } }; template inline bool operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) { return (__x.size() == __y.size() && std::equal(__x.begin(), __x.end(), __y.begin())); } template inline bool operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) { return std::lexicographical_compare(__x.begin(), __x.end(), __y.begin(), __y.end()); } template inline bool operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) { return !(__x == __y); } template inline bool operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) { return __y < __x; } template inline bool operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) { return !(__y < __x); } template inline bool operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) { return !(__x < __y); } template inline void swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y) { __x.swap(__y); } } namespace std __attribute__ ((__visibility__ ("default"))) { typedef unsigned long _Bit_type; enum { _S_word_bit = int(8 * sizeof(_Bit_type)) }; struct _Bit_reference { _Bit_type * _M_p; _Bit_type _M_mask; _Bit_reference(_Bit_type * __x, _Bit_type __y) : _M_p(__x), _M_mask(__y) { } _Bit_reference() : _M_p(0), _M_mask(0) { } operator bool() const { return !!(*_M_p & _M_mask); } _Bit_reference& operator=(bool __x) { if (__x) *_M_p |= _M_mask; else *_M_p &= ~_M_mask; return *this; } _Bit_reference& operator=(const _Bit_reference& __x) { return *this = bool(__x); } bool operator==(const _Bit_reference& __x) const { return bool(*this) == bool(__x); } bool operator<(const _Bit_reference& __x) const { return !bool(*this) && bool(__x); } void flip() { *_M_p ^= _M_mask; } }; struct _Bit_iterator_base : public std::iterator { _Bit_type * _M_p; unsigned int _M_offset; _Bit_iterator_base(_Bit_type * __x, unsigned int __y) : _M_p(__x), _M_offset(__y) { } void _M_bump_up() { if (_M_offset++ == int(_S_word_bit) - 1) { _M_offset = 0; ++_M_p; } } void _M_bump_down() { if (_M_offset-- == 0) { _M_offset = int(_S_word_bit) - 1; --_M_p; } } void _M_incr(ptrdiff_t __i) { difference_type __n = __i + _M_offset; _M_p += __n / int(_S_word_bit); __n = __n % int(_S_word_bit); if (__n < 0) { __n += int(_S_word_bit); --_M_p; } _M_offset = static_cast(__n); } bool operator==(const _Bit_iterator_base& __i) const { return _M_p == __i._M_p && _M_offset == __i._M_offset; } bool operator<(const _Bit_iterator_base& __i) const { return _M_p < __i._M_p || (_M_p == __i._M_p && _M_offset < __i._M_offset); } bool operator!=(const _Bit_iterator_base& __i) const { return !(*this == __i); } bool operator>(const _Bit_iterator_base& __i) const { return __i < *this; } bool operator<=(const _Bit_iterator_base& __i) const { return !(__i < *this); } bool operator>=(const _Bit_iterator_base& __i) const { return !(*this < __i); } }; inline ptrdiff_t operator-(const _Bit_iterator_base& __x, const _Bit_iterator_base& __y) { return (int(_S_word_bit) * (__x._M_p - __y._M_p) + __x._M_offset - __y._M_offset); } struct _Bit_iterator : public _Bit_iterator_base { typedef _Bit_reference reference; typedef _Bit_reference* pointer; typedef _Bit_iterator iterator; _Bit_iterator() : _Bit_iterator_base(0, 0) { } _Bit_iterator(_Bit_type * __x, unsigned int __y) : _Bit_iterator_base(__x, __y) { } reference operator*() const { return reference(_M_p, 1UL << _M_offset); } iterator& operator++() { _M_bump_up(); return *this; } iterator operator++(int) { iterator __tmp = *this; _M_bump_up(); return __tmp; } iterator& operator--() { _M_bump_down(); return *this; } iterator operator--(int) { iterator __tmp = *this; _M_bump_down(); return __tmp; } iterator& operator+=(difference_type __i) { _M_incr(__i); return *this; } iterator& operator-=(difference_type __i) { *this += -__i; return *this; } iterator operator+(difference_type __i) const { iterator __tmp = *this; return __tmp += __i; } iterator operator-(difference_type __i) const { iterator __tmp = *this; return __tmp -= __i; } reference operator[](difference_type __i) const { return *(*this + __i); } }; inline _Bit_iterator operator+(ptrdiff_t __n, const _Bit_iterator& __x) { return __x + __n; } struct _Bit_const_iterator : public _Bit_iterator_base { typedef bool reference; typedef bool const_reference; typedef const bool* pointer; typedef _Bit_const_iterator const_iterator; _Bit_const_iterator() : _Bit_iterator_base(0, 0) { } _Bit_const_iterator(_Bit_type * __x, unsigned int __y) : _Bit_iterator_base(__x, __y) { } _Bit_const_iterator(const _Bit_iterator& __x) : _Bit_iterator_base(__x._M_p, __x._M_offset) { } const_reference operator*() const { return _Bit_reference(_M_p, 1UL << _M_offset); } const_iterator& operator++() { _M_bump_up(); return *this; } const_iterator operator++(int) { const_iterator __tmp = *this; _M_bump_up(); return __tmp; } const_iterator& operator--() { _M_bump_down(); return *this; } const_iterator operator--(int) { const_iterator __tmp = *this; _M_bump_down(); return __tmp; } const_iterator& operator+=(difference_type __i) { _M_incr(__i); return *this; } const_iterator& operator-=(difference_type __i) { *this += -__i; return *this; } const_iterator operator+(difference_type __i) const { const_iterator __tmp = *this; return __tmp += __i; } const_iterator operator-(difference_type __i) const { const_iterator __tmp = *this; return __tmp -= __i; } const_reference operator[](difference_type __i) const { return *(*this + __i); } }; inline _Bit_const_iterator operator+(ptrdiff_t __n, const _Bit_const_iterator& __x) { return __x + __n; } inline void __fill_bvector(_Bit_iterator __first, _Bit_iterator __last, bool __x) { for (; __first != __last; ++__first) *__first = __x; } inline void fill(_Bit_iterator __first, _Bit_iterator __last, const bool& __x) { if (__first._M_p != __last._M_p) { std::fill(__first._M_p + 1, __last._M_p, __x ? ~0 : 0); __fill_bvector(__first, _Bit_iterator(__first._M_p + 1, 0), __x); __fill_bvector(_Bit_iterator(__last._M_p, 0), __last, __x); } else __fill_bvector(__first, __last, __x); } template struct _Bvector_base { typedef typename _Alloc::template rebind<_Bit_type>::other _Bit_alloc_type; struct _Bvector_impl : public _Bit_alloc_type { _Bit_iterator _M_start; _Bit_iterator _M_finish; _Bit_type* _M_end_of_storage; _Bvector_impl() : _Bit_alloc_type(), _M_start(), _M_finish(), _M_end_of_storage(0) { } _Bvector_impl(const _Bit_alloc_type& __a) : _Bit_alloc_type(__a), _M_start(), _M_finish(), _M_end_of_storage(0) { } }; public: typedef _Alloc allocator_type; _Bit_alloc_type& _M_get_Bit_allocator() { return *static_cast<_Bit_alloc_type*>(&this->_M_impl); } const _Bit_alloc_type& _M_get_Bit_allocator() const { return *static_cast(&this->_M_impl); } allocator_type get_allocator() const { return allocator_type(_M_get_Bit_allocator()); } _Bvector_base() : _M_impl() { } _Bvector_base(const allocator_type& __a) : _M_impl(__a) { } ~_Bvector_base() { this->_M_deallocate(); } protected: _Bvector_impl _M_impl; _Bit_type* _M_allocate(size_t __n) { return _M_impl.allocate((__n + int(_S_word_bit) - 1) / int(_S_word_bit)); } void _M_deallocate() { if (_M_impl._M_start._M_p) _M_impl.deallocate(_M_impl._M_start._M_p, _M_impl._M_end_of_storage - _M_impl._M_start._M_p); } }; } namespace std __attribute__ ((__visibility__ ("default"))) { template class vector : protected _Bvector_base<_Alloc> { typedef _Bvector_base<_Alloc> _Base; public: typedef bool value_type; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Bit_reference reference; typedef bool const_reference; typedef _Bit_reference* pointer; typedef const bool* const_pointer; typedef _Bit_iterator iterator; typedef _Bit_const_iterator const_iterator; typedef std::reverse_iterator const_reverse_iterator; typedef std::reverse_iterator reverse_iterator; typedef _Alloc allocator_type; allocator_type get_allocator() const { return _Base::get_allocator(); } protected: using _Base::_M_allocate; using _Base::_M_deallocate; using _Base::_M_get_Bit_allocator; public: vector() : _Base() { } explicit vector(const allocator_type& __a) : _Base(__a) { } explicit vector(size_type __n, const bool& __value = bool(), const allocator_type& __a = allocator_type()) : _Base(__a) { _M_initialize(__n); std::fill(this->_M_impl._M_start._M_p, this->_M_impl._M_end_of_storage, __value ? ~0 : 0); } vector(const vector& __x) : _Base(__x._M_get_Bit_allocator()) { _M_initialize(__x.size()); _M_copy_aligned(__x.begin(), __x.end(), this->_M_impl._M_start); } template vector(_InputIterator __first, _InputIterator __last, const allocator_type& __a = allocator_type()) : _Base(__a) { typedef typename std::__is_integer<_InputIterator>::__type _Integral; _M_initialize_dispatch(__first, __last, _Integral()); } ~vector() { } vector& operator=(const vector& __x) { if (&__x == this) return *this; if (__x.size() > capacity()) { this->_M_deallocate(); _M_initialize(__x.size()); } this->_M_impl._M_finish = _M_copy_aligned(__x.begin(), __x.end(), begin()); return *this; } void assign(size_type __n, const bool& __x) { _M_fill_assign(__n, __x); } template void assign(_InputIterator __first, _InputIterator __last) { typedef typename std::__is_integer<_InputIterator>::__type _Integral; _M_assign_dispatch(__first, __last, _Integral()); } iterator begin() { return this->_M_impl._M_start; } const_iterator begin() const { return this->_M_impl._M_start; } iterator end() { return this->_M_impl._M_finish; } const_iterator end() const { return this->_M_impl._M_finish; } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } size_type size() const { return size_type(end() - begin()); } size_type max_size() const { const size_type __isize = __gnu_cxx::__numeric_traits::__max - int(_S_word_bit) + 1; const size_type __asize = _M_get_Bit_allocator().max_size(); return (__asize <= __isize / int(_S_word_bit) ? __asize * int(_S_word_bit) : __isize); } size_type capacity() const { return size_type(const_iterator(this->_M_impl._M_end_of_storage, 0) - begin()); } bool empty() const { return begin() == end(); } reference operator[](size_type __n) { return *iterator(this->_M_impl._M_start._M_p + __n / int(_S_word_bit), __n % int(_S_word_bit)); } const_reference operator[](size_type __n) const { return *const_iterator(this->_M_impl._M_start._M_p + __n / int(_S_word_bit), __n % int(_S_word_bit)); } protected: void _M_range_check(size_type __n) const { if (__n >= this->size()) __throw_out_of_range(("vector::_M_range_check")); } public: reference at(size_type __n) { _M_range_check(__n); return (*this)[__n]; } const_reference at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; } void reserve(size_type __n); reference front() { return *begin(); } const_reference front() const { return *begin(); } reference back() { return *(end() - 1); } const_reference back() const { return *(end() - 1); } void data() { } void push_back(bool __x) { if (this->_M_impl._M_finish._M_p != this->_M_impl._M_end_of_storage) *this->_M_impl._M_finish++ = __x; else _M_insert_aux(end(), __x); } void swap(vector& __x) { std::swap(this->_M_impl._M_start, __x._M_impl._M_start); std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish); std::swap(this->_M_impl._M_end_of_storage, __x._M_impl._M_end_of_storage); std::__alloc_swap:: _S_do_it(_M_get_Bit_allocator(), __x._M_get_Bit_allocator()); } static void swap(reference __x, reference __y) { bool __tmp = __x; __x = __y; __y = __tmp; } iterator insert(iterator __position, const bool& __x = bool()) { const difference_type __n = __position - begin(); if (this->_M_impl._M_finish._M_p != this->_M_impl._M_end_of_storage && __position == end()) *this->_M_impl._M_finish++ = __x; else _M_insert_aux(__position, __x); return begin() + __n; } template void insert(iterator __position, _InputIterator __first, _InputIterator __last) { typedef typename std::__is_integer<_InputIterator>::__type _Integral; _M_insert_dispatch(__position, __first, __last, _Integral()); } void insert(iterator __position, size_type __n, const bool& __x) { _M_fill_insert(__position, __n, __x); } void pop_back() { --this->_M_impl._M_finish; } iterator erase(iterator __position) { if (__position + 1 != end()) std::copy(__position + 1, end(), __position); --this->_M_impl._M_finish; return __position; } iterator erase(iterator __first, iterator __last) { if (__first != __last) _M_erase_at_end(std::copy(__last, end(), __first)); return __first; } void resize(size_type __new_size, bool __x = bool()) { if (__new_size < size()) _M_erase_at_end(begin() + difference_type(__new_size)); else insert(end(), __new_size - size(), __x); } void flip() { for (_Bit_type * __p = this->_M_impl._M_start._M_p; __p != this->_M_impl._M_end_of_storage; ++__p) *__p = ~*__p; } void clear() { _M_erase_at_end(begin()); } protected: iterator _M_copy_aligned(const_iterator __first, const_iterator __last, iterator __result) { _Bit_type* __q = std::copy(__first._M_p, __last._M_p, __result._M_p); return std::copy(const_iterator(__last._M_p, 0), __last, iterator(__q, 0)); } void _M_initialize(size_type __n) { _Bit_type* __q = this->_M_allocate(__n); this->_M_impl._M_end_of_storage = (__q + ((__n + int(_S_word_bit) - 1) / int(_S_word_bit))); this->_M_impl._M_start = iterator(__q, 0); this->_M_impl._M_finish = this->_M_impl._M_start + difference_type(__n); } template void _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) { _M_initialize(static_cast(__n)); std::fill(this->_M_impl._M_start._M_p, this->_M_impl._M_end_of_storage, __x ? ~0 : 0); } template void _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, __false_type) { _M_initialize_range(__first, __last, std::__iterator_category(__first)); } template void _M_initialize_range(_InputIterator __first, _InputIterator __last, std::input_iterator_tag) { for (; __first != __last; ++__first) push_back(*__first); } template void _M_initialize_range(_ForwardIterator __first, _ForwardIterator __last, std::forward_iterator_tag) { const size_type __n = std::distance(__first, __last); _M_initialize(__n); std::copy(__first, __last, this->_M_impl._M_start); } template void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) { _M_fill_assign(__n, __val); } template void _M_assign_dispatch(_InputIterator __first, _InputIterator __last, __false_type) { _M_assign_aux(__first, __last, std::__iterator_category(__first)); } void _M_fill_assign(size_t __n, bool __x) { if (__n > size()) { std::fill(this->_M_impl._M_start._M_p, this->_M_impl._M_end_of_storage, __x ? ~0 : 0); insert(end(), __n - size(), __x); } else { _M_erase_at_end(begin() + __n); std::fill(this->_M_impl._M_start._M_p, this->_M_impl._M_end_of_storage, __x ? ~0 : 0); } } template void _M_assign_aux(_InputIterator __first, _InputIterator __last, std::input_iterator_tag) { iterator __cur = begin(); for (; __first != __last && __cur != end(); ++__cur, ++__first) *__cur = *__first; if (__first == __last) _M_erase_at_end(__cur); else insert(end(), __first, __last); } template void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, std::forward_iterator_tag) { const size_type __len = std::distance(__first, __last); if (__len < size()) _M_erase_at_end(std::copy(__first, __last, begin())); else { _ForwardIterator __mid = __first; std::advance(__mid, size()); std::copy(__first, __mid, begin()); insert(end(), __mid, __last); } } template void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x, __true_type) { _M_fill_insert(__pos, __n, __x); } template void _M_insert_dispatch(iterator __pos, _InputIterator __first, _InputIterator __last, __false_type) { _M_insert_range(__pos, __first, __last, std::__iterator_category(__first)); } void _M_fill_insert(iterator __position, size_type __n, bool __x); template void _M_insert_range(iterator __pos, _InputIterator __first, _InputIterator __last, std::input_iterator_tag) { for (; __first != __last; ++__first) { __pos = insert(__pos, *__first); ++__pos; } } template void _M_insert_range(iterator __position, _ForwardIterator __first, _ForwardIterator __last, std::forward_iterator_tag); void _M_insert_aux(iterator __position, bool __x); size_type _M_check_len(size_type __n, const char* __s) const { if (max_size() - size() < __n) __throw_length_error((__s)); const size_type __len = size() + std::max(size(), __n); return (__len < size() || __len > max_size()) ? max_size() : __len; } void _M_erase_at_end(iterator __pos) { this->_M_impl._M_finish = __pos; } }; } namespace std __attribute__ ((__visibility__ ("default"))) { template void vector<_Tp, _Alloc>:: reserve(size_type __n) { if (__n > this->max_size()) __throw_length_error(("vector::reserve")); if (this->capacity() < __n) { const size_type __old_size = size(); pointer __tmp = _M_allocate_and_copy(__n, (this->_M_impl._M_start), (this->_M_impl._M_finish)); std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish, _M_get_Tp_allocator()); _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage - this->_M_impl._M_start); this->_M_impl._M_start = __tmp; this->_M_impl._M_finish = __tmp + __old_size; this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n; } } template typename vector<_Tp, _Alloc>::iterator vector<_Tp, _Alloc>:: insert(iterator __position, const value_type& __x) { const size_type __n = __position - begin(); if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage && __position == end()) { this->_M_impl.construct(this->_M_impl._M_finish, __x); ++this->_M_impl._M_finish; } else { _M_insert_aux(__position, __x); } return iterator(this->_M_impl._M_start + __n); } template typename vector<_Tp, _Alloc>::iterator vector<_Tp, _Alloc>:: erase(iterator __position) { if (__position + 1 != end()) std::copy(__position + 1, end(), __position); --this->_M_impl._M_finish; this->_M_impl.destroy(this->_M_impl._M_finish); return __position; } template typename vector<_Tp, _Alloc>::iterator vector<_Tp, _Alloc>:: erase(iterator __first, iterator __last) { if (__first != __last) { if (__last != end()) std::copy(__last, end(), __first); _M_erase_at_end(__first.base() + (end() - __last)); } return __first; } template vector<_Tp, _Alloc>& vector<_Tp, _Alloc>:: operator=(const vector<_Tp, _Alloc>& __x) { if (&__x != this) { const size_type __xlen = __x.size(); if (__xlen > capacity()) { pointer __tmp = _M_allocate_and_copy(__xlen, __x.begin(), __x.end()); std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish, _M_get_Tp_allocator()); _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage - this->_M_impl._M_start); this->_M_impl._M_start = __tmp; this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __xlen; } else if (size() >= __xlen) { std::_Destroy(std::copy(__x.begin(), __x.end(), begin()), end(), _M_get_Tp_allocator()); } else { std::copy(__x._M_impl._M_start, __x._M_impl._M_start + size(), this->_M_impl._M_start); std::__uninitialized_copy_a(__x._M_impl._M_start + size(), __x._M_impl._M_finish, this->_M_impl._M_finish, _M_get_Tp_allocator()); } this->_M_impl._M_finish = this->_M_impl._M_start + __xlen; } return *this; } template void vector<_Tp, _Alloc>:: _M_fill_assign(size_t __n, const value_type& __val) { if (__n > capacity()) { vector __tmp(__n, __val, _M_get_Tp_allocator()); __tmp.swap(*this); } else if (__n > size()) { std::fill(begin(), end(), __val); std::__uninitialized_fill_n_a(this->_M_impl._M_finish, __n - size(), __val, _M_get_Tp_allocator()); this->_M_impl._M_finish += __n - size(); } else _M_erase_at_end(std::fill_n(this->_M_impl._M_start, __n, __val)); } template template void vector<_Tp, _Alloc>:: _M_assign_aux(_InputIterator __first, _InputIterator __last, std::input_iterator_tag) { pointer __cur(this->_M_impl._M_start); for (; __first != __last && __cur != this->_M_impl._M_finish; ++__cur, ++__first) *__cur = *__first; if (__first == __last) _M_erase_at_end(__cur); else insert(end(), __first, __last); } template template void vector<_Tp, _Alloc>:: _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, std::forward_iterator_tag) { const size_type __len = std::distance(__first, __last); if (__len > capacity()) { pointer __tmp(_M_allocate_and_copy(__len, __first, __last)); std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish, _M_get_Tp_allocator()); _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage - this->_M_impl._M_start); this->_M_impl._M_start = __tmp; this->_M_impl._M_finish = this->_M_impl._M_start + __len; this->_M_impl._M_end_of_storage = this->_M_impl._M_finish; } else if (size() >= __len) _M_erase_at_end(std::copy(__first, __last, this->_M_impl._M_start)); else { _ForwardIterator __mid = __first; std::advance(__mid, size()); std::copy(__first, __mid, this->_M_impl._M_start); this->_M_impl._M_finish = std::__uninitialized_copy_a(__mid, __last, this->_M_impl._M_finish, _M_get_Tp_allocator()); } } template void vector<_Tp, _Alloc>:: _M_insert_aux(iterator __position, const _Tp& __x) { if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage) { this->_M_impl.construct(this->_M_impl._M_finish, (*(this->_M_impl._M_finish - 1)) ); ++this->_M_impl._M_finish; _Tp __x_copy = __x; std::copy_backward(__position.base(), this->_M_impl._M_finish - 2, this->_M_impl._M_finish - 1) ; *__position = __x_copy; } else { const size_type __len = _M_check_len(size_type(1), "vector::_M_insert_aux"); const size_type __elems_before = __position - begin(); pointer __new_start(this->_M_allocate(__len)); pointer __new_finish(__new_start); try { this->_M_impl.construct(__new_start + __elems_before, __x); __new_finish = 0; __new_finish = std::__uninitialized_move_a(this->_M_impl._M_start, __position.base(), __new_start, _M_get_Tp_allocator()); ++__new_finish; __new_finish = std::__uninitialized_move_a(__position.base(), this->_M_impl._M_finish, __new_finish, _M_get_Tp_allocator()); } catch(...) { if (!__new_finish) this->_M_impl.destroy(__new_start + __elems_before); else std::_Destroy(__new_start, __new_finish, _M_get_Tp_allocator()); _M_deallocate(__new_start, __len); throw; } std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish, _M_get_Tp_allocator()); _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage - this->_M_impl._M_start); this->_M_impl._M_start = __new_start; this->_M_impl._M_finish = __new_finish; this->_M_impl._M_end_of_storage = __new_start + __len; } } template void vector<_Tp, _Alloc>:: _M_fill_insert(iterator __position, size_type __n, const value_type& __x) { if (__n != 0) { if (size_type(this->_M_impl._M_end_of_storage - this->_M_impl._M_finish) >= __n) { value_type __x_copy = __x; const size_type __elems_after = end() - __position; pointer __old_finish(this->_M_impl._M_finish); if (__elems_after > __n) { std::__uninitialized_move_a(this->_M_impl._M_finish - __n, this->_M_impl._M_finish, this->_M_impl._M_finish, _M_get_Tp_allocator()); this->_M_impl._M_finish += __n; std::copy_backward(__position.base(), __old_finish - __n, __old_finish) ; std::fill(__position.base(), __position.base() + __n, __x_copy); } else { std::__uninitialized_fill_n_a(this->_M_impl._M_finish, __n - __elems_after, __x_copy, _M_get_Tp_allocator()); this->_M_impl._M_finish += __n - __elems_after; std::__uninitialized_move_a(__position.base(), __old_finish, this->_M_impl._M_finish, _M_get_Tp_allocator()); this->_M_impl._M_finish += __elems_after; std::fill(__position.base(), __old_finish, __x_copy); } } else { const size_type __len = _M_check_len(__n, "vector::_M_fill_insert"); const size_type __elems_before = __position - begin(); pointer __new_start(this->_M_allocate(__len)); pointer __new_finish(__new_start); try { std::__uninitialized_fill_n_a(__new_start + __elems_before, __n, __x, _M_get_Tp_allocator()); __new_finish = 0; __new_finish = std::__uninitialized_move_a(this->_M_impl._M_start, __position.base(), __new_start, _M_get_Tp_allocator()); __new_finish += __n; __new_finish = std::__uninitialized_move_a(__position.base(), this->_M_impl._M_finish, __new_finish, _M_get_Tp_allocator()); } catch(...) { if (!__new_finish) std::_Destroy(__new_start + __elems_before, __new_start + __elems_before + __n, _M_get_Tp_allocator()); else std::_Destroy(__new_start, __new_finish, _M_get_Tp_allocator()); _M_deallocate(__new_start, __len); throw; } std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish, _M_get_Tp_allocator()); _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage - this->_M_impl._M_start); this->_M_impl._M_start = __new_start; this->_M_impl._M_finish = __new_finish; this->_M_impl._M_end_of_storage = __new_start + __len; } } } template template void vector<_Tp, _Alloc>:: _M_range_insert(iterator __pos, _InputIterator __first, _InputIterator __last, std::input_iterator_tag) { for (; __first != __last; ++__first) { __pos = insert(__pos, *__first); ++__pos; } } template template void vector<_Tp, _Alloc>:: _M_range_insert(iterator __position, _ForwardIterator __first, _ForwardIterator __last, std::forward_iterator_tag) { if (__first != __last) { const size_type __n = std::distance(__first, __last); if (size_type(this->_M_impl._M_end_of_storage - this->_M_impl._M_finish) >= __n) { const size_type __elems_after = end() - __position; pointer __old_finish(this->_M_impl._M_finish); if (__elems_after > __n) { std::__uninitialized_move_a(this->_M_impl._M_finish - __n, this->_M_impl._M_finish, this->_M_impl._M_finish, _M_get_Tp_allocator()); this->_M_impl._M_finish += __n; std::copy_backward(__position.base(), __old_finish - __n, __old_finish) ; std::copy(__first, __last, __position); } else { _ForwardIterator __mid = __first; std::advance(__mid, __elems_after); std::__uninitialized_copy_a(__mid, __last, this->_M_impl._M_finish, _M_get_Tp_allocator()); this->_M_impl._M_finish += __n - __elems_after; std::__uninitialized_move_a(__position.base(), __old_finish, this->_M_impl._M_finish, _M_get_Tp_allocator()); this->_M_impl._M_finish += __elems_after; std::copy(__first, __mid, __position); } } else { const size_type __len = _M_check_len(__n, "vector::_M_range_insert"); pointer __new_start(this->_M_allocate(__len)); pointer __new_finish(__new_start); try { __new_finish = std::__uninitialized_move_a(this->_M_impl._M_start, __position.base(), __new_start, _M_get_Tp_allocator()); __new_finish = std::__uninitialized_copy_a(__first, __last, __new_finish, _M_get_Tp_allocator()); __new_finish = std::__uninitialized_move_a(__position.base(), this->_M_impl._M_finish, __new_finish, _M_get_Tp_allocator()); } catch(...) { std::_Destroy(__new_start, __new_finish, _M_get_Tp_allocator()); _M_deallocate(__new_start, __len); throw; } std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish, _M_get_Tp_allocator()); _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage - this->_M_impl._M_start); this->_M_impl._M_start = __new_start; this->_M_impl._M_finish = __new_finish; this->_M_impl._M_end_of_storage = __new_start + __len; } } } template void vector:: reserve(size_type __n) { if (__n > this->max_size()) __throw_length_error(("vector::reserve")); if (this->capacity() < __n) { _Bit_type* __q = this->_M_allocate(__n); this->_M_impl._M_finish = _M_copy_aligned(begin(), end(), iterator(__q, 0)); this->_M_deallocate(); this->_M_impl._M_start = iterator(__q, 0); this->_M_impl._M_end_of_storage = (__q + (__n + int(_S_word_bit) - 1) / int(_S_word_bit)); } } template void vector:: _M_fill_insert(iterator __position, size_type __n, bool __x) { if (__n == 0) return; if (capacity() - size() >= __n) { std::copy_backward(__position, end(), this->_M_impl._M_finish + difference_type(__n)); std::fill(__position, __position + difference_type(__n), __x); this->_M_impl._M_finish += difference_type(__n); } else { const size_type __len = _M_check_len(__n, "vector::_M_fill_insert"); _Bit_type * __q = this->_M_allocate(__len); iterator __i = _M_copy_aligned(begin(), __position, iterator(__q, 0)); std::fill(__i, __i + difference_type(__n), __x); this->_M_impl._M_finish = std::copy(__position, end(), __i + difference_type(__n)); this->_M_deallocate(); this->_M_impl._M_end_of_storage = (__q + ((__len + int(_S_word_bit) - 1) / int(_S_word_bit))); this->_M_impl._M_start = iterator(__q, 0); } } template template void vector:: _M_insert_range(iterator __position, _ForwardIterator __first, _ForwardIterator __last, std::forward_iterator_tag) { if (__first != __last) { size_type __n = std::distance(__first, __last); if (capacity() - size() >= __n) { std::copy_backward(__position, end(), this->_M_impl._M_finish + difference_type(__n)); std::copy(__first, __last, __position); this->_M_impl._M_finish += difference_type(__n); } else { const size_type __len = _M_check_len(__n, "vector::_M_insert_range"); _Bit_type * __q = this->_M_allocate(__len); iterator __i = _M_copy_aligned(begin(), __position, iterator(__q, 0)); __i = std::copy(__first, __last, __i); this->_M_impl._M_finish = std::copy(__position, end(), __i); this->_M_deallocate(); this->_M_impl._M_end_of_storage = (__q + ((__len + int(_S_word_bit) - 1) / int(_S_word_bit))); this->_M_impl._M_start = iterator(__q, 0); } } } template void vector:: _M_insert_aux(iterator __position, bool __x) { if (this->_M_impl._M_finish._M_p != this->_M_impl._M_end_of_storage) { std::copy_backward(__position, this->_M_impl._M_finish, this->_M_impl._M_finish + 1); *__position = __x; ++this->_M_impl._M_finish; } else { const size_type __len = _M_check_len(size_type(1), "vector::_M_insert_aux"); _Bit_type * __q = this->_M_allocate(__len); iterator __i = _M_copy_aligned(begin(), __position, iterator(__q, 0)); *__i++ = __x; this->_M_impl._M_finish = std::copy(__position, end(), __i); this->_M_deallocate(); this->_M_impl._M_end_of_storage = (__q + ((__len + int(_S_word_bit) - 1) / int(_S_word_bit))); this->_M_impl._M_start = iterator(__q, 0); } } } class Document; namespace DotParser { bool parse(const std::string& str, Document* graphDoc); bool parseIntegers(const std::string& str, std::vector& v); void setStrict(); void undirectedDataStructure(); void directedDataStructure(); void dataStructureId(const std::string& str); void attributeId(const std::string& str); void subDataStructureId(const std::string& str); void valid(const std::string& str); void insertAttributeIntoAttributeList(); void createAttributeList(); void removeAttributeList(); void createSubDataStructure(); void createData(const std::string& str); void setDataStructureAttributes(); void setSubDataStructureAttributes(char const* first, char const* last); void setDataAttributes(); void applyAttributeList(); void checkEdgeOperator(const std::string& str); void edgebound(const std::string& str); void createPointers(); void leaveSubDataStructure(); } typedef long int ptrdiff_t; namespace std __attribute__ ((__visibility__ ("default"))) { namespace rel_ops { template inline bool operator!=(const _Tp& __x, const _Tp& __y) { return !(__x == __y); } template inline bool operator>(const _Tp& __x, const _Tp& __y) { return __y < __x; } template inline bool operator<=(const _Tp& __x, const _Tp& __y) { return !(__y < __x); } template inline bool operator>=(const _Tp& __x, const _Tp& __y) { return !(__x < __y); } } } extern "C" { union wait { int w_status; struct { unsigned int:16; unsigned int __w_retcode:8; unsigned int __w_coredump:1; unsigned int __w_termsig:7; } __wait_terminated; struct { unsigned int:16; unsigned int __w_stopsig:8; unsigned int __w_stopval:8; } __wait_stopped; }; typedef struct { int quot; int rem; } div_t; typedef struct { long int quot; long int rem; } ldiv_t; __extension__ typedef struct { long long int quot; long long int rem; } lldiv_t; extern size_t __ctype_get_mb_cur_max (void) throw () __attribute__ ((__warn_unused_result__)); extern double atof (__const char *__nptr) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int atoi (__const char *__nptr) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern long int atol (__const char *__nptr) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); __extension__ extern long long int atoll (__const char *__nptr) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern double strtod (__const char *__restrict __nptr, char **__restrict __endptr) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern float strtof (__const char *__restrict __nptr, char **__restrict __endptr) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern long double strtold (__const char *__restrict __nptr, char **__restrict __endptr) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern long int strtol (__const char *__restrict __nptr, char **__restrict __endptr, int __base) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern unsigned long int strtoul (__const char *__restrict __nptr, char **__restrict __endptr, int __base) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); __extension__ extern long long int strtoq (__const char *__restrict __nptr, char **__restrict __endptr, int __base) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); __extension__ extern unsigned long long int strtouq (__const char *__restrict __nptr, char **__restrict __endptr, int __base) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); __extension__ extern long long int strtoll (__const char *__restrict __nptr, char **__restrict __endptr, int __base) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); __extension__ extern unsigned long long int strtoull (__const char *__restrict __nptr, char **__restrict __endptr, int __base) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern long int strtol_l (__const char *__restrict __nptr, char **__restrict __endptr, int __base, __locale_t __loc) throw () __attribute__ ((__nonnull__ (1, 4))) __attribute__ ((__warn_unused_result__)); extern unsigned long int strtoul_l (__const char *__restrict __nptr, char **__restrict __endptr, int __base, __locale_t __loc) throw () __attribute__ ((__nonnull__ (1, 4))) __attribute__ ((__warn_unused_result__)); __extension__ extern long long int strtoll_l (__const char *__restrict __nptr, char **__restrict __endptr, int __base, __locale_t __loc) throw () __attribute__ ((__nonnull__ (1, 4))) __attribute__ ((__warn_unused_result__)); __extension__ extern unsigned long long int strtoull_l (__const char *__restrict __nptr, char **__restrict __endptr, int __base, __locale_t __loc) throw () __attribute__ ((__nonnull__ (1, 4))) __attribute__ ((__warn_unused_result__)); extern double strtod_l (__const char *__restrict __nptr, char **__restrict __endptr, __locale_t __loc) throw () __attribute__ ((__nonnull__ (1, 3))) __attribute__ ((__warn_unused_result__)); extern float strtof_l (__const char *__restrict __nptr, char **__restrict __endptr, __locale_t __loc) throw () __attribute__ ((__nonnull__ (1, 3))) __attribute__ ((__warn_unused_result__)); extern long double strtold_l (__const char *__restrict __nptr, char **__restrict __endptr, __locale_t __loc) throw () __attribute__ ((__nonnull__ (1, 3))) __attribute__ ((__warn_unused_result__)); extern __inline __attribute__ ((__gnu_inline__)) double __attribute__ ((__leaf__)) atof (__const char *__nptr) throw () { return strtod (__nptr, (char **) __null); } extern __inline __attribute__ ((__gnu_inline__)) int __attribute__ ((__leaf__)) atoi (__const char *__nptr) throw () { return (int) strtol (__nptr, (char **) __null, 10); } extern __inline __attribute__ ((__gnu_inline__)) long int __attribute__ ((__leaf__)) atol (__const char *__nptr) throw () { return strtol (__nptr, (char **) __null, 10); } __extension__ extern __inline __attribute__ ((__gnu_inline__)) long long int __attribute__ ((__leaf__)) atoll (__const char *__nptr) throw () { return strtoll (__nptr, (char **) __null, 10); } extern char *l64a (long int __n) throw () __attribute__ ((__warn_unused_result__)); extern long int a64l (__const char *__s) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern "C" { typedef __u_char u_char; typedef __u_short u_short; typedef __u_int u_int; typedef __u_long u_long; typedef __quad_t quad_t; typedef __u_quad_t u_quad_t; typedef __fsid_t fsid_t; typedef __loff_t loff_t; typedef __ino_t ino_t; typedef __ino64_t ino64_t; typedef __dev_t dev_t; typedef __mode_t mode_t; typedef __nlink_t nlink_t; typedef __id_t id_t; typedef __daddr_t daddr_t; typedef __caddr_t caddr_t; typedef __key_t key_t; typedef __suseconds_t suseconds_t; typedef unsigned long int ulong; typedef unsigned short int ushort; typedef unsigned int uint; typedef int int8_t __attribute__ ((__mode__ (__QI__))); typedef int int16_t __attribute__ ((__mode__ (__HI__))); typedef int int32_t __attribute__ ((__mode__ (__SI__))); typedef int int64_t __attribute__ ((__mode__ (__DI__))); typedef unsigned int u_int8_t __attribute__ ((__mode__ (__QI__))); typedef unsigned int u_int16_t __attribute__ ((__mode__ (__HI__))); typedef unsigned int u_int32_t __attribute__ ((__mode__ (__SI__))); typedef unsigned int u_int64_t __attribute__ ((__mode__ (__DI__))); typedef int register_t __attribute__ ((__mode__ (__word__))); typedef int __sig_atomic_t; typedef struct { unsigned long int __val[(1024 / (8 * sizeof (unsigned long int)))]; } __sigset_t; typedef __sigset_t sigset_t; typedef long int __fd_mask; typedef struct { __fd_mask fds_bits[1024 / (8 * (int) sizeof (__fd_mask))]; } fd_set; typedef __fd_mask fd_mask; extern "C" { extern int select (int __nfds, fd_set *__restrict __readfds, fd_set *__restrict __writefds, fd_set *__restrict __exceptfds, struct timeval *__restrict __timeout); extern int pselect (int __nfds, fd_set *__restrict __readfds, fd_set *__restrict __writefds, fd_set *__restrict __exceptfds, const struct timespec *__restrict __timeout, const __sigset_t *__restrict __sigmask); extern long int __fdelt_chk (long int __d); extern long int __fdelt_warn (long int __d) __attribute__((__warning__ ("bit outside of fd_set selected"))); } extern "C" { __extension__ extern unsigned int gnu_dev_major (unsigned long long int __dev) throw () __attribute__ ((__const__)); __extension__ extern unsigned int gnu_dev_minor (unsigned long long int __dev) throw () __attribute__ ((__const__)); __extension__ extern unsigned long long int gnu_dev_makedev (unsigned int __major, unsigned int __minor) throw () __attribute__ ((__const__)); __extension__ extern __inline __attribute__ ((__gnu_inline__)) __attribute__ ((__const__)) unsigned int __attribute__ ((__leaf__)) gnu_dev_major (unsigned long long int __dev) throw () { return ((__dev >> 8) & 0xfff) | ((unsigned int) (__dev >> 32) & ~0xfff); } __extension__ extern __inline __attribute__ ((__gnu_inline__)) __attribute__ ((__const__)) unsigned int __attribute__ ((__leaf__)) gnu_dev_minor (unsigned long long int __dev) throw () { return (__dev & 0xff) | ((unsigned int) (__dev >> 12) & ~0xff); } __extension__ extern __inline __attribute__ ((__gnu_inline__)) __attribute__ ((__const__)) unsigned long long int __attribute__ ((__leaf__)) gnu_dev_makedev (unsigned int __major, unsigned int __minor) throw () { return ((__minor & 0xff) | ((__major & 0xfff) << 8) | (((unsigned long long int) (__minor & ~0xff)) << 12) | (((unsigned long long int) (__major & ~0xfff)) << 32)); } } typedef __blksize_t blksize_t; typedef __blkcnt_t blkcnt_t; typedef __fsblkcnt_t fsblkcnt_t; typedef __fsfilcnt_t fsfilcnt_t; typedef __blkcnt64_t blkcnt64_t; typedef __fsblkcnt64_t fsblkcnt64_t; typedef __fsfilcnt64_t fsfilcnt64_t; } extern long int random (void) throw (); extern void srandom (unsigned int __seed) throw (); extern char *initstate (unsigned int __seed, char *__statebuf, size_t __statelen) throw () __attribute__ ((__nonnull__ (2))); extern char *setstate (char *__statebuf) throw () __attribute__ ((__nonnull__ (1))); struct random_data { int32_t *fptr; int32_t *rptr; int32_t *state; int rand_type; int rand_deg; int rand_sep; int32_t *end_ptr; }; extern int random_r (struct random_data *__restrict __buf, int32_t *__restrict __result) throw () __attribute__ ((__nonnull__ (1, 2))); extern int srandom_r (unsigned int __seed, struct random_data *__buf) throw () __attribute__ ((__nonnull__ (2))); extern int initstate_r (unsigned int __seed, char *__restrict __statebuf, size_t __statelen, struct random_data *__restrict __buf) throw () __attribute__ ((__nonnull__ (2, 4))); extern int setstate_r (char *__restrict __statebuf, struct random_data *__restrict __buf) throw () __attribute__ ((__nonnull__ (1, 2))); extern int rand (void) throw (); extern void srand (unsigned int __seed) throw (); extern int rand_r (unsigned int *__seed) throw (); extern double drand48 (void) throw (); extern double erand48 (unsigned short int __xsubi[3]) throw () __attribute__ ((__nonnull__ (1))); extern long int lrand48 (void) throw (); extern long int nrand48 (unsigned short int __xsubi[3]) throw () __attribute__ ((__nonnull__ (1))); extern long int mrand48 (void) throw (); extern long int jrand48 (unsigned short int __xsubi[3]) throw () __attribute__ ((__nonnull__ (1))); extern void srand48 (long int __seedval) throw (); extern unsigned short int *seed48 (unsigned short int __seed16v[3]) throw () __attribute__ ((__nonnull__ (1))); extern void lcong48 (unsigned short int __param[7]) throw () __attribute__ ((__nonnull__ (1))); struct drand48_data { unsigned short int __x[3]; unsigned short int __old_x[3]; unsigned short int __c; unsigned short int __init; unsigned long long int __a; }; extern int drand48_r (struct drand48_data *__restrict __buffer, double *__restrict __result) throw () __attribute__ ((__nonnull__ (1, 2))); extern int erand48_r (unsigned short int __xsubi[3], struct drand48_data *__restrict __buffer, double *__restrict __result) throw () __attribute__ ((__nonnull__ (1, 2))); extern int lrand48_r (struct drand48_data *__restrict __buffer, long int *__restrict __result) throw () __attribute__ ((__nonnull__ (1, 2))); extern int nrand48_r (unsigned short int __xsubi[3], struct drand48_data *__restrict __buffer, long int *__restrict __result) throw () __attribute__ ((__nonnull__ (1, 2))); extern int mrand48_r (struct drand48_data *__restrict __buffer, long int *__restrict __result) throw () __attribute__ ((__nonnull__ (1, 2))); extern int jrand48_r (unsigned short int __xsubi[3], struct drand48_data *__restrict __buffer, long int *__restrict __result) throw () __attribute__ ((__nonnull__ (1, 2))); extern int srand48_r (long int __seedval, struct drand48_data *__buffer) throw () __attribute__ ((__nonnull__ (2))); extern int seed48_r (unsigned short int __seed16v[3], struct drand48_data *__buffer) throw () __attribute__ ((__nonnull__ (1, 2))); extern int lcong48_r (unsigned short int __param[7], struct drand48_data *__buffer) throw () __attribute__ ((__nonnull__ (1, 2))); extern void *malloc (size_t __size) throw () __attribute__ ((__malloc__)) __attribute__ ((__warn_unused_result__)); extern void *calloc (size_t __nmemb, size_t __size) throw () __attribute__ ((__malloc__)) __attribute__ ((__warn_unused_result__)); extern void *realloc (void *__ptr, size_t __size) throw () __attribute__ ((__warn_unused_result__)); extern void free (void *__ptr) throw (); extern void cfree (void *__ptr) throw (); extern "C" { extern void *alloca (size_t __size) throw (); } extern void *valloc (size_t __size) throw () __attribute__ ((__malloc__)) __attribute__ ((__warn_unused_result__)); extern int posix_memalign (void **__memptr, size_t __alignment, size_t __size) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern void abort (void) throw () __attribute__ ((__noreturn__)); extern int atexit (void (*__func) (void)) throw () __attribute__ ((__nonnull__ (1))); extern "C++" int at_quick_exit (void (*__func) (void)) throw () __asm ("at_quick_exit") __attribute__ ((__nonnull__ (1))); extern int on_exit (void (*__func) (int __status, void *__arg), void *__arg) throw () __attribute__ ((__nonnull__ (1))); extern void exit (int __status) throw () __attribute__ ((__noreturn__)); extern void quick_exit (int __status) throw () __attribute__ ((__noreturn__)); extern void _Exit (int __status) throw () __attribute__ ((__noreturn__)); extern char *getenv (__const char *__name) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern char *__secure_getenv (__const char *__name) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int putenv (char *__string) throw () __attribute__ ((__nonnull__ (1))); extern int setenv (__const char *__name, __const char *__value, int __replace) throw () __attribute__ ((__nonnull__ (2))); extern int unsetenv (__const char *__name) throw () __attribute__ ((__nonnull__ (1))); extern int clearenv (void) throw (); extern char *mktemp (char *__template) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int mkstemp (char *__template) __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int mkstemp64 (char *__template) __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int mkstemps (char *__template, int __suffixlen) __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int mkstemps64 (char *__template, int __suffixlen) __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern char *mkdtemp (char *__template) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int mkostemp (char *__template, int __flags) __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int mkostemp64 (char *__template, int __flags) __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int mkostemps (char *__template, int __suffixlen, int __flags) __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int mkostemps64 (char *__template, int __suffixlen, int __flags) __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int system (__const char *__command) __attribute__ ((__warn_unused_result__)); extern char *canonicalize_file_name (__const char *__name) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern char *realpath (__const char *__restrict __name, char *__restrict __resolved) throw () __attribute__ ((__warn_unused_result__)); typedef int (*__compar_fn_t) (__const void *, __const void *); typedef __compar_fn_t comparison_fn_t; typedef int (*__compar_d_fn_t) (__const void *, __const void *, void *); extern void *bsearch (__const void *__key, __const void *__base, size_t __nmemb, size_t __size, __compar_fn_t __compar) __attribute__ ((__nonnull__ (1, 2, 5))) __attribute__ ((__warn_unused_result__)); extern void qsort (void *__base, size_t __nmemb, size_t __size, __compar_fn_t __compar) __attribute__ ((__nonnull__ (1, 4))); extern void qsort_r (void *__base, size_t __nmemb, size_t __size, __compar_d_fn_t __compar, void *__arg) __attribute__ ((__nonnull__ (1, 4))); extern int abs (int __x) throw () __attribute__ ((__const__)) __attribute__ ((__warn_unused_result__)); extern long int labs (long int __x) throw () __attribute__ ((__const__)) __attribute__ ((__warn_unused_result__)); __extension__ extern long long int llabs (long long int __x) throw () __attribute__ ((__const__)) __attribute__ ((__warn_unused_result__)); extern div_t div (int __numer, int __denom) throw () __attribute__ ((__const__)) __attribute__ ((__warn_unused_result__)); extern ldiv_t ldiv (long int __numer, long int __denom) throw () __attribute__ ((__const__)) __attribute__ ((__warn_unused_result__)); __extension__ extern lldiv_t lldiv (long long int __numer, long long int __denom) throw () __attribute__ ((__const__)) __attribute__ ((__warn_unused_result__)); extern char *ecvt (double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign) throw () __attribute__ ((__nonnull__ (3, 4))) __attribute__ ((__warn_unused_result__)); extern char *fcvt (double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign) throw () __attribute__ ((__nonnull__ (3, 4))) __attribute__ ((__warn_unused_result__)); extern char *gcvt (double __value, int __ndigit, char *__buf) throw () __attribute__ ((__nonnull__ (3))) __attribute__ ((__warn_unused_result__)); extern char *qecvt (long double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign) throw () __attribute__ ((__nonnull__ (3, 4))) __attribute__ ((__warn_unused_result__)); extern char *qfcvt (long double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign) throw () __attribute__ ((__nonnull__ (3, 4))) __attribute__ ((__warn_unused_result__)); extern char *qgcvt (long double __value, int __ndigit, char *__buf) throw () __attribute__ ((__nonnull__ (3))) __attribute__ ((__warn_unused_result__)); extern int ecvt_r (double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign, char *__restrict __buf, size_t __len) throw () __attribute__ ((__nonnull__ (3, 4, 5))); extern int fcvt_r (double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign, char *__restrict __buf, size_t __len) throw () __attribute__ ((__nonnull__ (3, 4, 5))); extern int qecvt_r (long double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign, char *__restrict __buf, size_t __len) throw () __attribute__ ((__nonnull__ (3, 4, 5))); extern int qfcvt_r (long double __value, int __ndigit, int *__restrict __decpt, int *__restrict __sign, char *__restrict __buf, size_t __len) throw () __attribute__ ((__nonnull__ (3, 4, 5))); extern int mblen (__const char *__s, size_t __n) throw () __attribute__ ((__warn_unused_result__)); extern int mbtowc (wchar_t *__restrict __pwc, __const char *__restrict __s, size_t __n) throw () __attribute__ ((__warn_unused_result__)); extern int wctomb (char *__s, wchar_t __wchar) throw () __attribute__ ((__warn_unused_result__)); extern size_t mbstowcs (wchar_t *__restrict __pwcs, __const char *__restrict __s, size_t __n) throw (); extern size_t wcstombs (char *__restrict __s, __const wchar_t *__restrict __pwcs, size_t __n) throw (); extern int rpmatch (__const char *__response) throw () __attribute__ ((__nonnull__ (1))) __attribute__ ((__warn_unused_result__)); extern int getsubopt (char **__restrict __optionp, char *__const *__restrict __tokens, char **__restrict __valuep) throw () __attribute__ ((__nonnull__ (1, 2, 3))) __attribute__ ((__warn_unused_result__)); extern void setkey (__const char *__key) throw () __attribute__ ((__nonnull__ (1))); extern int posix_openpt (int __oflag) __attribute__ ((__warn_unused_result__)); extern int grantpt (int __fd) throw (); extern int unlockpt (int __fd) throw (); extern char *ptsname (int __fd) throw () __attribute__ ((__warn_unused_result__)); extern int ptsname_r (int __fd, char *__buf, size_t __buflen) throw () __attribute__ ((__nonnull__ (2))); extern int getpt (void); extern int getloadavg (double __loadavg[], int __nelem) throw () __attribute__ ((__nonnull__ (1))); extern char *__realpath_chk (__const char *__restrict __name, char *__restrict __resolved, size_t __resolvedlen) throw () __attribute__ ((__warn_unused_result__)); extern char *__realpath_alias (__const char *__restrict __name, char *__restrict __resolved) throw () __asm__ ("" "realpath") __attribute__ ((__warn_unused_result__)); extern char *__realpath_chk_warn (__const char *__restrict __name, char *__restrict __resolved, size_t __resolvedlen) throw () __asm__ ("" "__realpath_chk") __attribute__ ((__warn_unused_result__)) __attribute__((__warning__ ("second argument of realpath must be either NULL or at " "least PATH_MAX bytes long buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __attribute__ ((__warn_unused_result__)) char * __attribute__ ((__leaf__)) realpath (__const char *__restrict __name, char *__restrict __resolved) throw () { if (__builtin_object_size (__resolved, 2 > 1) != (size_t) -1) { return __realpath_chk (__name, __resolved, __builtin_object_size (__resolved, 2 > 1)); } return __realpath_alias (__name, __resolved); } extern int __ptsname_r_chk (int __fd, char *__buf, size_t __buflen, size_t __nreal) throw () __attribute__ ((__nonnull__ (2))); extern int __ptsname_r_alias (int __fd, char *__buf, size_t __buflen) throw () __asm__ ("" "ptsname_r") __attribute__ ((__nonnull__ (2))); extern int __ptsname_r_chk_warn (int __fd, char *__buf, size_t __buflen, size_t __nreal) throw () __asm__ ("" "__ptsname_r_chk") __attribute__ ((__nonnull__ (2))) __attribute__((__warning__ ("ptsname_r called with buflen bigger than " "size of buf"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int __attribute__ ((__leaf__)) ptsname_r (int __fd, char *__buf, size_t __buflen) throw () { if (__builtin_object_size (__buf, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__buflen)) return __ptsname_r_chk (__fd, __buf, __buflen, __builtin_object_size (__buf, 2 > 1)); if (__buflen > __builtin_object_size (__buf, 2 > 1)) return __ptsname_r_chk_warn (__fd, __buf, __buflen, __builtin_object_size (__buf, 2 > 1)); } return __ptsname_r_alias (__fd, __buf, __buflen); } extern int __wctomb_chk (char *__s, wchar_t __wchar, size_t __buflen) throw () __attribute__ ((__warn_unused_result__)); extern int __wctomb_alias (char *__s, wchar_t __wchar) throw () __asm__ ("" "wctomb") __attribute__ ((__warn_unused_result__)); extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __attribute__ ((__warn_unused_result__)) int __attribute__ ((__leaf__)) wctomb (char *__s, wchar_t __wchar) throw () { if (__builtin_object_size (__s, 2 > 1) != (size_t) -1 && 16 > __builtin_object_size (__s, 2 > 1)) return __wctomb_chk (__s, __wchar, __builtin_object_size (__s, 2 > 1)); return __wctomb_alias (__s, __wchar); } extern size_t __mbstowcs_chk (wchar_t *__restrict __dst, __const char *__restrict __src, size_t __len, size_t __dstlen) throw (); extern size_t __mbstowcs_alias (wchar_t *__restrict __dst, __const char *__restrict __src, size_t __len) throw () __asm__ ("" "mbstowcs") ; extern size_t __mbstowcs_chk_warn (wchar_t *__restrict __dst, __const char *__restrict __src, size_t __len, size_t __dstlen) throw () __asm__ ("" "__mbstowcs_chk") __attribute__((__warning__ ("mbstowcs called with dst buffer smaller than len " "* sizeof (wchar_t)"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) size_t __attribute__ ((__leaf__)) mbstowcs (wchar_t *__restrict __dst, __const char *__restrict __src, size_t __len) throw () { if (__builtin_object_size (__dst, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__len)) return __mbstowcs_chk (__dst, __src, __len, __builtin_object_size (__dst, 2 > 1) / sizeof (wchar_t)); if (__len > __builtin_object_size (__dst, 2 > 1) / sizeof (wchar_t)) return __mbstowcs_chk_warn (__dst, __src, __len, __builtin_object_size (__dst, 2 > 1) / sizeof (wchar_t)); } return __mbstowcs_alias (__dst, __src, __len); } extern size_t __wcstombs_chk (char *__restrict __dst, __const wchar_t *__restrict __src, size_t __len, size_t __dstlen) throw (); extern size_t __wcstombs_alias (char *__restrict __dst, __const wchar_t *__restrict __src, size_t __len) throw () __asm__ ("" "wcstombs") ; extern size_t __wcstombs_chk_warn (char *__restrict __dst, __const wchar_t *__restrict __src, size_t __len, size_t __dstlen) throw () __asm__ ("" "__wcstombs_chk") __attribute__((__warning__ ("wcstombs called with dst buffer smaller than len"))); extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) size_t __attribute__ ((__leaf__)) wcstombs (char *__restrict __dst, __const wchar_t *__restrict __src, size_t __len) throw () { if (__builtin_object_size (__dst, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__len)) return __wcstombs_chk (__dst, __src, __len, __builtin_object_size (__dst, 2 > 1)); if (__len > __builtin_object_size (__dst, 2 > 1)) return __wcstombs_chk_warn (__dst, __src, __len, __builtin_object_size (__dst, 2 > 1)); } return __wcstombs_alias (__dst, __src, __len); } } namespace std __attribute__ ((__visibility__ ("default"))) { using ::div_t; using ::ldiv_t; using ::abort; using ::abs; using ::atexit; using ::atof; using ::atoi; using ::atol; using ::bsearch; using ::calloc; using ::div; using ::exit; using ::free; using ::getenv; using ::labs; using ::ldiv; using ::malloc; using ::mblen; using ::mbstowcs; using ::mbtowc; using ::qsort; using ::rand; using ::realloc; using ::srand; using ::strtod; using ::strtol; using ::strtoul; using ::system; using ::wcstombs; using ::wctomb; inline long abs(long __i) { return labs(__i); } inline ldiv_t div(long __i, long __j) { return ldiv(__i, __j); } } namespace __gnu_cxx __attribute__ ((__visibility__ ("default"))) { using ::lldiv_t; using ::_Exit; inline long long abs(long long __x) { return __x >= 0 ? __x : -__x; } using ::llabs; inline lldiv_t div(long long __n, long long __d) { lldiv_t __q; __q.quot = __n / __d; __q.rem = __n % __d; return __q; } using ::lldiv; using ::atoll; using ::strtoll; using ::strtoull; using ::strtof; using ::strtold; } namespace std { using ::__gnu_cxx::lldiv_t; using ::__gnu_cxx::_Exit; using ::__gnu_cxx::abs; using ::__gnu_cxx::llabs; using ::__gnu_cxx::div; using ::__gnu_cxx::lldiv; using ::__gnu_cxx::atoll; using ::__gnu_cxx::strtof; using ::__gnu_cxx::strtoll; using ::__gnu_cxx::strtoull; using ::__gnu_cxx::strtold; } namespace std __attribute__ ((__visibility__ ("default"))) { template bool binary_search(_FIter, _FIter, const _Tp&); template bool binary_search(_FIter, _FIter, const _Tp&, _Compare); template _OIter copy(_IIter, _IIter, _OIter); template _BIter2 copy_backward(_BIter1, _BIter1, _BIter2); template pair<_FIter, _FIter> equal_range(_FIter, _FIter, const _Tp&); template pair<_FIter, _FIter> equal_range(_FIter, _FIter, const _Tp&, _Compare); template void fill(_FIter, _FIter, const _Tp&); template _OIter fill_n(_OIter, _Size, const _Tp&); template _FIter1 find_end(_FIter1, _FIter1, _FIter2, _FIter2); template _FIter1 find_end(_FIter1, _FIter1, _FIter2, _FIter2, _BinaryPredicate); template bool includes(_IIter1, _IIter1, _IIter2, _IIter2); template bool includes(_IIter1, _IIter1, _IIter2, _IIter2, _Compare); template void inplace_merge(_BIter, _BIter, _BIter); template void inplace_merge(_BIter, _BIter, _BIter, _Compare); template void iter_swap(_FIter1, _FIter2); template _FIter lower_bound(_FIter, _FIter, const _Tp&); template _FIter lower_bound(_FIter, _FIter, const _Tp&, _Compare); template void make_heap(_RAIter, _RAIter); template void make_heap(_RAIter, _RAIter, _Compare); template const _Tp& max(const _Tp&, const _Tp&); template const _Tp& max(const _Tp&, const _Tp&, _Compare); template const _Tp& min(const _Tp&, const _Tp&); template const _Tp& min(const _Tp&, const _Tp&, _Compare); template bool next_permutation(_BIter, _BIter); template bool next_permutation(_BIter, _BIter, _Compare); template _RAIter partial_sort_copy(_IIter, _IIter, _RAIter, _RAIter); template _RAIter partial_sort_copy(_IIter, _IIter, _RAIter, _RAIter, _Compare); template void pop_heap(_RAIter, _RAIter); template void pop_heap(_RAIter, _RAIter, _Compare); template bool prev_permutation(_BIter, _BIter); template bool prev_permutation(_BIter, _BIter, _Compare); template void push_heap(_RAIter, _RAIter); template void push_heap(_RAIter, _RAIter, _Compare); template _FIter remove(_FIter, _FIter, const _Tp&); template _FIter remove_if(_FIter, _FIter, _Predicate); template _OIter remove_copy(_IIter, _IIter, _OIter, const _Tp&); template _OIter remove_copy_if(_IIter, _IIter, _OIter, _Predicate); template _OIter replace_copy(_IIter, _IIter, _OIter, const _Tp&, const _Tp&); template _OIter replace_copy_if(_Iter, _Iter, _OIter, _Predicate, const _Tp&); template void reverse(_BIter, _BIter); template _OIter reverse_copy(_BIter, _BIter, _OIter); template void rotate(_FIter, _FIter, _FIter); template _OIter rotate_copy(_FIter, _FIter, _FIter, _OIter); template void sort_heap(_RAIter, _RAIter); template void sort_heap(_RAIter, _RAIter, _Compare); template _BIter stable_partition(_BIter, _BIter, _Predicate); template void swap(_Tp&, _Tp&); template void swap(_Tp (&)[_Nm], _Tp (&)[_Nm]); template _FIter2 swap_ranges(_FIter1, _FIter1, _FIter2); template _FIter unique(_FIter, _FIter); template _FIter unique(_FIter, _FIter, _BinaryPredicate); template _FIter upper_bound(_FIter, _FIter, const _Tp&); template _FIter upper_bound(_FIter, _FIter, const _Tp&, _Compare); template _FIter adjacent_find(_FIter, _FIter); template _FIter adjacent_find(_FIter, _FIter, _BinaryPredicate); template typename iterator_traits<_IIter>::difference_type count(_IIter, _IIter, const _Tp&); template typename iterator_traits<_IIter>::difference_type count_if(_IIter, _IIter, _Predicate); template bool equal(_IIter1, _IIter1, _IIter2); template bool equal(_IIter1, _IIter1, _IIter2, _BinaryPredicate); template _IIter find(_IIter, _IIter, const _Tp&); template _FIter1 find_first_of(_FIter1, _FIter1, _FIter2, _FIter2); template _FIter1 find_first_of(_FIter1, _FIter1, _FIter2, _FIter2, _BinaryPredicate); template _IIter find_if(_IIter, _IIter, _Predicate); template _Funct for_each(_IIter, _IIter, _Funct); template void generate(_FIter, _FIter, _Generator); template _OIter generate_n(_OIter, _Size, _Generator); template bool lexicographical_compare(_IIter1, _IIter1, _IIter2, _IIter2); template bool lexicographical_compare(_IIter1, _IIter1, _IIter2, _IIter2, _Compare); template _FIter max_element(_FIter, _FIter); template _FIter max_element(_FIter, _FIter, _Compare); template _OIter merge(_IIter1, _IIter1, _IIter2, _IIter2, _OIter); template _OIter merge(_IIter1, _IIter1, _IIter2, _IIter2, _OIter, _Compare); template _FIter min_element(_FIter, _FIter); template _FIter min_element(_FIter, _FIter, _Compare); template pair<_IIter1, _IIter2> mismatch(_IIter1, _IIter1, _IIter2); template pair<_IIter1, _IIter2> mismatch(_IIter1, _IIter1, _IIter2, _BinaryPredicate); template void nth_element(_RAIter, _RAIter, _RAIter); template void nth_element(_RAIter, _RAIter, _RAIter, _Compare); template void partial_sort(_RAIter, _RAIter, _RAIter); template void partial_sort(_RAIter, _RAIter, _RAIter, _Compare); template _BIter partition(_BIter, _BIter, _Predicate); template void random_shuffle(_RAIter, _RAIter); template void random_shuffle(_RAIter, _RAIter, _Generator&); template void replace(_FIter, _FIter, const _Tp&, const _Tp&); template void replace_if(_FIter, _FIter, _Predicate, const _Tp&); template _FIter1 search(_FIter1, _FIter1, _FIter2, _FIter2); template _FIter1 search(_FIter1, _FIter1, _FIter2, _FIter2, _BinaryPredicate); template _FIter search_n(_FIter, _FIter, _Size, const _Tp&); template _FIter search_n(_FIter, _FIter, _Size, const _Tp&, _BinaryPredicate); template _OIter set_difference(_IIter1, _IIter1, _IIter2, _IIter2, _OIter); template _OIter set_difference(_IIter1, _IIter1, _IIter2, _IIter2, _OIter, _Compare); template _OIter set_intersection(_IIter1, _IIter1, _IIter2, _IIter2, _OIter); template _OIter set_intersection(_IIter1, _IIter1, _IIter2, _IIter2, _OIter, _Compare); template _OIter set_symmetric_difference(_IIter1, _IIter1, _IIter2, _IIter2, _OIter); template _OIter set_symmetric_difference(_IIter1, _IIter1, _IIter2, _IIter2, _OIter, _Compare); template _OIter set_union(_IIter1, _IIter1, _IIter2, _IIter2, _OIter); template _OIter set_union(_IIter1, _IIter1, _IIter2, _IIter2, _OIter, _Compare); template void sort(_RAIter, _RAIter); template void sort(_RAIter, _RAIter, _Compare); template void stable_sort(_RAIter, _RAIter); template void stable_sort(_RAIter, _RAIter, _Compare); template _OIter transform(_IIter, _IIter, _OIter, _UnaryOperation); template _OIter transform(_IIter1, _IIter1, _IIter2, _OIter, _BinaryOperation); template _OIter unique_copy(_IIter, _IIter, _OIter); template _OIter unique_copy(_IIter, _IIter, _OIter, _BinaryPredicate); } namespace std __attribute__ ((__visibility__ ("default"))) { template _Distance __is_heap_until(_RandomAccessIterator __first, _Distance __n) { _Distance __parent = 0; for (_Distance __child = 1; __child < __n; ++__child) { if (__first[__parent] < __first[__child]) return __child; if ((__child & 1) == 0) ++__parent; } return __n; } template _Distance __is_heap_until(_RandomAccessIterator __first, _Distance __n, _Compare __comp) { _Distance __parent = 0; for (_Distance __child = 1; __child < __n; ++__child) { if (__comp(__first[__parent], __first[__child])) return __child; if ((__child & 1) == 0) ++__parent; } return __n; } template inline bool __is_heap(_RandomAccessIterator __first, _Distance __n) { return std::__is_heap_until(__first, __n) == __n; } template inline bool __is_heap(_RandomAccessIterator __first, _Compare __comp, _Distance __n) { return std::__is_heap_until(__first, __n, __comp) == __n; } template inline bool __is_heap(_RandomAccessIterator __first, _RandomAccessIterator __last) { return std::__is_heap(__first, std::distance(__first, __last)); } template inline bool __is_heap(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { return std::__is_heap(__first, __comp, std::distance(__first, __last)); } template void __push_heap(_RandomAccessIterator __first, _Distance __holeIndex, _Distance __topIndex, _Tp __value) { _Distance __parent = (__holeIndex - 1) / 2; while (__holeIndex > __topIndex && *(__first + __parent) < __value) { *(__first + __holeIndex) = (*(__first + __parent)); __holeIndex = __parent; __parent = (__holeIndex - 1) / 2; } *(__first + __holeIndex) = (__value); } template inline void push_heap(_RandomAccessIterator __first, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType; ; ; _ValueType __value = (*(__last - 1)); std::__push_heap(__first, _DistanceType((__last - __first) - 1), _DistanceType(0), (__value)); } template void __push_heap(_RandomAccessIterator __first, _Distance __holeIndex, _Distance __topIndex, _Tp __value, _Compare __comp) { _Distance __parent = (__holeIndex - 1) / 2; while (__holeIndex > __topIndex && __comp(*(__first + __parent), __value)) { *(__first + __holeIndex) = (*(__first + __parent)); __holeIndex = __parent; __parent = (__holeIndex - 1) / 2; } *(__first + __holeIndex) = (__value); } template inline void push_heap(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType; ; ; _ValueType __value = (*(__last - 1)); std::__push_heap(__first, _DistanceType((__last - __first) - 1), _DistanceType(0), (__value), __comp); } template void __adjust_heap(_RandomAccessIterator __first, _Distance __holeIndex, _Distance __len, _Tp __value) { const _Distance __topIndex = __holeIndex; _Distance __secondChild = __holeIndex; while (__secondChild < (__len - 1) / 2) { __secondChild = 2 * (__secondChild + 1); if (*(__first + __secondChild) < *(__first + (__secondChild - 1))) __secondChild--; *(__first + __holeIndex) = (*(__first + __secondChild)); __holeIndex = __secondChild; } if ((__len & 1) == 0 && __secondChild == (__len - 2) / 2) { __secondChild = 2 * (__secondChild + 1); *(__first + __holeIndex) = (*(__first + (__secondChild - 1))) ; __holeIndex = __secondChild - 1; } std::__push_heap(__first, __holeIndex, __topIndex, (__value)); } template inline void __pop_heap(_RandomAccessIterator __first, _RandomAccessIterator __last, _RandomAccessIterator __result) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType; _ValueType __value = (*__result); *__result = (*__first); std::__adjust_heap(__first, _DistanceType(0), _DistanceType(__last - __first), (__value)); } template inline void pop_heap(_RandomAccessIterator __first, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; ; ; --__last; std::__pop_heap(__first, __last, __last); } template void __adjust_heap(_RandomAccessIterator __first, _Distance __holeIndex, _Distance __len, _Tp __value, _Compare __comp) { const _Distance __topIndex = __holeIndex; _Distance __secondChild = __holeIndex; while (__secondChild < (__len - 1) / 2) { __secondChild = 2 * (__secondChild + 1); if (__comp(*(__first + __secondChild), *(__first + (__secondChild - 1)))) __secondChild--; *(__first + __holeIndex) = (*(__first + __secondChild)); __holeIndex = __secondChild; } if ((__len & 1) == 0 && __secondChild == (__len - 2) / 2) { __secondChild = 2 * (__secondChild + 1); *(__first + __holeIndex) = (*(__first + (__secondChild - 1))) ; __holeIndex = __secondChild - 1; } std::__push_heap(__first, __holeIndex, __topIndex, (__value), __comp); } template inline void __pop_heap(_RandomAccessIterator __first, _RandomAccessIterator __last, _RandomAccessIterator __result, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType; _ValueType __value = (*__result); *__result = (*__first); std::__adjust_heap(__first, _DistanceType(0), _DistanceType(__last - __first), (__value), __comp); } template inline void pop_heap(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { ; ; --__last; std::__pop_heap(__first, __last, __last, __comp); } template void make_heap(_RandomAccessIterator __first, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType; ; if (__last - __first < 2) return; const _DistanceType __len = __last - __first; _DistanceType __parent = (__len - 2) / 2; while (true) { _ValueType __value = (*(__first + __parent)); std::__adjust_heap(__first, __parent, __len, (__value)); if (__parent == 0) return; __parent--; } } template void make_heap(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType; ; if (__last - __first < 2) return; const _DistanceType __len = __last - __first; _DistanceType __parent = (__len - 2) / 2; while (true) { _ValueType __value = (*(__first + __parent)); std::__adjust_heap(__first, __parent, __len, (__value), __comp); if (__parent == 0) return; __parent--; } } template void sort_heap(_RandomAccessIterator __first, _RandomAccessIterator __last) { ; ; while (__last - __first > 1) { --__last; std::__pop_heap(__first, __last, __last); } } template void sort_heap(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { ; ; while (__last - __first > 1) { --__last; std::__pop_heap(__first, __last, __last, __comp); } } } namespace std __attribute__ ((__visibility__ ("default"))) { template pair<_Tp*, ptrdiff_t> get_temporary_buffer(ptrdiff_t __len) { const ptrdiff_t __max = __gnu_cxx::__numeric_traits::__max / sizeof(_Tp); if (__len > __max) __len = __max; while (__len > 0) { _Tp* __tmp = static_cast<_Tp*>(::operator new(__len * sizeof(_Tp), std::nothrow)); if (__tmp != 0) return std::pair<_Tp*, ptrdiff_t>(__tmp, __len); __len /= 2; } return std::pair<_Tp*, ptrdiff_t>(static_cast<_Tp*>(0), 0); } template inline void return_temporary_buffer(_Tp* __p) { ::operator delete(__p, std::nothrow); } template class _Temporary_buffer { public: typedef _Tp value_type; typedef value_type* pointer; typedef pointer iterator; typedef ptrdiff_t size_type; protected: size_type _M_original_len; size_type _M_len; pointer _M_buffer; public: size_type size() const { return _M_len; } size_type requested_size() const { return _M_original_len; } iterator begin() { return _M_buffer; } iterator end() { return _M_buffer + _M_len; } _Temporary_buffer(_ForwardIterator __first, _ForwardIterator __last); ~_Temporary_buffer() { std::_Destroy(_M_buffer, _M_buffer + _M_len); std::return_temporary_buffer(_M_buffer); } private: _Temporary_buffer(const _Temporary_buffer&); void operator=(const _Temporary_buffer&); }; template struct __uninitialized_construct_buf_dispatch { template static void __ucr(_ForwardIterator __first, _ForwardIterator __last, _Tp& __value) { if(__first == __last) return; _ForwardIterator __cur = __first; try { std::_Construct(std::__addressof(*__first), (__value)); _ForwardIterator __prev = __cur; ++__cur; for(; __cur != __last; ++__cur, ++__prev) std::_Construct(std::__addressof(*__cur), (*__prev)); __value = (*__prev); } catch(...) { std::_Destroy(__first, __cur); throw; } } }; template<> struct __uninitialized_construct_buf_dispatch { template static void __ucr(_ForwardIterator, _ForwardIterator, _Tp&) { } }; template inline void __uninitialized_construct_buf(_ForwardIterator __first, _ForwardIterator __last, _Tp& __value) { typedef typename std::iterator_traits<_ForwardIterator>::value_type _ValueType; std::__uninitialized_construct_buf_dispatch< __has_trivial_constructor(_ValueType)>:: __ucr(__first, __last, __value); } template _Temporary_buffer<_ForwardIterator, _Tp>:: _Temporary_buffer(_ForwardIterator __first, _ForwardIterator __last) : _M_original_len(std::distance(__first, __last)), _M_len(0), _M_buffer(0) { try { std::pair __p(std::get_temporary_buffer< value_type>(_M_original_len)); _M_buffer = __p.first; _M_len = __p.second; if(_M_buffer) std::__uninitialized_construct_buf(_M_buffer, _M_buffer + _M_len, *__first); } catch(...) { std::return_temporary_buffer(_M_buffer); _M_buffer = 0; _M_len = 0; throw; } } } namespace std __attribute__ ((__visibility__ ("default"))) { template void __move_median_first(_Iterator __a, _Iterator __b, _Iterator __c) { if (*__a < *__b) { if (*__b < *__c) std::iter_swap(__a, __b); else if (*__a < *__c) std::iter_swap(__a, __c); } else if (*__a < *__c) return; else if (*__b < *__c) std::iter_swap(__a, __c); else std::iter_swap(__a, __b); } template void __move_median_first(_Iterator __a, _Iterator __b, _Iterator __c, _Compare __comp) { if (__comp(*__a, *__b)) { if (__comp(*__b, *__c)) std::iter_swap(__a, __b); else if (__comp(*__a, *__c)) std::iter_swap(__a, __c); } else if (__comp(*__a, *__c)) return; else if (__comp(*__b, *__c)) std::iter_swap(__a, __c); else std::iter_swap(__a, __b); } template inline _InputIterator __find(_InputIterator __first, _InputIterator __last, const _Tp& __val, input_iterator_tag) { while (__first != __last && !(*__first == __val)) ++__first; return __first; } template inline _InputIterator __find_if(_InputIterator __first, _InputIterator __last, _Predicate __pred, input_iterator_tag) { while (__first != __last && !bool(__pred(*__first))) ++__first; return __first; } template _RandomAccessIterator __find(_RandomAccessIterator __first, _RandomAccessIterator __last, const _Tp& __val, random_access_iterator_tag) { typename iterator_traits<_RandomAccessIterator>::difference_type __trip_count = (__last - __first) >> 2; for (; __trip_count > 0; --__trip_count) { if (*__first == __val) return __first; ++__first; if (*__first == __val) return __first; ++__first; if (*__first == __val) return __first; ++__first; if (*__first == __val) return __first; ++__first; } switch (__last - __first) { case 3: if (*__first == __val) return __first; ++__first; case 2: if (*__first == __val) return __first; ++__first; case 1: if (*__first == __val) return __first; ++__first; case 0: default: return __last; } } template _RandomAccessIterator __find_if(_RandomAccessIterator __first, _RandomAccessIterator __last, _Predicate __pred, random_access_iterator_tag) { typename iterator_traits<_RandomAccessIterator>::difference_type __trip_count = (__last - __first) >> 2; for (; __trip_count > 0; --__trip_count) { if (__pred(*__first)) return __first; ++__first; if (__pred(*__first)) return __first; ++__first; if (__pred(*__first)) return __first; ++__first; if (__pred(*__first)) return __first; ++__first; } switch (__last - __first) { case 3: if (__pred(*__first)) return __first; ++__first; case 2: if (__pred(*__first)) return __first; ++__first; case 1: if (__pred(*__first)) return __first; ++__first; case 0: default: return __last; } } template _ForwardIterator __search_n(_ForwardIterator __first, _ForwardIterator __last, _Integer __count, const _Tp& __val, std::forward_iterator_tag) { __first = std::find(__first, __last, __val); while (__first != __last) { typename iterator_traits<_ForwardIterator>::difference_type __n = __count; _ForwardIterator __i = __first; ++__i; while (__i != __last && __n != 1 && *__i == __val) { ++__i; --__n; } if (__n == 1) return __first; if (__i == __last) return __last; __first = std::find(++__i, __last, __val); } return __last; } template _RandomAccessIter __search_n(_RandomAccessIter __first, _RandomAccessIter __last, _Integer __count, const _Tp& __val, std::random_access_iterator_tag) { typedef typename std::iterator_traits<_RandomAccessIter>::difference_type _DistanceType; _DistanceType __tailSize = __last - __first; const _DistanceType __pattSize = __count; if (__tailSize < __pattSize) return __last; const _DistanceType __skipOffset = __pattSize - 1; _RandomAccessIter __lookAhead = __first + __skipOffset; __tailSize -= __pattSize; while (1) { while (!(*__lookAhead == __val)) { if (__tailSize < __pattSize) return __last; __lookAhead += __pattSize; __tailSize -= __pattSize; } _DistanceType __remainder = __skipOffset; for (_RandomAccessIter __backTrack = __lookAhead - 1; *__backTrack == __val; --__backTrack) { if (--__remainder == 0) return (__lookAhead - __skipOffset); } if (__remainder > __tailSize) return __last; __lookAhead += __remainder; __tailSize -= __remainder; } } template _ForwardIterator __search_n(_ForwardIterator __first, _ForwardIterator __last, _Integer __count, const _Tp& __val, _BinaryPredicate __binary_pred, std::forward_iterator_tag) { while (__first != __last && !bool(__binary_pred(*__first, __val))) ++__first; while (__first != __last) { typename iterator_traits<_ForwardIterator>::difference_type __n = __count; _ForwardIterator __i = __first; ++__i; while (__i != __last && __n != 1 && bool(__binary_pred(*__i, __val))) { ++__i; --__n; } if (__n == 1) return __first; if (__i == __last) return __last; __first = ++__i; while (__first != __last && !bool(__binary_pred(*__first, __val))) ++__first; } return __last; } template _RandomAccessIter __search_n(_RandomAccessIter __first, _RandomAccessIter __last, _Integer __count, const _Tp& __val, _BinaryPredicate __binary_pred, std::random_access_iterator_tag) { typedef typename std::iterator_traits<_RandomAccessIter>::difference_type _DistanceType; _DistanceType __tailSize = __last - __first; const _DistanceType __pattSize = __count; if (__tailSize < __pattSize) return __last; const _DistanceType __skipOffset = __pattSize - 1; _RandomAccessIter __lookAhead = __first + __skipOffset; __tailSize -= __pattSize; while (1) { while (!bool(__binary_pred(*__lookAhead, __val))) { if (__tailSize < __pattSize) return __last; __lookAhead += __pattSize; __tailSize -= __pattSize; } _DistanceType __remainder = __skipOffset; for (_RandomAccessIter __backTrack = __lookAhead - 1; __binary_pred(*__backTrack, __val); --__backTrack) { if (--__remainder == 0) return (__lookAhead - __skipOffset); } if (__remainder > __tailSize) return __last; __lookAhead += __remainder; __tailSize -= __remainder; } } template _ForwardIterator1 __find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, forward_iterator_tag, forward_iterator_tag) { if (__first2 == __last2) return __last1; else { _ForwardIterator1 __result = __last1; while (1) { _ForwardIterator1 __new_result = std::search(__first1, __last1, __first2, __last2); if (__new_result == __last1) return __result; else { __result = __new_result; __first1 = __new_result; ++__first1; } } } } template _ForwardIterator1 __find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, forward_iterator_tag, forward_iterator_tag, _BinaryPredicate __comp) { if (__first2 == __last2) return __last1; else { _ForwardIterator1 __result = __last1; while (1) { _ForwardIterator1 __new_result = std::search(__first1, __last1, __first2, __last2, __comp); if (__new_result == __last1) return __result; else { __result = __new_result; __first1 = __new_result; ++__first1; } } } } template _BidirectionalIterator1 __find_end(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1, _BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2, bidirectional_iterator_tag, bidirectional_iterator_tag) { typedef reverse_iterator<_BidirectionalIterator1> _RevIterator1; typedef reverse_iterator<_BidirectionalIterator2> _RevIterator2; _RevIterator1 __rlast1(__first1); _RevIterator2 __rlast2(__first2); _RevIterator1 __rresult = std::search(_RevIterator1(__last1), __rlast1, _RevIterator2(__last2), __rlast2); if (__rresult == __rlast1) return __last1; else { _BidirectionalIterator1 __result = __rresult.base(); std::advance(__result, -std::distance(__first2, __last2)); return __result; } } template _BidirectionalIterator1 __find_end(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1, _BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2, bidirectional_iterator_tag, bidirectional_iterator_tag, _BinaryPredicate __comp) { typedef reverse_iterator<_BidirectionalIterator1> _RevIterator1; typedef reverse_iterator<_BidirectionalIterator2> _RevIterator2; _RevIterator1 __rlast1(__first1); _RevIterator2 __rlast2(__first2); _RevIterator1 __rresult = std::search(_RevIterator1(__last1), __rlast1, _RevIterator2(__last2), __rlast2, __comp); if (__rresult == __rlast1) return __last1; else { _BidirectionalIterator1 __result = __rresult.base(); std::advance(__result, -std::distance(__first2, __last2)); return __result; } } template inline _ForwardIterator1 find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2) { ; ; return std::__find_end(__first1, __last1, __first2, __last2, std::__iterator_category(__first1), std::__iterator_category(__first2)); } template inline _ForwardIterator1 find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _BinaryPredicate __comp) { ; ; return std::__find_end(__first1, __last1, __first2, __last2, std::__iterator_category(__first1), std::__iterator_category(__first2), __comp); } template _OutputIterator remove_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result, const _Tp& __value) { ; for (; __first != __last; ++__first) if (!(*__first == __value)) { *__result = *__first; ++__result; } return __result; } template _OutputIterator remove_copy_if(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _Predicate __pred) { ; for (; __first != __last; ++__first) if (!bool(__pred(*__first))) { *__result = *__first; ++__result; } return __result; } template _ForwardIterator remove(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { ; __first = std::find(__first, __last, __value); if(__first == __last) return __first; _ForwardIterator __result = __first; ++__first; for(; __first != __last; ++__first) if(!(*__first == __value)) { *__result = (*__first); ++__result; } return __result; } template _ForwardIterator remove_if(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred) { ; __first = std::find_if(__first, __last, __pred); if(__first == __last) return __first; _ForwardIterator __result = __first; ++__first; for(; __first != __last; ++__first) if(!bool(__pred(*__first))) { *__result = (*__first); ++__result; } return __result; } template _ForwardIterator unique(_ForwardIterator __first, _ForwardIterator __last) { ; __first = std::adjacent_find(__first, __last); if (__first == __last) return __last; _ForwardIterator __dest = __first; ++__first; while (++__first != __last) if (!(*__dest == *__first)) *++__dest = (*__first); return ++__dest; } template _ForwardIterator unique(_ForwardIterator __first, _ForwardIterator __last, _BinaryPredicate __binary_pred) { ; __first = std::adjacent_find(__first, __last, __binary_pred); if (__first == __last) return __last; _ForwardIterator __dest = __first; ++__first; while (++__first != __last) if (!bool(__binary_pred(*__dest, *__first))) *++__dest = (*__first); return ++__dest; } template _OutputIterator __unique_copy(_ForwardIterator __first, _ForwardIterator __last, _OutputIterator __result, forward_iterator_tag, output_iterator_tag) { _ForwardIterator __next = __first; *__result = *__first; while (++__next != __last) if (!(*__first == *__next)) { __first = __next; *++__result = *__first; } return ++__result; } template _OutputIterator __unique_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result, input_iterator_tag, output_iterator_tag) { typename iterator_traits<_InputIterator>::value_type __value = *__first; *__result = __value; while (++__first != __last) if (!(__value == *__first)) { __value = *__first; *++__result = __value; } return ++__result; } template _ForwardIterator __unique_copy(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, input_iterator_tag, forward_iterator_tag) { *__result = *__first; while (++__first != __last) if (!(*__result == *__first)) *++__result = *__first; return ++__result; } template _OutputIterator __unique_copy(_ForwardIterator __first, _ForwardIterator __last, _OutputIterator __result, _BinaryPredicate __binary_pred, forward_iterator_tag, output_iterator_tag) { _ForwardIterator __next = __first; *__result = *__first; while (++__next != __last) if (!bool(__binary_pred(*__first, *__next))) { __first = __next; *++__result = *__first; } return ++__result; } template _OutputIterator __unique_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _BinaryPredicate __binary_pred, input_iterator_tag, output_iterator_tag) { typename iterator_traits<_InputIterator>::value_type __value = *__first; *__result = __value; while (++__first != __last) if (!bool(__binary_pred(__value, *__first))) { __value = *__first; *++__result = __value; } return ++__result; } template _ForwardIterator __unique_copy(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, _BinaryPredicate __binary_pred, input_iterator_tag, forward_iterator_tag) { *__result = *__first; while (++__first != __last) if (!bool(__binary_pred(*__result, *__first))) *++__result = *__first; return ++__result; } template void __reverse(_BidirectionalIterator __first, _BidirectionalIterator __last, bidirectional_iterator_tag) { while (true) if (__first == __last || __first == --__last) return; else { std::iter_swap(__first, __last); ++__first; } } template void __reverse(_RandomAccessIterator __first, _RandomAccessIterator __last, random_access_iterator_tag) { if (__first == __last) return; --__last; while (__first < __last) { std::iter_swap(__first, __last); ++__first; --__last; } } template inline void reverse(_BidirectionalIterator __first, _BidirectionalIterator __last) { ; std::__reverse(__first, __last, std::__iterator_category(__first)); } template _OutputIterator reverse_copy(_BidirectionalIterator __first, _BidirectionalIterator __last, _OutputIterator __result) { ; while (__first != __last) { --__last; *__result = *__last; ++__result; } return __result; } template _EuclideanRingElement __gcd(_EuclideanRingElement __m, _EuclideanRingElement __n) { while (__n != 0) { _EuclideanRingElement __t = __m % __n; __m = __n; __n = __t; } return __m; } template void __rotate(_ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last, forward_iterator_tag) { if (__first == __middle || __last == __middle) return; _ForwardIterator __first2 = __middle; do { std::iter_swap(__first, __first2); ++__first; ++__first2; if (__first == __middle) __middle = __first2; } while (__first2 != __last); __first2 = __middle; while (__first2 != __last) { std::iter_swap(__first, __first2); ++__first; ++__first2; if (__first == __middle) __middle = __first2; else if (__first2 == __last) __first2 = __middle; } } template void __rotate(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, bidirectional_iterator_tag) { if (__first == __middle || __last == __middle) return; std::__reverse(__first, __middle, bidirectional_iterator_tag()); std::__reverse(__middle, __last, bidirectional_iterator_tag()); while (__first != __middle && __middle != __last) { std::iter_swap(__first, --__last); ++__first; } if (__first == __middle) std::__reverse(__middle, __last, bidirectional_iterator_tag()); else std::__reverse(__first, __middle, bidirectional_iterator_tag()); } template void __rotate(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, random_access_iterator_tag) { if (__first == __middle || __last == __middle) return; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _Distance; typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; _Distance __n = __last - __first; _Distance __k = __middle - __first; if (__k == __n - __k) { std::swap_ranges(__first, __middle, __middle); return; } _RandomAccessIterator __p = __first; for (;;) { if (__k < __n - __k) { if (__is_pod(_ValueType) && __k == 1) { _ValueType __t = (*__p); std::copy(__p + 1, __p + __n, __p); *(__p + __n - 1) = (__t); return; } _RandomAccessIterator __q = __p + __k; for (_Distance __i = 0; __i < __n - __k; ++ __i) { std::iter_swap(__p, __q); ++__p; ++__q; } __n %= __k; if (__n == 0) return; std::swap(__n, __k); __k = __n - __k; } else { __k = __n - __k; if (__is_pod(_ValueType) && __k == 1) { _ValueType __t = (*(__p + __n - 1)); std::copy_backward(__p, __p + __n - 1, __p + __n); *__p = (__t); return; } _RandomAccessIterator __q = __p + __n; __p = __q - __k; for (_Distance __i = 0; __i < __n - __k; ++ __i) { --__p; --__q; std::iter_swap(__p, __q); } __n %= __k; if (__n == 0) return; std::swap(__n, __k); } } } template inline void rotate(_ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last) { ; ; typedef typename iterator_traits<_ForwardIterator>::iterator_category _IterType; std::__rotate(__first, __middle, __last, _IterType()); } template _OutputIterator rotate_copy(_ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last, _OutputIterator __result) { ; ; return std::copy(__first, __middle, std::copy(__middle, __last, __result)); } template _ForwardIterator __partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, forward_iterator_tag) { if (__first == __last) return __first; while (__pred(*__first)) if (++__first == __last) return __first; _ForwardIterator __next = __first; while (++__next != __last) if (__pred(*__next)) { std::iter_swap(__first, __next); ++__first; } return __first; } template _BidirectionalIterator __partition(_BidirectionalIterator __first, _BidirectionalIterator __last, _Predicate __pred, bidirectional_iterator_tag) { while (true) { while (true) if (__first == __last) return __first; else if (__pred(*__first)) ++__first; else break; --__last; while (true) if (__first == __last) return __first; else if (!bool(__pred(*__last))) --__last; else break; std::iter_swap(__first, __last); ++__first; } } template _ForwardIterator __inplace_stable_partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, _Distance __len) { if (__len == 1) return __pred(*__first) ? __last : __first; _ForwardIterator __middle = __first; std::advance(__middle, __len / 2); _ForwardIterator __begin = std::__inplace_stable_partition(__first, __middle, __pred, __len / 2); _ForwardIterator __end = std::__inplace_stable_partition(__middle, __last, __pred, __len - __len / 2); std::rotate(__begin, __middle, __end); std::advance(__begin, std::distance(__middle, __end)); return __begin; } template _ForwardIterator __stable_partition_adaptive(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, _Distance __len, _Pointer __buffer, _Distance __buffer_size) { if (__len <= __buffer_size) { _ForwardIterator __result1 = __first; _Pointer __result2 = __buffer; for (; __first != __last; ++__first) if (__pred(*__first)) { *__result1 = (*__first); ++__result1; } else { *__result2 = (*__first); ++__result2; } std::copy(__buffer, __result2, __result1); return __result1; } else { _ForwardIterator __middle = __first; std::advance(__middle, __len / 2); _ForwardIterator __begin = std::__stable_partition_adaptive(__first, __middle, __pred, __len / 2, __buffer, __buffer_size); _ForwardIterator __end = std::__stable_partition_adaptive(__middle, __last, __pred, __len - __len / 2, __buffer, __buffer_size); std::rotate(__begin, __middle, __end); std::advance(__begin, std::distance(__middle, __end)); return __begin; } } template _ForwardIterator stable_partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred) { ; if (__first == __last) return __first; else { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType; _Temporary_buffer<_ForwardIterator, _ValueType> __buf(__first, __last); if (__buf.size() > 0) return std::__stable_partition_adaptive(__first, __last, __pred, _DistanceType(__buf.requested_size()), __buf.begin(), _DistanceType(__buf.size())); else return std::__inplace_stable_partition(__first, __last, __pred, _DistanceType(__buf.requested_size())); } } template void __heap_select(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last) { std::make_heap(__first, __middle); for (_RandomAccessIterator __i = __middle; __i < __last; ++__i) if (*__i < *__first) std::__pop_heap(__first, __middle, __i); } template void __heap_select(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, _Compare __comp) { std::make_heap(__first, __middle, __comp); for (_RandomAccessIterator __i = __middle; __i < __last; ++__i) if (__comp(*__i, *__first)) std::__pop_heap(__first, __middle, __i, __comp); } template _RandomAccessIterator partial_sort_copy(_InputIterator __first, _InputIterator __last, _RandomAccessIterator __result_first, _RandomAccessIterator __result_last) { typedef typename iterator_traits<_InputIterator>::value_type _InputValueType; typedef typename iterator_traits<_RandomAccessIterator>::value_type _OutputValueType; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType; ; ; if (__result_first == __result_last) return __result_last; _RandomAccessIterator __result_real_last = __result_first; while(__first != __last && __result_real_last != __result_last) { *__result_real_last = *__first; ++__result_real_last; ++__first; } std::make_heap(__result_first, __result_real_last); while (__first != __last) { if (*__first < *__result_first) std::__adjust_heap(__result_first, _DistanceType(0), _DistanceType(__result_real_last - __result_first), _InputValueType(*__first)); ++__first; } std::sort_heap(__result_first, __result_real_last); return __result_real_last; } template _RandomAccessIterator partial_sort_copy(_InputIterator __first, _InputIterator __last, _RandomAccessIterator __result_first, _RandomAccessIterator __result_last, _Compare __comp) { typedef typename iterator_traits<_InputIterator>::value_type _InputValueType; typedef typename iterator_traits<_RandomAccessIterator>::value_type _OutputValueType; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType; ; ; if (__result_first == __result_last) return __result_last; _RandomAccessIterator __result_real_last = __result_first; while(__first != __last && __result_real_last != __result_last) { *__result_real_last = *__first; ++__result_real_last; ++__first; } std::make_heap(__result_first, __result_real_last, __comp); while (__first != __last) { if (__comp(*__first, *__result_first)) std::__adjust_heap(__result_first, _DistanceType(0), _DistanceType(__result_real_last - __result_first), _InputValueType(*__first), __comp); ++__first; } std::sort_heap(__result_first, __result_real_last, __comp); return __result_real_last; } template void __unguarded_linear_insert(_RandomAccessIterator __last) { typename iterator_traits<_RandomAccessIterator>::value_type __val = (*__last); _RandomAccessIterator __next = __last; --__next; while (__val < *__next) { *__last = (*__next); __last = __next; --__next; } *__last = (__val); } template void __unguarded_linear_insert(_RandomAccessIterator __last, _Compare __comp) { typename iterator_traits<_RandomAccessIterator>::value_type __val = (*__last); _RandomAccessIterator __next = __last; --__next; while (__comp(__val, *__next)) { *__last = (*__next); __last = __next; --__next; } *__last = (__val); } template void __insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { if (__first == __last) return; for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i) { if (*__i < *__first) { typename iterator_traits<_RandomAccessIterator>::value_type __val = (*__i); std::copy_backward(__first, __i, __i + 1); *__first = (__val); } else std::__unguarded_linear_insert(__i); } } template void __insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { if (__first == __last) return; for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i) { if (__comp(*__i, *__first)) { typename iterator_traits<_RandomAccessIterator>::value_type __val = (*__i); std::copy_backward(__first, __i, __i + 1); *__first = (__val); } else std::__unguarded_linear_insert(__i, __comp); } } template inline void __unguarded_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; for (_RandomAccessIterator __i = __first; __i != __last; ++__i) std::__unguarded_linear_insert(__i); } template inline void __unguarded_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; for (_RandomAccessIterator __i = __first; __i != __last; ++__i) std::__unguarded_linear_insert(__i, __comp); } enum { _S_threshold = 16 }; template void __final_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { if (__last - __first > int(_S_threshold)) { std::__insertion_sort(__first, __first + int(_S_threshold)); std::__unguarded_insertion_sort(__first + int(_S_threshold), __last); } else std::__insertion_sort(__first, __last); } template void __final_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { if (__last - __first > int(_S_threshold)) { std::__insertion_sort(__first, __first + int(_S_threshold), __comp); std::__unguarded_insertion_sort(__first + int(_S_threshold), __last, __comp); } else std::__insertion_sort(__first, __last, __comp); } template _RandomAccessIterator __unguarded_partition(_RandomAccessIterator __first, _RandomAccessIterator __last, const _Tp& __pivot) { while (true) { while (*__first < __pivot) ++__first; --__last; while (__pivot < *__last) --__last; if (!(__first < __last)) return __first; std::iter_swap(__first, __last); ++__first; } } template _RandomAccessIterator __unguarded_partition(_RandomAccessIterator __first, _RandomAccessIterator __last, const _Tp& __pivot, _Compare __comp) { while (true) { while (__comp(*__first, __pivot)) ++__first; --__last; while (__comp(__pivot, *__last)) --__last; if (!(__first < __last)) return __first; std::iter_swap(__first, __last); ++__first; } } template inline _RandomAccessIterator __unguarded_partition_pivot(_RandomAccessIterator __first, _RandomAccessIterator __last) { _RandomAccessIterator __mid = __first + (__last - __first) / 2; std::__move_median_first(__first, __mid, (__last - 1)); return std::__unguarded_partition(__first + 1, __last, *__first); } template inline _RandomAccessIterator __unguarded_partition_pivot(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { _RandomAccessIterator __mid = __first + (__last - __first) / 2; std::__move_median_first(__first, __mid, (__last - 1), __comp); return std::__unguarded_partition(__first + 1, __last, *__first, __comp); } template void __introsort_loop(_RandomAccessIterator __first, _RandomAccessIterator __last, _Size __depth_limit) { while (__last - __first > int(_S_threshold)) { if (__depth_limit == 0) { std::partial_sort(__first, __last, __last); return; } --__depth_limit; _RandomAccessIterator __cut = std::__unguarded_partition_pivot(__first, __last); std::__introsort_loop(__cut, __last, __depth_limit); __last = __cut; } } template void __introsort_loop(_RandomAccessIterator __first, _RandomAccessIterator __last, _Size __depth_limit, _Compare __comp) { while (__last - __first > int(_S_threshold)) { if (__depth_limit == 0) { std::partial_sort(__first, __last, __last, __comp); return; } --__depth_limit; _RandomAccessIterator __cut = std::__unguarded_partition_pivot(__first, __last, __comp); std::__introsort_loop(__cut, __last, __depth_limit, __comp); __last = __cut; } } template void __introselect(_RandomAccessIterator __first, _RandomAccessIterator __nth, _RandomAccessIterator __last, _Size __depth_limit) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; while (__last - __first > 3) { if (__depth_limit == 0) { std::__heap_select(__first, __nth + 1, __last); std::iter_swap(__first, __nth); return; } --__depth_limit; _RandomAccessIterator __cut = std::__unguarded_partition_pivot(__first, __last); if (__cut <= __nth) __first = __cut; else __last = __cut; } std::__insertion_sort(__first, __last); } template void __introselect(_RandomAccessIterator __first, _RandomAccessIterator __nth, _RandomAccessIterator __last, _Size __depth_limit, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; while (__last - __first > 3) { if (__depth_limit == 0) { std::__heap_select(__first, __nth + 1, __last, __comp); std::iter_swap(__first, __nth); return; } --__depth_limit; _RandomAccessIterator __cut = std::__unguarded_partition_pivot(__first, __last, __comp); if (__cut <= __nth) __first = __cut; else __last = __cut; } std::__insertion_sort(__first, __last, __comp); } template _ForwardIterator lower_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _Compare __comp) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType; ; _DistanceType __len = std::distance(__first, __last); while (__len > 0) { _DistanceType __half = __len >> 1; _ForwardIterator __middle = __first; std::advance(__middle, __half); if (__comp(*__middle, __val)) { __first = __middle; ++__first; __len = __len - __half - 1; } else __len = __half; } return __first; } template _ForwardIterator upper_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType; ; _DistanceType __len = std::distance(__first, __last); while (__len > 0) { _DistanceType __half = __len >> 1; _ForwardIterator __middle = __first; std::advance(__middle, __half); if (__val < *__middle) __len = __half; else { __first = __middle; ++__first; __len = __len - __half - 1; } } return __first; } template _ForwardIterator upper_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _Compare __comp) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType; ; _DistanceType __len = std::distance(__first, __last); while (__len > 0) { _DistanceType __half = __len >> 1; _ForwardIterator __middle = __first; std::advance(__middle, __half); if (__comp(__val, *__middle)) __len = __half; else { __first = __middle; ++__first; __len = __len - __half - 1; } } return __first; } template pair<_ForwardIterator, _ForwardIterator> equal_range(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType; ; ; _DistanceType __len = std::distance(__first, __last); while (__len > 0) { _DistanceType __half = __len >> 1; _ForwardIterator __middle = __first; std::advance(__middle, __half); if (*__middle < __val) { __first = __middle; ++__first; __len = __len - __half - 1; } else if (__val < *__middle) __len = __half; else { _ForwardIterator __left = std::lower_bound(__first, __middle, __val); std::advance(__first, __len); _ForwardIterator __right = std::upper_bound(++__middle, __first, __val); return pair<_ForwardIterator, _ForwardIterator>(__left, __right); } } return pair<_ForwardIterator, _ForwardIterator>(__first, __first); } template pair<_ForwardIterator, _ForwardIterator> equal_range(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _Compare __comp) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType; ; ; _DistanceType __len = std::distance(__first, __last); while (__len > 0) { _DistanceType __half = __len >> 1; _ForwardIterator __middle = __first; std::advance(__middle, __half); if (__comp(*__middle, __val)) { __first = __middle; ++__first; __len = __len - __half - 1; } else if (__comp(__val, *__middle)) __len = __half; else { _ForwardIterator __left = std::lower_bound(__first, __middle, __val, __comp); std::advance(__first, __len); _ForwardIterator __right = std::upper_bound(++__middle, __first, __val, __comp); return pair<_ForwardIterator, _ForwardIterator>(__left, __right); } } return pair<_ForwardIterator, _ForwardIterator>(__first, __first); } template bool binary_search(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; ; ; _ForwardIterator __i = std::lower_bound(__first, __last, __val); return __i != __last && !(__val < *__i); } template bool binary_search(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _Compare __comp) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; ; ; _ForwardIterator __i = std::lower_bound(__first, __last, __val, __comp); return __i != __last && !bool(__comp(__val, *__i)); } template void __move_merge_adaptive(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { while (__first1 != __last1 && __first2 != __last2) { if (*__first2 < *__first1) { *__result = (*__first2); ++__first2; } else { *__result = (*__first1); ++__first1; } ++__result; } if (__first1 != __last1) std::copy(__first1, __last1, __result); } template void __move_merge_adaptive(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { while (__first1 != __last1 && __first2 != __last2) { if (__comp(*__first2, *__first1)) { *__result = (*__first2); ++__first2; } else { *__result = (*__first1); ++__first1; } ++__result; } if (__first1 != __last1) std::copy(__first1, __last1, __result); } template void __move_merge_adaptive_backward(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1, _BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2, _BidirectionalIterator3 __result) { if (__first1 == __last1) { std::copy_backward(__first2, __last2, __result); return; } else if (__first2 == __last2) return; --__last1; --__last2; while (true) { if (*__last2 < *__last1) { *--__result = (*__last1); if (__first1 == __last1) { std::copy_backward(__first2, ++__last2, __result); return; } --__last1; } else { *--__result = (*__last2); if (__first2 == __last2) return; --__last2; } } } template void __move_merge_adaptive_backward(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1, _BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2, _BidirectionalIterator3 __result, _Compare __comp) { if (__first1 == __last1) { std::copy_backward(__first2, __last2, __result); return; } else if (__first2 == __last2) return; --__last1; --__last2; while (true) { if (__comp(*__last2, *__last1)) { *--__result = (*__last1); if (__first1 == __last1) { std::copy_backward(__first2, ++__last2, __result); return; } --__last1; } else { *--__result = (*__last2); if (__first2 == __last2) return; --__last2; } } } template _BidirectionalIterator1 __rotate_adaptive(_BidirectionalIterator1 __first, _BidirectionalIterator1 __middle, _BidirectionalIterator1 __last, _Distance __len1, _Distance __len2, _BidirectionalIterator2 __buffer, _Distance __buffer_size) { _BidirectionalIterator2 __buffer_end; if (__len1 > __len2 && __len2 <= __buffer_size) { if (__len2) { __buffer_end = std::copy(__middle, __last, __buffer); std::copy_backward(__first, __middle, __last); return std::copy(__buffer, __buffer_end, __first); } else return __first; } else if (__len1 <= __buffer_size) { if (__len1) { __buffer_end = std::copy(__first, __middle, __buffer); std::copy(__middle, __last, __first); return std::copy_backward(__buffer, __buffer_end, __last); } else return __last; } else { std::rotate(__first, __middle, __last); std::advance(__first, std::distance(__middle, __last)); return __first; } } template void __merge_adaptive(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Distance __len1, _Distance __len2, _Pointer __buffer, _Distance __buffer_size) { if (__len1 <= __len2 && __len1 <= __buffer_size) { _Pointer __buffer_end = std::copy(__first, __middle, __buffer); std::__move_merge_adaptive(__buffer, __buffer_end, __middle, __last, __first); } else if (__len2 <= __buffer_size) { _Pointer __buffer_end = std::copy(__middle, __last, __buffer); std::__move_merge_adaptive_backward(__first, __middle, __buffer, __buffer_end, __last); } else { _BidirectionalIterator __first_cut = __first; _BidirectionalIterator __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; std::advance(__first_cut, __len11); __second_cut = std::lower_bound(__middle, __last, *__first_cut); __len22 = std::distance(__middle, __second_cut); } else { __len22 = __len2 / 2; std::advance(__second_cut, __len22); __first_cut = std::upper_bound(__first, __middle, *__second_cut); __len11 = std::distance(__first, __first_cut); } _BidirectionalIterator __new_middle = std::__rotate_adaptive(__first_cut, __middle, __second_cut, __len1 - __len11, __len22, __buffer, __buffer_size); std::__merge_adaptive(__first, __first_cut, __new_middle, __len11, __len22, __buffer, __buffer_size); std::__merge_adaptive(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22, __buffer, __buffer_size); } } template void __merge_adaptive(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Distance __len1, _Distance __len2, _Pointer __buffer, _Distance __buffer_size, _Compare __comp) { if (__len1 <= __len2 && __len1 <= __buffer_size) { _Pointer __buffer_end = std::copy(__first, __middle, __buffer); std::__move_merge_adaptive(__buffer, __buffer_end, __middle, __last, __first, __comp); } else if (__len2 <= __buffer_size) { _Pointer __buffer_end = std::copy(__middle, __last, __buffer); std::__move_merge_adaptive_backward(__first, __middle, __buffer, __buffer_end, __last, __comp); } else { _BidirectionalIterator __first_cut = __first; _BidirectionalIterator __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; std::advance(__first_cut, __len11); __second_cut = std::lower_bound(__middle, __last, *__first_cut, __comp); __len22 = std::distance(__middle, __second_cut); } else { __len22 = __len2 / 2; std::advance(__second_cut, __len22); __first_cut = std::upper_bound(__first, __middle, *__second_cut, __comp); __len11 = std::distance(__first, __first_cut); } _BidirectionalIterator __new_middle = std::__rotate_adaptive(__first_cut, __middle, __second_cut, __len1 - __len11, __len22, __buffer, __buffer_size); std::__merge_adaptive(__first, __first_cut, __new_middle, __len11, __len22, __buffer, __buffer_size, __comp); std::__merge_adaptive(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22, __buffer, __buffer_size, __comp); } } template void __merge_without_buffer(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Distance __len1, _Distance __len2) { if (__len1 == 0 || __len2 == 0) return; if (__len1 + __len2 == 2) { if (*__middle < *__first) std::iter_swap(__first, __middle); return; } _BidirectionalIterator __first_cut = __first; _BidirectionalIterator __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; std::advance(__first_cut, __len11); __second_cut = std::lower_bound(__middle, __last, *__first_cut); __len22 = std::distance(__middle, __second_cut); } else { __len22 = __len2 / 2; std::advance(__second_cut, __len22); __first_cut = std::upper_bound(__first, __middle, *__second_cut); __len11 = std::distance(__first, __first_cut); } std::rotate(__first_cut, __middle, __second_cut); _BidirectionalIterator __new_middle = __first_cut; std::advance(__new_middle, std::distance(__middle, __second_cut)); std::__merge_without_buffer(__first, __first_cut, __new_middle, __len11, __len22); std::__merge_without_buffer(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22); } template void __merge_without_buffer(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Distance __len1, _Distance __len2, _Compare __comp) { if (__len1 == 0 || __len2 == 0) return; if (__len1 + __len2 == 2) { if (__comp(*__middle, *__first)) std::iter_swap(__first, __middle); return; } _BidirectionalIterator __first_cut = __first; _BidirectionalIterator __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; std::advance(__first_cut, __len11); __second_cut = std::lower_bound(__middle, __last, *__first_cut, __comp); __len22 = std::distance(__middle, __second_cut); } else { __len22 = __len2 / 2; std::advance(__second_cut, __len22); __first_cut = std::upper_bound(__first, __middle, *__second_cut, __comp); __len11 = std::distance(__first, __first_cut); } std::rotate(__first_cut, __middle, __second_cut); _BidirectionalIterator __new_middle = __first_cut; std::advance(__new_middle, std::distance(__middle, __second_cut)); std::__merge_without_buffer(__first, __first_cut, __new_middle, __len11, __len22, __comp); std::__merge_without_buffer(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22, __comp); } template void inplace_merge(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last) { typedef typename iterator_traits<_BidirectionalIterator>::value_type _ValueType; typedef typename iterator_traits<_BidirectionalIterator>::difference_type _DistanceType; ; ; if (__first == __middle || __middle == __last) return; _DistanceType __len1 = std::distance(__first, __middle); _DistanceType __len2 = std::distance(__middle, __last); _Temporary_buffer<_BidirectionalIterator, _ValueType> __buf(__first, __last); if (__buf.begin() == 0) std::__merge_without_buffer(__first, __middle, __last, __len1, __len2); else std::__merge_adaptive(__first, __middle, __last, __len1, __len2, __buf.begin(), _DistanceType(__buf.size())); } template void inplace_merge(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Compare __comp) { typedef typename iterator_traits<_BidirectionalIterator>::value_type _ValueType; typedef typename iterator_traits<_BidirectionalIterator>::difference_type _DistanceType; ; ; if (__first == __middle || __middle == __last) return; const _DistanceType __len1 = std::distance(__first, __middle); const _DistanceType __len2 = std::distance(__middle, __last); _Temporary_buffer<_BidirectionalIterator, _ValueType> __buf(__first, __last); if (__buf.begin() == 0) std::__merge_without_buffer(__first, __middle, __last, __len1, __len2, __comp); else std::__merge_adaptive(__first, __middle, __last, __len1, __len2, __buf.begin(), _DistanceType(__buf.size()), __comp); } template _OutputIterator __move_merge(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { while (__first1 != __last1 && __first2 != __last2) { if (*__first2 < *__first1) { *__result = (*__first2); ++__first2; } else { *__result = (*__first1); ++__first1; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)) ; } template _OutputIterator __move_merge(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { while (__first1 != __last1 && __first2 != __last2) { if (__comp(*__first2, *__first1)) { *__result = (*__first2); ++__first2; } else { *__result = (*__first1); ++__first1; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)) ; } template void __merge_sort_loop(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, _Distance __step_size) { const _Distance __two_step = 2 * __step_size; while (__last - __first >= __two_step) { __result = std::__move_merge(__first, __first + __step_size, __first + __step_size, __first + __two_step, __result); __first += __two_step; } __step_size = std::min(_Distance(__last - __first), __step_size); std::__move_merge(__first, __first + __step_size, __first + __step_size, __last, __result); } template void __merge_sort_loop(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, _Distance __step_size, _Compare __comp) { const _Distance __two_step = 2 * __step_size; while (__last - __first >= __two_step) { __result = std::__move_merge(__first, __first + __step_size, __first + __step_size, __first + __two_step, __result, __comp); __first += __two_step; } __step_size = std::min(_Distance(__last - __first), __step_size); std::__move_merge(__first,__first + __step_size, __first + __step_size, __last, __result, __comp); } template void __chunk_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Distance __chunk_size) { while (__last - __first >= __chunk_size) { std::__insertion_sort(__first, __first + __chunk_size); __first += __chunk_size; } std::__insertion_sort(__first, __last); } template void __chunk_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Distance __chunk_size, _Compare __comp) { while (__last - __first >= __chunk_size) { std::__insertion_sort(__first, __first + __chunk_size, __comp); __first += __chunk_size; } std::__insertion_sort(__first, __last, __comp); } enum { _S_chunk_size = 7 }; template void __merge_sort_with_buffer(_RandomAccessIterator __first, _RandomAccessIterator __last, _Pointer __buffer) { typedef typename iterator_traits<_RandomAccessIterator>::difference_type _Distance; const _Distance __len = __last - __first; const _Pointer __buffer_last = __buffer + __len; _Distance __step_size = _S_chunk_size; std::__chunk_insertion_sort(__first, __last, __step_size); while (__step_size < __len) { std::__merge_sort_loop(__first, __last, __buffer, __step_size); __step_size *= 2; std::__merge_sort_loop(__buffer, __buffer_last, __first, __step_size); __step_size *= 2; } } template void __merge_sort_with_buffer(_RandomAccessIterator __first, _RandomAccessIterator __last, _Pointer __buffer, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::difference_type _Distance; const _Distance __len = __last - __first; const _Pointer __buffer_last = __buffer + __len; _Distance __step_size = _S_chunk_size; std::__chunk_insertion_sort(__first, __last, __step_size, __comp); while (__step_size < __len) { std::__merge_sort_loop(__first, __last, __buffer, __step_size, __comp); __step_size *= 2; std::__merge_sort_loop(__buffer, __buffer_last, __first, __step_size, __comp); __step_size *= 2; } } template void __stable_sort_adaptive(_RandomAccessIterator __first, _RandomAccessIterator __last, _Pointer __buffer, _Distance __buffer_size) { const _Distance __len = (__last - __first + 1) / 2; const _RandomAccessIterator __middle = __first + __len; if (__len > __buffer_size) { std::__stable_sort_adaptive(__first, __middle, __buffer, __buffer_size); std::__stable_sort_adaptive(__middle, __last, __buffer, __buffer_size); } else { std::__merge_sort_with_buffer(__first, __middle, __buffer); std::__merge_sort_with_buffer(__middle, __last, __buffer); } std::__merge_adaptive(__first, __middle, __last, _Distance(__middle - __first), _Distance(__last - __middle), __buffer, __buffer_size); } template void __stable_sort_adaptive(_RandomAccessIterator __first, _RandomAccessIterator __last, _Pointer __buffer, _Distance __buffer_size, _Compare __comp) { const _Distance __len = (__last - __first + 1) / 2; const _RandomAccessIterator __middle = __first + __len; if (__len > __buffer_size) { std::__stable_sort_adaptive(__first, __middle, __buffer, __buffer_size, __comp); std::__stable_sort_adaptive(__middle, __last, __buffer, __buffer_size, __comp); } else { std::__merge_sort_with_buffer(__first, __middle, __buffer, __comp); std::__merge_sort_with_buffer(__middle, __last, __buffer, __comp); } std::__merge_adaptive(__first, __middle, __last, _Distance(__middle - __first), _Distance(__last - __middle), __buffer, __buffer_size, __comp); } template void __inplace_stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { if (__last - __first < 15) { std::__insertion_sort(__first, __last); return; } _RandomAccessIterator __middle = __first + (__last - __first) / 2; std::__inplace_stable_sort(__first, __middle); std::__inplace_stable_sort(__middle, __last); std::__merge_without_buffer(__first, __middle, __last, __middle - __first, __last - __middle); } template void __inplace_stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { if (__last - __first < 15) { std::__insertion_sort(__first, __last, __comp); return; } _RandomAccessIterator __middle = __first + (__last - __first) / 2; std::__inplace_stable_sort(__first, __middle, __comp); std::__inplace_stable_sort(__middle, __last, __comp); std::__merge_without_buffer(__first, __middle, __last, __middle - __first, __last - __middle, __comp); } template bool includes(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; ; ; while (__first1 != __last1 && __first2 != __last2) if (*__first2 < *__first1) return false; else if(*__first1 < *__first2) ++__first1; else ++__first1, ++__first2; return __first2 == __last2; } template bool includes(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _Compare __comp) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; ; ; while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first2, *__first1)) return false; else if(__comp(*__first1, *__first2)) ++__first1; else ++__first1, ++__first2; return __first2 == __last2; } template bool next_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last) { ; if (__first == __last) return false; _BidirectionalIterator __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i; for(;;) { _BidirectionalIterator __ii = __i; --__i; if (*__i < *__ii) { _BidirectionalIterator __j = __last; while (!(*__i < *--__j)) {} std::iter_swap(__i, __j); std::reverse(__ii, __last); return true; } if (__i == __first) { std::reverse(__first, __last); return false; } } } template bool next_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last, _Compare __comp) { ; if (__first == __last) return false; _BidirectionalIterator __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i; for(;;) { _BidirectionalIterator __ii = __i; --__i; if (__comp(*__i, *__ii)) { _BidirectionalIterator __j = __last; while (!bool(__comp(*__i, *--__j))) {} std::iter_swap(__i, __j); std::reverse(__ii, __last); return true; } if (__i == __first) { std::reverse(__first, __last); return false; } } } template bool prev_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last) { ; if (__first == __last) return false; _BidirectionalIterator __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i; for(;;) { _BidirectionalIterator __ii = __i; --__i; if (*__ii < *__i) { _BidirectionalIterator __j = __last; while (!(*--__j < *__i)) {} std::iter_swap(__i, __j); std::reverse(__ii, __last); return true; } if (__i == __first) { std::reverse(__first, __last); return false; } } } template bool prev_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last, _Compare __comp) { ; if (__first == __last) return false; _BidirectionalIterator __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i; for(;;) { _BidirectionalIterator __ii = __i; --__i; if (__comp(*__ii, *__i)) { _BidirectionalIterator __j = __last; while (!bool(__comp(*--__j, *__i))) {} std::iter_swap(__i, __j); std::reverse(__ii, __last); return true; } if (__i == __first) { std::reverse(__first, __last); return false; } } } template _OutputIterator replace_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result, const _Tp& __old_value, const _Tp& __new_value) { ; for (; __first != __last; ++__first, ++__result) if (*__first == __old_value) *__result = __new_value; else *__result = *__first; return __result; } template _OutputIterator replace_copy_if(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _Predicate __pred, const _Tp& __new_value) { ; for (; __first != __last; ++__first, ++__result) if (__pred(*__first)) *__result = __new_value; else *__result = *__first; return __result; } template _Function for_each(_InputIterator __first, _InputIterator __last, _Function __f) { ; for (; __first != __last; ++__first) __f(*__first); return (__f); } template inline _InputIterator find(_InputIterator __first, _InputIterator __last, const _Tp& __val) { ; return std::__find(__first, __last, __val, std::__iterator_category(__first)); } template inline _InputIterator find_if(_InputIterator __first, _InputIterator __last, _Predicate __pred) { ; return std::__find_if(__first, __last, __pred, std::__iterator_category(__first)); } template _InputIterator find_first_of(_InputIterator __first1, _InputIterator __last1, _ForwardIterator __first2, _ForwardIterator __last2) { ; ; for (; __first1 != __last1; ++__first1) for (_ForwardIterator __iter = __first2; __iter != __last2; ++__iter) if (*__first1 == *__iter) return __first1; return __last1; } template _InputIterator find_first_of(_InputIterator __first1, _InputIterator __last1, _ForwardIterator __first2, _ForwardIterator __last2, _BinaryPredicate __comp) { ; ; for (; __first1 != __last1; ++__first1) for (_ForwardIterator __iter = __first2; __iter != __last2; ++__iter) if (__comp(*__first1, *__iter)) return __first1; return __last1; } template _ForwardIterator adjacent_find(_ForwardIterator __first, _ForwardIterator __last) { ; if (__first == __last) return __last; _ForwardIterator __next = __first; while(++__next != __last) { if (*__first == *__next) return __first; __first = __next; } return __last; } template _ForwardIterator adjacent_find(_ForwardIterator __first, _ForwardIterator __last, _BinaryPredicate __binary_pred) { ; if (__first == __last) return __last; _ForwardIterator __next = __first; while(++__next != __last) { if (__binary_pred(*__first, *__next)) return __first; __first = __next; } return __last; } template typename iterator_traits<_InputIterator>::difference_type count(_InputIterator __first, _InputIterator __last, const _Tp& __value) { ; typename iterator_traits<_InputIterator>::difference_type __n = 0; for (; __first != __last; ++__first) if (*__first == __value) ++__n; return __n; } template typename iterator_traits<_InputIterator>::difference_type count_if(_InputIterator __first, _InputIterator __last, _Predicate __pred) { ; typename iterator_traits<_InputIterator>::difference_type __n = 0; for (; __first != __last; ++__first) if (__pred(*__first)) ++__n; return __n; } template _ForwardIterator1 search(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2) { ; ; if (__first1 == __last1 || __first2 == __last2) return __first1; _ForwardIterator2 __p1(__first2); if (++__p1 == __last2) return std::find(__first1, __last1, *__first2); _ForwardIterator2 __p; _ForwardIterator1 __current = __first1; for (;;) { __first1 = std::find(__first1, __last1, *__first2); if (__first1 == __last1) return __last1; __p = __p1; __current = __first1; if (++__current == __last1) return __last1; while (*__current == *__p) { if (++__p == __last2) return __first1; if (++__current == __last1) return __last1; } ++__first1; } return __first1; } template _ForwardIterator1 search(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _BinaryPredicate __predicate) { ; ; if (__first1 == __last1 || __first2 == __last2) return __first1; _ForwardIterator2 __p1(__first2); if (++__p1 == __last2) { while (__first1 != __last1 && !bool(__predicate(*__first1, *__first2))) ++__first1; return __first1; } _ForwardIterator2 __p; _ForwardIterator1 __current = __first1; for (;;) { while (__first1 != __last1 && !bool(__predicate(*__first1, *__first2))) ++__first1; if (__first1 == __last1) return __last1; __p = __p1; __current = __first1; if (++__current == __last1) return __last1; while (__predicate(*__current, *__p)) { if (++__p == __last2) return __first1; if (++__current == __last1) return __last1; } ++__first1; } return __first1; } template _ForwardIterator search_n(_ForwardIterator __first, _ForwardIterator __last, _Integer __count, const _Tp& __val) { ; if (__count <= 0) return __first; if (__count == 1) return std::find(__first, __last, __val); return std::__search_n(__first, __last, __count, __val, std::__iterator_category(__first)); } template _ForwardIterator search_n(_ForwardIterator __first, _ForwardIterator __last, _Integer __count, const _Tp& __val, _BinaryPredicate __binary_pred) { ; if (__count <= 0) return __first; if (__count == 1) { while (__first != __last && !bool(__binary_pred(*__first, __val))) ++__first; return __first; } return std::__search_n(__first, __last, __count, __val, __binary_pred, std::__iterator_category(__first)); } template _OutputIterator transform(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _UnaryOperation __unary_op) { ; for (; __first != __last; ++__first, ++__result) *__result = __unary_op(*__first); return __result; } template _OutputIterator transform(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _OutputIterator __result, _BinaryOperation __binary_op) { ; for (; __first1 != __last1; ++__first1, ++__first2, ++__result) *__result = __binary_op(*__first1, *__first2); return __result; } template void replace(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __old_value, const _Tp& __new_value) { ; for (; __first != __last; ++__first) if (*__first == __old_value) *__first = __new_value; } template void replace_if(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, const _Tp& __new_value) { ; for (; __first != __last; ++__first) if (__pred(*__first)) *__first = __new_value; } template void generate(_ForwardIterator __first, _ForwardIterator __last, _Generator __gen) { ; for (; __first != __last; ++__first) *__first = __gen(); } template _OutputIterator generate_n(_OutputIterator __first, _Size __n, _Generator __gen) { for (__decltype(__n + 0) __niter = __n; __niter > 0; --__niter, ++__first) *__first = __gen(); return __first; } template inline _OutputIterator unique_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result) { ; if (__first == __last) return __result; return std::__unique_copy(__first, __last, __result, std::__iterator_category(__first), std::__iterator_category(__result)); } template inline _OutputIterator unique_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _BinaryPredicate __binary_pred) { ; if (__first == __last) return __result; return std::__unique_copy(__first, __last, __result, __binary_pred, std::__iterator_category(__first), std::__iterator_category(__result)); } template inline void random_shuffle(_RandomAccessIterator __first, _RandomAccessIterator __last) { ; if (__first != __last) for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i) std::iter_swap(__i, __first + (std::rand() % ((__i - __first) + 1))); } template void random_shuffle(_RandomAccessIterator __first, _RandomAccessIterator __last, _RandomNumberGenerator& __rand) { ; if (__first == __last) return; for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i) std::iter_swap(__i, __first + __rand((__i - __first) + 1)); } template inline _ForwardIterator partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred) { ; return std::__partition(__first, __last, __pred, std::__iterator_category(__first)); } template inline void partial_sort(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; ; ; std::__heap_select(__first, __middle, __last); std::sort_heap(__first, __middle); } template inline void partial_sort(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; ; ; std::__heap_select(__first, __middle, __last, __comp); std::sort_heap(__first, __middle, __comp); } template inline void nth_element(_RandomAccessIterator __first, _RandomAccessIterator __nth, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; ; ; if (__first == __last || __nth == __last) return; std::__introselect(__first, __nth, __last, std::__lg(__last - __first) * 2); } template inline void nth_element(_RandomAccessIterator __first, _RandomAccessIterator __nth, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; ; ; if (__first == __last || __nth == __last) return; std::__introselect(__first, __nth, __last, std::__lg(__last - __first) * 2, __comp); } template inline void sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; ; if (__first != __last) { std::__introsort_loop(__first, __last, std::__lg(__last - __first) * 2); std::__final_insertion_sort(__first, __last); } } template inline void sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; ; if (__first != __last) { std::__introsort_loop(__first, __last, std::__lg(__last - __first) * 2, __comp); std::__final_insertion_sort(__first, __last, __comp); } } template _OutputIterator merge(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; ; ; while (__first1 != __last1 && __first2 != __last2) { if (*__first2 < *__first1) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } template _OutputIterator merge(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; ; ; while (__first1 != __last1 && __first2 != __last2) { if (__comp(*__first2, *__first1)) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } template inline void stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType; ; _Temporary_buffer<_RandomAccessIterator, _ValueType> __buf(__first, __last); if (__buf.begin() == 0) std::__inplace_stable_sort(__first, __last); else std::__stable_sort_adaptive(__first, __last, __buf.begin(), _DistanceType(__buf.size())); } template inline void stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType; ; _Temporary_buffer<_RandomAccessIterator, _ValueType> __buf(__first, __last); if (__buf.begin() == 0) std::__inplace_stable_sort(__first, __last, __comp); else std::__stable_sort_adaptive(__first, __last, __buf.begin(), _DistanceType(__buf.size()), __comp); } template _OutputIterator set_union(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; ; ; while (__first1 != __last1 && __first2 != __last2) { if (*__first1 < *__first2) { *__result = *__first1; ++__first1; } else if (*__first2 < *__first1) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; ++__first2; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } template _OutputIterator set_union(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; ; ; while (__first1 != __last1 && __first2 != __last2) { if (__comp(*__first1, *__first2)) { *__result = *__first1; ++__first1; } else if (__comp(*__first2, *__first1)) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; ++__first2; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } template _OutputIterator set_intersection(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; ; ; while (__first1 != __last1 && __first2 != __last2) if (*__first1 < *__first2) ++__first1; else if (*__first2 < *__first1) ++__first2; else { *__result = *__first1; ++__first1; ++__first2; ++__result; } return __result; } template _OutputIterator set_intersection(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; ; ; while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first1, *__first2)) ++__first1; else if (__comp(*__first2, *__first1)) ++__first2; else { *__result = *__first1; ++__first1; ++__first2; ++__result; } return __result; } template _OutputIterator set_difference(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; ; ; while (__first1 != __last1 && __first2 != __last2) if (*__first1 < *__first2) { *__result = *__first1; ++__first1; ++__result; } else if (*__first2 < *__first1) ++__first2; else { ++__first1; ++__first2; } return std::copy(__first1, __last1, __result); } template _OutputIterator set_difference(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; ; ; while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first1, *__first2)) { *__result = *__first1; ++__first1; ++__result; } else if (__comp(*__first2, *__first1)) ++__first2; else { ++__first1; ++__first2; } return std::copy(__first1, __last1, __result); } template _OutputIterator set_symmetric_difference(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; ; ; while (__first1 != __last1 && __first2 != __last2) if (*__first1 < *__first2) { *__result = *__first1; ++__first1; ++__result; } else if (*__first2 < *__first1) { *__result = *__first2; ++__first2; ++__result; } else { ++__first1; ++__first2; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } template _OutputIterator set_symmetric_difference(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; ; ; while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first1, *__first2)) { *__result = *__first1; ++__first1; ++__result; } else if (__comp(*__first2, *__first1)) { *__result = *__first2; ++__first2; ++__result; } else { ++__first1; ++__first2; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } template _ForwardIterator min_element(_ForwardIterator __first, _ForwardIterator __last) { ; if (__first == __last) return __first; _ForwardIterator __result = __first; while (++__first != __last) if (*__first < *__result) __result = __first; return __result; } template _ForwardIterator min_element(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp) { ; if (__first == __last) return __first; _ForwardIterator __result = __first; while (++__first != __last) if (__comp(*__first, *__result)) __result = __first; return __result; } template _ForwardIterator max_element(_ForwardIterator __first, _ForwardIterator __last) { ; if (__first == __last) return __first; _ForwardIterator __result = __first; while (++__first != __last) if (*__result < *__first) __result = __first; return __result; } template _ForwardIterator max_element(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp) { ; if (__first == __last) return __first; _ForwardIterator __result = __first; while (++__first != __last) if (__comp(*__result, *__first)) __result = __first; return __result; } } typedef signed char qint8; typedef unsigned char quint8; typedef short qint16; typedef unsigned short quint16; typedef int qint32; typedef unsigned int quint32; typedef long long qint64; typedef unsigned long long quint64; typedef qint64 qlonglong; typedef quint64 qulonglong; template struct QIntegerForSize; template <> struct QIntegerForSize<1> { typedef quint8 Unsigned; typedef qint8 Signed; }; template <> struct QIntegerForSize<2> { typedef quint16 Unsigned; typedef qint16 Signed; }; template <> struct QIntegerForSize<4> { typedef quint32 Unsigned; typedef qint32 Signed; }; template <> struct QIntegerForSize<8> { typedef quint64 Unsigned; typedef qint64 Signed; }; template struct QIntegerForSizeof: QIntegerForSize { }; typedef QIntegerForSizeof::Unsigned quintptr; typedef QIntegerForSizeof::Signed qptrdiff; typedef unsigned char uchar; typedef unsigned short ushort; typedef unsigned int uint; typedef unsigned long ulong; typedef int QNoImplicitBoolCast; typedef double qreal; template inline T qAbs(const T &t) { return t >= 0 ? t : -t; } inline int qRound(qreal d) { return d >= qreal(0.0) ? int(d + qreal(0.5)) : int(d - int(d-1) + qreal(0.5)) + int(d-1); } inline qint64 qRound64(qreal d) { return d >= qreal(0.0) ? qint64(d + qreal(0.5)) : qint64(d - qreal(qint64(d-1)) + qreal(0.5)) + qint64(d-1); } template inline const T &qMin(const T &a, const T &b) { return (a < b) ? a : b; } template inline const T &qMax(const T &a, const T &b) { return (a < b) ? b : a; } template inline const T &qBound(const T &min, const T &val, const T &max) { return qMax(min, qMin(max, val)); } class QDataStream; inline void qt_noop(void) {} class QString; class QSysInfo { public: enum Sizes { WordSize = (sizeof(void *)<<3) }; enum Endian { BigEndian, LittleEndian , ByteOrder = BigEndian }; }; const char *qVersion(); bool qSharedBuild(); void qDebug(const char *, ...) __attribute__ ((format (printf, 1, 2))) ; void qWarning(const char *, ...) __attribute__ ((format (printf, 1, 2))) ; class QString; QString qt_error_string(int errorCode = -1); void qCritical(const char *, ...) __attribute__ ((format (printf, 1, 2))) ; void qFatal(const char *, ...) __attribute__ ((format (printf, 1, 2))) ; void qErrnoWarning(int code, const char *msg, ...); void qErrnoWarning(const char *msg, ...); class QDebug; class QNoDebug; inline QDebug qDebug(); inline QDebug qWarning(); inline QDebug qCritical(); void qt_assert(const char *assertion, const char *file, int line); void qt_assert_x(const char *where, const char *what, const char *file, int line); void qt_check_pointer(const char *, int); void qBadAlloc(); template inline T *q_check_ptr(T *p) { do { if (!(p)) qBadAlloc(); } while (0); return p; } enum QtMsgType { QtDebugMsg, QtWarningMsg, QtCriticalMsg, QtFatalMsg, QtSystemMsg = QtCriticalMsg }; void qt_message_output(QtMsgType, const char *buf); typedef void (*QtMsgHandler)(QtMsgType, const char *); QtMsgHandler qInstallMsgHandler(QtMsgHandler); template class QBasicAtomicPointer; template class QGlobalStatic { public: QBasicAtomicPointer pointer; bool destroyed; }; template class QGlobalStaticDeleter { public: QGlobalStatic &globalStatic; QGlobalStaticDeleter(QGlobalStatic &_globalStatic) : globalStatic(_globalStatic) { } inline ~QGlobalStaticDeleter() { delete globalStatic.pointer; globalStatic.pointer = 0; globalStatic.destroyed = true; } }; class QBool { bool b; public: inline explicit QBool(bool B) : b(B) {} inline operator const void *() const { return b ? static_cast(this) : static_cast(0); } }; inline bool operator==(QBool b1, bool b2) { return !b1 == !b2; } inline bool operator==(bool b1, QBool b2) { return !b1 == !b2; } inline bool operator==(QBool b1, QBool b2) { return !b1 == !b2; } inline bool operator!=(QBool b1, bool b2) { return !b1 != !b2; } inline bool operator!=(bool b1, QBool b2) { return !b1 != !b2; } inline bool operator!=(QBool b1, QBool b2) { return !b1 != !b2; } static inline bool qFuzzyCompare(double p1, double p2) { return (qAbs(p1 - p2) <= 0.000000000001 * qMin(qAbs(p1), qAbs(p2))); } static inline bool qFuzzyCompare(float p1, float p2) { return (qAbs(p1 - p2) <= 0.00001f * qMin(qAbs(p1), qAbs(p2))); } static inline bool qFuzzyIsNull(double d) { return qAbs(d) <= 0.000000000001; } static inline bool qFuzzyIsNull(float f) { return qAbs(f) <= 0.00001f; } static inline bool qIsNull(double d) { union U { double d; quint64 u; }; U val; val.d = d; return val.u == quint64(0); } static inline bool qIsNull(float f) { union U { float f; quint32 u; }; U val; val.f = f; return val.u == 0u; } template inline bool qIsDetached(T &) { return true; } template class QTypeInfo { public: enum { isPointer = false, isComplex = true, isStatic = true, isLarge = (sizeof(T)>sizeof(void*)), isDummy = false }; }; template class QTypeInfo { public: enum { isPointer = true, isComplex = false, isStatic = false, isLarge = false, isDummy = false }; }; enum { Q_COMPLEX_TYPE = 0, Q_PRIMITIVE_TYPE = 0x1, Q_STATIC_TYPE = 0, Q_MOVABLE_TYPE = 0x2, Q_DUMMY_TYPE = 0x4 }; template inline void qSwap(T &value1, T &value2) { using std::swap; swap(value1, value2); } template<> class QTypeInfo { public: enum { isComplex = (((Q_PRIMITIVE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_PRIMITIVE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(bool)>sizeof(void*)), isPointer = false, isDummy = (((Q_PRIMITIVE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "bool"; } }; template<> class QTypeInfo { public: enum { isComplex = (((Q_PRIMITIVE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_PRIMITIVE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(char)>sizeof(void*)), isPointer = false, isDummy = (((Q_PRIMITIVE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "char"; } }; template<> class QTypeInfo { public: enum { isComplex = (((Q_PRIMITIVE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_PRIMITIVE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(signed char)>sizeof(void*)), isPointer = false, isDummy = (((Q_PRIMITIVE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "signed char"; } }; template<> class QTypeInfo { public: enum { isComplex = (((Q_PRIMITIVE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_PRIMITIVE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(uchar)>sizeof(void*)), isPointer = false, isDummy = (((Q_PRIMITIVE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "uchar"; } }; template<> class QTypeInfo { public: enum { isComplex = (((Q_PRIMITIVE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_PRIMITIVE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(short)>sizeof(void*)), isPointer = false, isDummy = (((Q_PRIMITIVE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "short"; } }; template<> class QTypeInfo { public: enum { isComplex = (((Q_PRIMITIVE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_PRIMITIVE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(ushort)>sizeof(void*)), isPointer = false, isDummy = (((Q_PRIMITIVE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "ushort"; } }; template<> class QTypeInfo { public: enum { isComplex = (((Q_PRIMITIVE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_PRIMITIVE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(int)>sizeof(void*)), isPointer = false, isDummy = (((Q_PRIMITIVE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "int"; } }; template<> class QTypeInfo { public: enum { isComplex = (((Q_PRIMITIVE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_PRIMITIVE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(uint)>sizeof(void*)), isPointer = false, isDummy = (((Q_PRIMITIVE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "uint"; } }; template<> class QTypeInfo { public: enum { isComplex = (((Q_PRIMITIVE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_PRIMITIVE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(long)>sizeof(void*)), isPointer = false, isDummy = (((Q_PRIMITIVE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "long"; } }; template<> class QTypeInfo { public: enum { isComplex = (((Q_PRIMITIVE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_PRIMITIVE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(ulong)>sizeof(void*)), isPointer = false, isDummy = (((Q_PRIMITIVE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "ulong"; } }; template<> class QTypeInfo { public: enum { isComplex = (((Q_PRIMITIVE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_PRIMITIVE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(qint64)>sizeof(void*)), isPointer = false, isDummy = (((Q_PRIMITIVE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "qint64"; } }; template<> class QTypeInfo { public: enum { isComplex = (((Q_PRIMITIVE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_PRIMITIVE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(quint64)>sizeof(void*)), isPointer = false, isDummy = (((Q_PRIMITIVE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "quint64"; } }; template<> class QTypeInfo { public: enum { isComplex = (((Q_PRIMITIVE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_PRIMITIVE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(float)>sizeof(void*)), isPointer = false, isDummy = (((Q_PRIMITIVE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "float"; } }; template<> class QTypeInfo { public: enum { isComplex = (((Q_PRIMITIVE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_PRIMITIVE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(double)>sizeof(void*)), isPointer = false, isDummy = (((Q_PRIMITIVE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "double"; } }; template<> class QTypeInfo { public: enum { isComplex = (((Q_PRIMITIVE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_PRIMITIVE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(long double)>sizeof(void*)), isPointer = false, isDummy = (((Q_PRIMITIVE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "long double"; } }; void *qMalloc(size_t size); void qFree(void *ptr); void *qRealloc(void *ptr, size_t size); void *qMallocAligned(size_t size, size_t alignment); void *qReallocAligned(void *ptr, size_t size, size_t oldsize, size_t alignment); void qFreeAligned(void *ptr); void *qMemCopy(void *dest, const void *src, size_t n); void *qMemSet(void *dest, int c, size_t n); class QFlag { int i; public: inline QFlag(int i); inline operator int() const { return i; } }; inline QFlag::QFlag(int ai) : i(ai) {} class QIncompatibleFlag { int i; public: inline explicit QIncompatibleFlag(int i); inline operator int() const { return i; } }; inline QIncompatibleFlag::QIncompatibleFlag(int ai) : i(ai) {} template class QFlags { typedef void **Zero; int i; public: typedef Enum enum_type; inline QFlags(const QFlags &f) : i(f.i) {} inline QFlags(Enum f) : i(f) {} inline QFlags(Zero = 0) : i(0) {} inline QFlags(QFlag f) : i(f) {} inline QFlags &operator=(const QFlags &f) { i = f.i; return *this; } inline QFlags &operator&=(int mask) { i &= mask; return *this; } inline QFlags &operator&=(uint mask) { i &= mask; return *this; } inline QFlags &operator|=(QFlags f) { i |= f.i; return *this; } inline QFlags &operator|=(Enum f) { i |= f; return *this; } inline QFlags &operator^=(QFlags f) { i ^= f.i; return *this; } inline QFlags &operator^=(Enum f) { i ^= f; return *this; } inline operator int() const { return i; } inline QFlags operator|(QFlags f) const { return QFlags(Enum(i | f.i)); } inline QFlags operator|(Enum f) const { return QFlags(Enum(i | f)); } inline QFlags operator^(QFlags f) const { return QFlags(Enum(i ^ f.i)); } inline QFlags operator^(Enum f) const { return QFlags(Enum(i ^ f)); } inline QFlags operator&(int mask) const { return QFlags(Enum(i & mask)); } inline QFlags operator&(uint mask) const { return QFlags(Enum(i & mask)); } inline QFlags operator&(Enum f) const { return QFlags(Enum(i & f)); } inline QFlags operator~() const { return QFlags(Enum(~i)); } inline bool operator!() const { return !i; } inline bool testFlag(Enum f) const { return (i & f) == f && (f != 0 || i == int(f) ); } }; template class QForeachContainer { public: inline QForeachContainer(const T& t) : c(t), brk(0), i(c.begin()), e(c.end()) { } const T c; int brk; typename T::const_iterator i, e; }; template static inline T *qGetPtrHelper(T *ptr) { return ptr; } template static inline typename Wrapper::pointer qGetPtrHelper(const Wrapper &p) { return p.data(); } QString qtTrId(const char *id, int n = -1); class QByteArray; QByteArray qgetenv(const char *varName); bool qputenv(const char *varName, const QByteArray& value); inline int qIntCast(double f) { return int(f); } inline int qIntCast(float f) { return int(f); } void qsrand(uint seed); int qrand(); enum QtValidLicenseForCoreModule { LicensedCore = true }; enum QtValidLicenseForGuiModule { LicensedGui = true }; enum QtValidLicenseForNetworkModule { LicensedNetwork = true }; enum QtValidLicenseForOpenGLModule { LicensedOpenGL = true }; enum QtValidLicenseForOpenVGModule { LicensedOpenVG = true }; enum QtValidLicenseForSqlModule { LicensedSql = true }; enum QtValidLicenseForMultimediaModule { LicensedMultimedia = true }; enum QtValidLicenseForXmlModule { LicensedXml = true }; enum QtValidLicenseForXmlPatternsModule { LicensedXmlPatterns = true }; enum QtValidLicenseForHelpModule { LicensedHelp = true }; enum QtValidLicenseForScriptModule { LicensedScript = true }; enum QtValidLicenseForScriptToolsModule { LicensedScriptTools = true }; enum QtValidLicenseForQt3SupportLightModule { LicensedQt3SupportLight = true }; enum QtValidLicenseForQt3SupportModule { LicensedQt3Support = true }; enum QtValidLicenseForSvgModule { LicensedSvg = true }; enum QtValidLicenseForDeclarativeModule { LicensedDeclarative = true }; enum QtValidLicenseForActiveQtModule { LicensedActiveQt = true }; enum QtValidLicenseForTestModule { LicensedTest = true }; enum QtValidLicenseForDBusModule { LicensedDBus = true }; namespace QtPrivate { template struct QEnableIf; template struct QEnableIf { typedef T Type; }; } typedef QtValidLicenseForCoreModule QtCoreModule; namespace QAlgorithmsPrivate { template void qSortHelper(RandomAccessIterator start, RandomAccessIterator end, const T &t, LessThan lessThan); template inline void qSortHelper(RandomAccessIterator begin, RandomAccessIterator end, const T &dummy); template void qStableSortHelper(RandomAccessIterator start, RandomAccessIterator end, const T &t, LessThan lessThan); template inline void qStableSortHelper(RandomAccessIterator, RandomAccessIterator, const T &); template RandomAccessIterator qLowerBoundHelper(RandomAccessIterator begin, RandomAccessIterator end, const T &value, LessThan lessThan); template RandomAccessIterator qUpperBoundHelper(RandomAccessIterator begin, RandomAccessIterator end, const T &value, LessThan lessThan); template RandomAccessIterator qBinaryFindHelper(RandomAccessIterator begin, RandomAccessIterator end, const T &value, LessThan lessThan); } template inline OutputIterator qCopy(InputIterator begin, InputIterator end, OutputIterator dest) { while (begin != end) *dest++ = *begin++; return dest; } template inline BiIterator2 qCopyBackward(BiIterator1 begin, BiIterator1 end, BiIterator2 dest) { while (begin != end) *--dest = *--end; return dest; } template inline bool qEqual(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2) { for (; first1 != last1; ++first1, ++first2) if (!(*first1 == *first2)) return false; return true; } template inline void qFill(ForwardIterator first, ForwardIterator last, const T &val) { for (; first != last; ++first) *first = val; } template inline void qFill(Container &container, const T &val) { qFill(container.begin(), container.end(), val); } template inline InputIterator qFind(InputIterator first, InputIterator last, const T &val) { while (first != last && !(*first == val)) ++first; return first; } template inline typename Container::const_iterator qFind(const Container &container, const T &val) { return qFind(container.constBegin(), container.constEnd(), val); } template inline void qCount(InputIterator first, InputIterator last, const T &value, Size &n) { for (; first != last; ++first) if (*first == value) ++n; } template inline void qCount(const Container &container, const T &value, Size &n) { qCount(container.constBegin(), container.constEnd(), value, n); } template class qLess { public: inline bool operator()(const T &t1, const T &t2) const { return (t1 < t2); } }; template class qGreater { public: inline bool operator()(const T &t1, const T &t2) const { return (t2 < t1); } }; template inline void qSort(RandomAccessIterator start, RandomAccessIterator end) { if (start != end) QAlgorithmsPrivate::qSortHelper(start, end, *start); } template inline void qSort(RandomAccessIterator start, RandomAccessIterator end, LessThan lessThan) { if (start != end) QAlgorithmsPrivate::qSortHelper(start, end, *start, lessThan); } template inline void qSort(Container &c) { if (!c.empty()) QAlgorithmsPrivate::qSortHelper(c.begin(), c.end(), *c.begin()); } template inline void qStableSort(RandomAccessIterator start, RandomAccessIterator end) { if (start != end) QAlgorithmsPrivate::qStableSortHelper(start, end, *start); } template inline void qStableSort(RandomAccessIterator start, RandomAccessIterator end, LessThan lessThan) { if (start != end) QAlgorithmsPrivate::qStableSortHelper(start, end, *start, lessThan); } template inline void qStableSort(Container &c) { if (!c.empty()) QAlgorithmsPrivate::qStableSortHelper(c.begin(), c.end(), *c.begin()); } template RandomAccessIterator qLowerBound(RandomAccessIterator begin, RandomAccessIterator end, const T &value) { RandomAccessIterator middle; int n = end - begin; int half; while (n > 0) { half = n >> 1; middle = begin + half; if (*middle < value) { begin = middle + 1; n -= half + 1; } else { n = half; } } return begin; } template RandomAccessIterator qLowerBound(RandomAccessIterator begin, RandomAccessIterator end, const T &value, LessThan lessThan) { return QAlgorithmsPrivate::qLowerBoundHelper(begin, end, value, lessThan); } template typename Container::const_iterator qLowerBound(const Container &container, const T &value) { return QAlgorithmsPrivate::qLowerBoundHelper(container.constBegin(), container.constEnd(), value, qLess()); } template RandomAccessIterator qUpperBound(RandomAccessIterator begin, RandomAccessIterator end, const T &value) { RandomAccessIterator middle; int n = end - begin; int half; while (n > 0) { half = n >> 1; middle = begin + half; if (value < *middle) { n = half; } else { begin = middle + 1; n -= half + 1; } } return begin; } template RandomAccessIterator qUpperBound(RandomAccessIterator begin, RandomAccessIterator end, const T &value, LessThan lessThan) { return QAlgorithmsPrivate::qUpperBoundHelper(begin, end, value, lessThan); } template typename Container::const_iterator qUpperBound(const Container &container, const T &value) { return QAlgorithmsPrivate::qUpperBoundHelper(container.constBegin(), container.constEnd(), value, qLess()); } template RandomAccessIterator qBinaryFind(RandomAccessIterator begin, RandomAccessIterator end, const T &value) { RandomAccessIterator it = qLowerBound(begin, end, value); if (it == end || value < *it) return end; return it; } template RandomAccessIterator qBinaryFind(RandomAccessIterator begin, RandomAccessIterator end, const T &value, LessThan lessThan) { return QAlgorithmsPrivate::qBinaryFindHelper(begin, end, value, lessThan); } template typename Container::const_iterator qBinaryFind(const Container &container, const T &value) { return QAlgorithmsPrivate::qBinaryFindHelper(container.constBegin(), container.constEnd(), value, qLess()); } template void qDeleteAll(ForwardIterator begin, ForwardIterator end) { while (begin != end) { delete *begin; ++begin; } } template inline void qDeleteAll(const Container &c) { qDeleteAll(c.begin(), c.end()); } namespace QAlgorithmsPrivate { template void qSortHelper(RandomAccessIterator start, RandomAccessIterator end, const T &t, LessThan lessThan) { top: int span = int(end - start); if (span < 2) return; --end; RandomAccessIterator low = start, high = end - 1; RandomAccessIterator pivot = start + span / 2; if (lessThan(*end, *start)) qSwap(*end, *start); if (span == 2) return; if (lessThan(*pivot, *start)) qSwap(*pivot, *start); if (lessThan(*end, *pivot)) qSwap(*end, *pivot); if (span == 3) return; qSwap(*pivot, *end); while (low < high) { while (low < high && lessThan(*low, *end)) ++low; while (high > low && lessThan(*end, *high)) --high; if (low < high) { qSwap(*low, *high); ++low; --high; } else { break; } } if (lessThan(*low, *end)) ++low; qSwap(*end, *low); qSortHelper(start, low, t, lessThan); start = low + 1; ++end; goto top; } template inline void qSortHelper(RandomAccessIterator begin, RandomAccessIterator end, const T &dummy) { qSortHelper(begin, end, dummy, qLess()); } template void qReverse(RandomAccessIterator begin, RandomAccessIterator end) { --end; while (begin < end) qSwap(*begin++, *end--); } template void qRotate(RandomAccessIterator begin, RandomAccessIterator middle, RandomAccessIterator end) { qReverse(begin, middle); qReverse(middle, end); qReverse(begin, end); } template void qMerge(RandomAccessIterator begin, RandomAccessIterator pivot, RandomAccessIterator end, T &t, LessThan lessThan) { const int len1 = pivot - begin; const int len2 = end - pivot; if (len1 == 0 || len2 == 0) return; if (len1 + len2 == 2) { if (lessThan(*(begin + 1), *(begin))) qSwap(*begin, *(begin + 1)); return; } RandomAccessIterator firstCut; RandomAccessIterator secondCut; int len2Half; if (len1 > len2) { const int len1Half = len1 / 2; firstCut = begin + len1Half; secondCut = qLowerBound(pivot, end, *firstCut, lessThan); len2Half = secondCut - pivot; } else { len2Half = len2 / 2; secondCut = pivot + len2Half; firstCut = qUpperBound(begin, pivot, *secondCut, lessThan); } qRotate(firstCut, pivot, secondCut); const RandomAccessIterator newPivot = firstCut + len2Half; qMerge(begin, firstCut, newPivot, t, lessThan); qMerge(newPivot, secondCut, end, t, lessThan); } template void qStableSortHelper(RandomAccessIterator begin, RandomAccessIterator end, const T &t, LessThan lessThan) { const int span = end - begin; if (span < 2) return; const RandomAccessIterator middle = begin + span / 2; qStableSortHelper(begin, middle, t, lessThan); qStableSortHelper(middle, end, t, lessThan); qMerge(begin, middle, end, t, lessThan); } template inline void qStableSortHelper(RandomAccessIterator begin, RandomAccessIterator end, const T &dummy) { qStableSortHelper(begin, end, dummy, qLess()); } template RandomAccessIterator qLowerBoundHelper(RandomAccessIterator begin, RandomAccessIterator end, const T &value, LessThan lessThan) { RandomAccessIterator middle; int n = int(end - begin); int half; while (n > 0) { half = n >> 1; middle = begin + half; if (lessThan(*middle, value)) { begin = middle + 1; n -= half + 1; } else { n = half; } } return begin; } template RandomAccessIterator qUpperBoundHelper(RandomAccessIterator begin, RandomAccessIterator end, const T &value, LessThan lessThan) { RandomAccessIterator middle; int n = end - begin; int half; while (n > 0) { half = n >> 1; middle = begin + half; if (lessThan(value, *middle)) { n = half; } else { begin = middle + 1; n -= half + 1; } } return begin; } template RandomAccessIterator qBinaryFindHelper(RandomAccessIterator begin, RandomAccessIterator end, const T &value, LessThan lessThan) { RandomAccessIterator it = qLowerBoundHelper(begin, end, value, lessThan); if (it == end || lessThan(value, *it)) return end; return it; } } typedef QtValidLicenseForCoreModule QtCoreModule; template struct QScopedPointerDeleter { static inline void cleanup(T *pointer) { typedef char IsIncompleteType[ sizeof(T) ? 1 : -1 ]; (void) sizeof(IsIncompleteType); delete pointer; } }; template struct QScopedPointerArrayDeleter { static inline void cleanup(T *pointer) { typedef char IsIncompleteType[ sizeof(T) ? 1 : -1 ]; (void) sizeof(IsIncompleteType); delete [] pointer; } }; struct QScopedPointerPodDeleter { static inline void cleanup(void *pointer) { if (pointer) qFree(pointer); } }; template > class QScopedPointer { typedef T *QScopedPointer:: *RestrictedBool; public: explicit inline QScopedPointer(T *p = 0) : d(p) { } inline ~QScopedPointer() { T *oldD = this->d; Cleanup::cleanup(oldD); this->d = 0; } inline T &operator*() const { qt_noop(); return *d; } inline T *operator->() const { qt_noop(); return d; } inline bool operator!() const { return !d; } inline operator RestrictedBool() const { return isNull() ? 0 : &QScopedPointer::d; } inline T *data() const { return d; } inline bool isNull() const { return !d; } inline void reset(T *other = 0) { if (d == other) return; T *oldD = d; d = other; Cleanup::cleanup(oldD); } inline T *take() { T *oldD = d; d = 0; return oldD; } inline void swap(QScopedPointer &other) { qSwap(d, other.d); } typedef T *pointer; protected: T *d; private: QScopedPointer(const QScopedPointer &); QScopedPointer &operator=(const QScopedPointer &); }; template inline bool operator==(const QScopedPointer &lhs, const QScopedPointer &rhs) { return lhs.data() == rhs.data(); } template inline bool operator!=(const QScopedPointer &lhs, const QScopedPointer &rhs) { return lhs.data() != rhs.data(); } template inline void qSwap(QScopedPointer &p1, QScopedPointer &p2) { p1.swap(p2); } namespace std { template inline void swap(::QScopedPointer &p1, ::QScopedPointer &p2) { p1.swap(p2); } } namespace QtPrivate { template struct QScopedArrayEnsureSameType; template struct QScopedArrayEnsureSameType { typedef X* Type; }; template struct QScopedArrayEnsureSameType { typedef X* Type; }; } template > class QScopedArrayPointer : public QScopedPointer { public: inline QScopedArrayPointer() : QScopedPointer(0) {} template explicit inline QScopedArrayPointer(D *p, typename QtPrivate::QScopedArrayEnsureSameType::Type = 0) : QScopedPointer(p) { } inline T &operator[](int i) { return this->d[i]; } inline const T &operator[](int i) const { return this->d[i]; } private: explicit inline QScopedArrayPointer(void *) { } QScopedArrayPointer(const QScopedArrayPointer &); QScopedArrayPointer &operator=(const QScopedArrayPointer &); }; typedef QtValidLicenseForCoreModule QtCoreModule; namespace Qt { enum GlobalColor { color0, color1, black, white, darkGray, gray, lightGray, red, green, blue, cyan, magenta, yellow, darkRed, darkGreen, darkBlue, darkCyan, darkMagenta, darkYellow, transparent }; enum KeyboardModifier { NoModifier = 0x00000000, ShiftModifier = 0x02000000, ControlModifier = 0x04000000, AltModifier = 0x08000000, MetaModifier = 0x10000000, KeypadModifier = 0x20000000, GroupSwitchModifier = 0x40000000, KeyboardModifierMask = 0xfe000000 }; typedef QFlags KeyboardModifiers; enum Modifier { META = Qt::MetaModifier, SHIFT = Qt::ShiftModifier, CTRL = Qt::ControlModifier, ALT = Qt::AltModifier, MODIFIER_MASK = KeyboardModifierMask, UNICODE_ACCEL = 0x00000000 }; enum MouseButton { NoButton = 0x00000000, LeftButton = 0x00000001, RightButton = 0x00000002, MidButton = 0x00000004, MiddleButton = MidButton, XButton1 = 0x00000008, XButton2 = 0x00000010, MouseButtonMask = 0x000000ff }; typedef QFlags MouseButtons; enum Orientation { Horizontal = 0x1, Vertical = 0x2 }; typedef QFlags Orientations; enum FocusPolicy { NoFocus = 0, TabFocus = 0x1, ClickFocus = 0x2, StrongFocus = TabFocus | ClickFocus | 0x8, WheelFocus = StrongFocus | 0x4 }; enum SortOrder { AscendingOrder, DescendingOrder }; enum TileRule { StretchTile, RepeatTile, RoundTile }; enum AlignmentFlag { AlignLeft = 0x0001, AlignLeading = AlignLeft, AlignRight = 0x0002, AlignTrailing = AlignRight, AlignHCenter = 0x0004, AlignJustify = 0x0008, AlignAbsolute = 0x0010, AlignHorizontal_Mask = AlignLeft | AlignRight | AlignHCenter | AlignJustify | AlignAbsolute, AlignTop = 0x0020, AlignBottom = 0x0040, AlignVCenter = 0x0080, AlignVertical_Mask = AlignTop | AlignBottom | AlignVCenter, AlignCenter = AlignVCenter | AlignHCenter }; typedef QFlags Alignment; enum TextFlag { TextSingleLine = 0x0100, TextDontClip = 0x0200, TextExpandTabs = 0x0400, TextShowMnemonic = 0x0800, TextWordWrap = 0x1000, TextWrapAnywhere = 0x2000, TextDontPrint = 0x4000, TextIncludeTrailingSpaces = 0x08000000, TextHideMnemonic = 0x8000, TextJustificationForced = 0x10000, TextForceLeftToRight = 0x20000, TextForceRightToLeft = 0x40000, TextLongestVariant = 0x80000, TextBypassShaping = 0x100000 }; enum TextElideMode { ElideLeft, ElideRight, ElideMiddle, ElideNone }; enum WindowType { Widget = 0x00000000, Window = 0x00000001, Dialog = 0x00000002 | Window, Sheet = 0x00000004 | Window, Drawer = 0x00000006 | Window, Popup = 0x00000008 | Window, Tool = 0x0000000a | Window, ToolTip = 0x0000000c | Window, SplashScreen = 0x0000000e | Window, Desktop = 0x00000010 | Window, SubWindow = 0x00000012, WindowType_Mask = 0x000000ff, MSWindowsFixedSizeDialogHint = 0x00000100, MSWindowsOwnDC = 0x00000200, X11BypassWindowManagerHint = 0x00000400, FramelessWindowHint = 0x00000800, WindowTitleHint = 0x00001000, WindowSystemMenuHint = 0x00002000, WindowMinimizeButtonHint = 0x00004000, WindowMaximizeButtonHint = 0x00008000, WindowMinMaxButtonsHint = WindowMinimizeButtonHint | WindowMaximizeButtonHint, WindowContextHelpButtonHint = 0x00010000, WindowShadeButtonHint = 0x00020000, WindowStaysOnTopHint = 0x00040000, CustomizeWindowHint = 0x02000000, WindowStaysOnBottomHint = 0x04000000, WindowCloseButtonHint = 0x08000000, MacWindowToolBarButtonHint = 0x10000000, BypassGraphicsProxyWidget = 0x20000000, WindowOkButtonHint = 0x00080000, WindowCancelButtonHint = 0x00100000, WindowSoftkeysVisibleHint = 0x40000000, WindowSoftkeysRespondHint = 0x80000000 }; typedef QFlags WindowFlags; enum WindowState { WindowNoState = 0x00000000, WindowMinimized = 0x00000001, WindowMaximized = 0x00000002, WindowFullScreen = 0x00000004, WindowActive = 0x00000008 }; typedef QFlags WindowStates; enum WidgetAttribute { WA_Disabled = 0, WA_UnderMouse = 1, WA_MouseTracking = 2, WA_ContentsPropagated = 3, WA_OpaquePaintEvent = 4, WA_NoBackground = WA_OpaquePaintEvent, WA_StaticContents = 5, WA_LaidOut = 7, WA_PaintOnScreen = 8, WA_NoSystemBackground = 9, WA_UpdatesDisabled = 10, WA_Mapped = 11, WA_MacNoClickThrough = 12, WA_PaintOutsidePaintEvent = 13, WA_InputMethodEnabled = 14, WA_WState_Visible = 15, WA_WState_Hidden = 16, WA_ForceDisabled = 32, WA_KeyCompression = 33, WA_PendingMoveEvent = 34, WA_PendingResizeEvent = 35, WA_SetPalette = 36, WA_SetFont = 37, WA_SetCursor = 38, WA_NoChildEventsFromChildren = 39, WA_WindowModified = 41, WA_Resized = 42, WA_Moved = 43, WA_PendingUpdate = 44, WA_InvalidSize = 45, WA_MacBrushedMetal = 46, WA_MacMetalStyle = WA_MacBrushedMetal, WA_CustomWhatsThis = 47, WA_LayoutOnEntireRect = 48, WA_OutsideWSRange = 49, WA_GrabbedShortcut = 50, WA_TransparentForMouseEvents = 51, WA_PaintUnclipped = 52, WA_SetWindowIcon = 53, WA_NoMouseReplay = 54, WA_DeleteOnClose = 55, WA_RightToLeft = 56, WA_SetLayoutDirection = 57, WA_NoChildEventsForParent = 58, WA_ForceUpdatesDisabled = 59, WA_WState_Created = 60, WA_WState_CompressKeys = 61, WA_WState_InPaintEvent = 62, WA_WState_Reparented = 63, WA_WState_ConfigPending = 64, WA_WState_Polished = 66, WA_WState_DND = 67, WA_WState_OwnSizePolicy = 68, WA_WState_ExplicitShowHide = 69, WA_ShowModal = 70, WA_MouseNoMask = 71, WA_GroupLeader = 72, WA_NoMousePropagation = 73, WA_Hover = 74, WA_InputMethodTransparent = 75, WA_QuitOnClose = 76, WA_KeyboardFocusChange = 77, WA_AcceptDrops = 78, WA_DropSiteRegistered = 79, WA_ForceAcceptDrops = WA_DropSiteRegistered, WA_WindowPropagation = 80, WA_NoX11EventCompression = 81, WA_TintedBackground = 82, WA_X11OpenGLOverlay = 83, WA_AlwaysShowToolTips = 84, WA_MacOpaqueSizeGrip = 85, WA_SetStyle = 86, WA_SetLocale = 87, WA_MacShowFocusRect = 88, WA_MacNormalSize = 89, WA_MacSmallSize = 90, WA_MacMiniSize = 91, WA_LayoutUsesWidgetRect = 92, WA_StyledBackground = 93, WA_MSWindowsUseDirect3D = 94, WA_CanHostQMdiSubWindowTitleBar = 95, WA_MacAlwaysShowToolWindow = 96, WA_StyleSheet = 97, WA_ShowWithoutActivating = 98, WA_X11BypassTransientForHint = 99, WA_NativeWindow = 100, WA_DontCreateNativeAncestors = 101, WA_MacVariableSize = 102, WA_DontShowOnScreen = 103, WA_X11NetWmWindowTypeDesktop = 104, WA_X11NetWmWindowTypeDock = 105, WA_X11NetWmWindowTypeToolBar = 106, WA_X11NetWmWindowTypeMenu = 107, WA_X11NetWmWindowTypeUtility = 108, WA_X11NetWmWindowTypeSplash = 109, WA_X11NetWmWindowTypeDialog = 110, WA_X11NetWmWindowTypeDropDownMenu = 111, WA_X11NetWmWindowTypePopupMenu = 112, WA_X11NetWmWindowTypeToolTip = 113, WA_X11NetWmWindowTypeNotification = 114, WA_X11NetWmWindowTypeCombo = 115, WA_X11NetWmWindowTypeDND = 116, WA_MacFrameworkScaled = 117, WA_SetWindowModality = 118, WA_WState_WindowOpacitySet = 119, WA_TranslucentBackground = 120, WA_AcceptTouchEvents = 121, WA_WState_AcceptedTouchBeginEvent = 122, WA_TouchPadAcceptSingleTouchEvents = 123, WA_MergeSoftkeys = 124, WA_MergeSoftkeysRecursively = 125, WA_LockPortraitOrientation = 128, WA_LockLandscapeOrientation = 129, WA_AutoOrientation = 130, WA_X11DoNotAcceptFocus = 132, WA_SymbianNoSystemRotation = 133, WA_MacNoShadow = 134, WA_AttributeCount }; enum ApplicationAttribute { AA_ImmediateWidgetCreation = 0, AA_MSWindowsUseDirect3DByDefault = 1, AA_DontShowIconsInMenus = 2, AA_NativeWindows = 3, AA_DontCreateNativeWidgetSiblings = 4, AA_MacPluginApplication = 5, AA_DontUseNativeMenuBar = 6, AA_MacDontSwapCtrlAndMeta = 7, AA_S60DontConstructApplicationPanes = 8, AA_S60DisablePartialScreenInputMode = 9, AA_X11InitThreads = 10, AA_CaptureMultimediaKeys = 11, AA_AttributeCount }; enum ImageConversionFlag { ColorMode_Mask = 0x00000003, AutoColor = 0x00000000, ColorOnly = 0x00000003, MonoOnly = 0x00000002, AlphaDither_Mask = 0x0000000c, ThresholdAlphaDither = 0x00000000, OrderedAlphaDither = 0x00000004, DiffuseAlphaDither = 0x00000008, NoAlpha = 0x0000000c, Dither_Mask = 0x00000030, DiffuseDither = 0x00000000, OrderedDither = 0x00000010, ThresholdDither = 0x00000020, DitherMode_Mask = 0x000000c0, AutoDither = 0x00000000, PreferDither = 0x00000040, AvoidDither = 0x00000080, NoOpaqueDetection = 0x00000100, NoFormatConversion = 0x00000200 }; typedef QFlags ImageConversionFlags; enum BGMode { TransparentMode, OpaqueMode }; enum Key { Key_Escape = 0x01000000, Key_Tab = 0x01000001, Key_Backtab = 0x01000002, Key_Backspace = 0x01000003, Key_Return = 0x01000004, Key_Enter = 0x01000005, Key_Insert = 0x01000006, Key_Delete = 0x01000007, Key_Pause = 0x01000008, Key_Print = 0x01000009, Key_SysReq = 0x0100000a, Key_Clear = 0x0100000b, Key_Home = 0x01000010, Key_End = 0x01000011, Key_Left = 0x01000012, Key_Up = 0x01000013, Key_Right = 0x01000014, Key_Down = 0x01000015, Key_PageUp = 0x01000016, Key_PageDown = 0x01000017, Key_Shift = 0x01000020, Key_Control = 0x01000021, Key_Meta = 0x01000022, Key_Alt = 0x01000023, Key_CapsLock = 0x01000024, Key_NumLock = 0x01000025, Key_ScrollLock = 0x01000026, Key_F1 = 0x01000030, Key_F2 = 0x01000031, Key_F3 = 0x01000032, Key_F4 = 0x01000033, Key_F5 = 0x01000034, Key_F6 = 0x01000035, Key_F7 = 0x01000036, Key_F8 = 0x01000037, Key_F9 = 0x01000038, Key_F10 = 0x01000039, Key_F11 = 0x0100003a, Key_F12 = 0x0100003b, Key_F13 = 0x0100003c, Key_F14 = 0x0100003d, Key_F15 = 0x0100003e, Key_F16 = 0x0100003f, Key_F17 = 0x01000040, Key_F18 = 0x01000041, Key_F19 = 0x01000042, Key_F20 = 0x01000043, Key_F21 = 0x01000044, Key_F22 = 0x01000045, Key_F23 = 0x01000046, Key_F24 = 0x01000047, Key_F25 = 0x01000048, Key_F26 = 0x01000049, Key_F27 = 0x0100004a, Key_F28 = 0x0100004b, Key_F29 = 0x0100004c, Key_F30 = 0x0100004d, Key_F31 = 0x0100004e, Key_F32 = 0x0100004f, Key_F33 = 0x01000050, Key_F34 = 0x01000051, Key_F35 = 0x01000052, Key_Super_L = 0x01000053, Key_Super_R = 0x01000054, Key_Menu = 0x01000055, Key_Hyper_L = 0x01000056, Key_Hyper_R = 0x01000057, Key_Help = 0x01000058, Key_Direction_L = 0x01000059, Key_Direction_R = 0x01000060, Key_Space = 0x20, Key_Any = Key_Space, Key_Exclam = 0x21, Key_QuoteDbl = 0x22, Key_NumberSign = 0x23, Key_Dollar = 0x24, Key_Percent = 0x25, Key_Ampersand = 0x26, Key_Apostrophe = 0x27, Key_ParenLeft = 0x28, Key_ParenRight = 0x29, Key_Asterisk = 0x2a, Key_Plus = 0x2b, Key_Comma = 0x2c, Key_Minus = 0x2d, Key_Period = 0x2e, Key_Slash = 0x2f, Key_0 = 0x30, Key_1 = 0x31, Key_2 = 0x32, Key_3 = 0x33, Key_4 = 0x34, Key_5 = 0x35, Key_6 = 0x36, Key_7 = 0x37, Key_8 = 0x38, Key_9 = 0x39, Key_Colon = 0x3a, Key_Semicolon = 0x3b, Key_Less = 0x3c, Key_Equal = 0x3d, Key_Greater = 0x3e, Key_Question = 0x3f, Key_At = 0x40, Key_A = 0x41, Key_B = 0x42, Key_C = 0x43, Key_D = 0x44, Key_E = 0x45, Key_F = 0x46, Key_G = 0x47, Key_H = 0x48, Key_I = 0x49, Key_J = 0x4a, Key_K = 0x4b, Key_L = 0x4c, Key_M = 0x4d, Key_N = 0x4e, Key_O = 0x4f, Key_P = 0x50, Key_Q = 0x51, Key_R = 0x52, Key_S = 0x53, Key_T = 0x54, Key_U = 0x55, Key_V = 0x56, Key_W = 0x57, Key_X = 0x58, Key_Y = 0x59, Key_Z = 0x5a, Key_BracketLeft = 0x5b, Key_Backslash = 0x5c, Key_BracketRight = 0x5d, Key_AsciiCircum = 0x5e, Key_Underscore = 0x5f, Key_QuoteLeft = 0x60, Key_BraceLeft = 0x7b, Key_Bar = 0x7c, Key_BraceRight = 0x7d, Key_AsciiTilde = 0x7e, Key_nobreakspace = 0x0a0, Key_exclamdown = 0x0a1, Key_cent = 0x0a2, Key_sterling = 0x0a3, Key_currency = 0x0a4, Key_yen = 0x0a5, Key_brokenbar = 0x0a6, Key_section = 0x0a7, Key_diaeresis = 0x0a8, Key_copyright = 0x0a9, Key_ordfeminine = 0x0aa, Key_guillemotleft = 0x0ab, Key_notsign = 0x0ac, Key_hyphen = 0x0ad, Key_registered = 0x0ae, Key_macron = 0x0af, Key_degree = 0x0b0, Key_plusminus = 0x0b1, Key_twosuperior = 0x0b2, Key_threesuperior = 0x0b3, Key_acute = 0x0b4, Key_mu = 0x0b5, Key_paragraph = 0x0b6, Key_periodcentered = 0x0b7, Key_cedilla = 0x0b8, Key_onesuperior = 0x0b9, Key_masculine = 0x0ba, Key_guillemotright = 0x0bb, Key_onequarter = 0x0bc, Key_onehalf = 0x0bd, Key_threequarters = 0x0be, Key_questiondown = 0x0bf, Key_Agrave = 0x0c0, Key_Aacute = 0x0c1, Key_Acircumflex = 0x0c2, Key_Atilde = 0x0c3, Key_Adiaeresis = 0x0c4, Key_Aring = 0x0c5, Key_AE = 0x0c6, Key_Ccedilla = 0x0c7, Key_Egrave = 0x0c8, Key_Eacute = 0x0c9, Key_Ecircumflex = 0x0ca, Key_Ediaeresis = 0x0cb, Key_Igrave = 0x0cc, Key_Iacute = 0x0cd, Key_Icircumflex = 0x0ce, Key_Idiaeresis = 0x0cf, Key_ETH = 0x0d0, Key_Ntilde = 0x0d1, Key_Ograve = 0x0d2, Key_Oacute = 0x0d3, Key_Ocircumflex = 0x0d4, Key_Otilde = 0x0d5, Key_Odiaeresis = 0x0d6, Key_multiply = 0x0d7, Key_Ooblique = 0x0d8, Key_Ugrave = 0x0d9, Key_Uacute = 0x0da, Key_Ucircumflex = 0x0db, Key_Udiaeresis = 0x0dc, Key_Yacute = 0x0dd, Key_THORN = 0x0de, Key_ssharp = 0x0df, Key_division = 0x0f7, Key_ydiaeresis = 0x0ff, Key_AltGr = 0x01001103, Key_Multi_key = 0x01001120, Key_Codeinput = 0x01001137, Key_SingleCandidate = 0x0100113c, Key_MultipleCandidate = 0x0100113d, Key_PreviousCandidate = 0x0100113e, Key_Mode_switch = 0x0100117e, Key_Kanji = 0x01001121, Key_Muhenkan = 0x01001122, Key_Henkan = 0x01001123, Key_Romaji = 0x01001124, Key_Hiragana = 0x01001125, Key_Katakana = 0x01001126, Key_Hiragana_Katakana = 0x01001127, Key_Zenkaku = 0x01001128, Key_Hankaku = 0x01001129, Key_Zenkaku_Hankaku = 0x0100112a, Key_Touroku = 0x0100112b, Key_Massyo = 0x0100112c, Key_Kana_Lock = 0x0100112d, Key_Kana_Shift = 0x0100112e, Key_Eisu_Shift = 0x0100112f, Key_Eisu_toggle = 0x01001130, Key_Hangul = 0x01001131, Key_Hangul_Start = 0x01001132, Key_Hangul_End = 0x01001133, Key_Hangul_Hanja = 0x01001134, Key_Hangul_Jamo = 0x01001135, Key_Hangul_Romaja = 0x01001136, Key_Hangul_Jeonja = 0x01001138, Key_Hangul_Banja = 0x01001139, Key_Hangul_PreHanja = 0x0100113a, Key_Hangul_PostHanja = 0x0100113b, Key_Hangul_Special = 0x0100113f, Key_Dead_Grave = 0x01001250, Key_Dead_Acute = 0x01001251, Key_Dead_Circumflex = 0x01001252, Key_Dead_Tilde = 0x01001253, Key_Dead_Macron = 0x01001254, Key_Dead_Breve = 0x01001255, Key_Dead_Abovedot = 0x01001256, Key_Dead_Diaeresis = 0x01001257, Key_Dead_Abovering = 0x01001258, Key_Dead_Doubleacute = 0x01001259, Key_Dead_Caron = 0x0100125a, Key_Dead_Cedilla = 0x0100125b, Key_Dead_Ogonek = 0x0100125c, Key_Dead_Iota = 0x0100125d, Key_Dead_Voiced_Sound = 0x0100125e, Key_Dead_Semivoiced_Sound = 0x0100125f, Key_Dead_Belowdot = 0x01001260, Key_Dead_Hook = 0x01001261, Key_Dead_Horn = 0x01001262, Key_Back = 0x01000061, Key_Forward = 0x01000062, Key_Stop = 0x01000063, Key_Refresh = 0x01000064, Key_VolumeDown = 0x01000070, Key_VolumeMute = 0x01000071, Key_VolumeUp = 0x01000072, Key_BassBoost = 0x01000073, Key_BassUp = 0x01000074, Key_BassDown = 0x01000075, Key_TrebleUp = 0x01000076, Key_TrebleDown = 0x01000077, Key_MediaPlay = 0x01000080, Key_MediaStop = 0x01000081, Key_MediaPrevious = 0x01000082, Key_MediaNext = 0x01000083, Key_MediaRecord = 0x01000084, Key_MediaPause = 0x1000085, Key_MediaTogglePlayPause = 0x1000086, Key_HomePage = 0x01000090, Key_Favorites = 0x01000091, Key_Search = 0x01000092, Key_Standby = 0x01000093, Key_OpenUrl = 0x01000094, Key_LaunchMail = 0x010000a0, Key_LaunchMedia = 0x010000a1, Key_Launch0 = 0x010000a2, Key_Launch1 = 0x010000a3, Key_Launch2 = 0x010000a4, Key_Launch3 = 0x010000a5, Key_Launch4 = 0x010000a6, Key_Launch5 = 0x010000a7, Key_Launch6 = 0x010000a8, Key_Launch7 = 0x010000a9, Key_Launch8 = 0x010000aa, Key_Launch9 = 0x010000ab, Key_LaunchA = 0x010000ac, Key_LaunchB = 0x010000ad, Key_LaunchC = 0x010000ae, Key_LaunchD = 0x010000af, Key_LaunchE = 0x010000b0, Key_LaunchF = 0x010000b1, Key_MonBrightnessUp = 0x010000b2, Key_MonBrightnessDown = 0x010000b3, Key_KeyboardLightOnOff = 0x010000b4, Key_KeyboardBrightnessUp = 0x010000b5, Key_KeyboardBrightnessDown = 0x010000b6, Key_PowerOff = 0x010000b7, Key_WakeUp = 0x010000b8, Key_Eject = 0x010000b9, Key_ScreenSaver = 0x010000ba, Key_WWW = 0x010000bb, Key_Memo = 0x010000bc, Key_LightBulb = 0x010000bd, Key_Shop = 0x010000be, Key_History = 0x010000bf, Key_AddFavorite = 0x010000c0, Key_HotLinks = 0x010000c1, Key_BrightnessAdjust = 0x010000c2, Key_Finance = 0x010000c3, Key_Community = 0x010000c4, Key_AudioRewind = 0x010000c5, Key_BackForward = 0x010000c6, Key_ApplicationLeft = 0x010000c7, Key_ApplicationRight = 0x010000c8, Key_Book = 0x010000c9, Key_CD = 0x010000ca, Key_Calculator = 0x010000cb, Key_ToDoList = 0x010000cc, Key_ClearGrab = 0x010000cd, Key_Close = 0x010000ce, Key_Copy = 0x010000cf, Key_Cut = 0x010000d0, Key_Display = 0x010000d1, Key_DOS = 0x010000d2, Key_Documents = 0x010000d3, Key_Excel = 0x010000d4, Key_Explorer = 0x010000d5, Key_Game = 0x010000d6, Key_Go = 0x010000d7, Key_iTouch = 0x010000d8, Key_LogOff = 0x010000d9, Key_Market = 0x010000da, Key_Meeting = 0x010000db, Key_MenuKB = 0x010000dc, Key_MenuPB = 0x010000dd, Key_MySites = 0x010000de, Key_News = 0x010000df, Key_OfficeHome = 0x010000e0, Key_Option = 0x010000e1, Key_Paste = 0x010000e2, Key_Phone = 0x010000e3, Key_Calendar = 0x010000e4, Key_Reply = 0x010000e5, Key_Reload = 0x010000e6, Key_RotateWindows = 0x010000e7, Key_RotationPB = 0x010000e8, Key_RotationKB = 0x010000e9, Key_Save = 0x010000ea, Key_Send = 0x010000eb, Key_Spell = 0x010000ec, Key_SplitScreen = 0x010000ed, Key_Support = 0x010000ee, Key_TaskPane = 0x010000ef, Key_Terminal = 0x010000f0, Key_Tools = 0x010000f1, Key_Travel = 0x010000f2, Key_Video = 0x010000f3, Key_Word = 0x010000f4, Key_Xfer = 0x010000f5, Key_ZoomIn = 0x010000f6, Key_ZoomOut = 0x010000f7, Key_Away = 0x010000f8, Key_Messenger = 0x010000f9, Key_WebCam = 0x010000fa, Key_MailForward = 0x010000fb, Key_Pictures = 0x010000fc, Key_Music = 0x010000fd, Key_Battery = 0x010000fe, Key_Bluetooth = 0x010000ff, Key_WLAN = 0x01000100, Key_UWB = 0x01000101, Key_AudioForward = 0x01000102, Key_AudioRepeat = 0x01000103, Key_AudioRandomPlay = 0x01000104, Key_Subtitle = 0x01000105, Key_AudioCycleTrack = 0x01000106, Key_Time = 0x01000107, Key_Hibernate = 0x01000108, Key_View = 0x01000109, Key_TopMenu = 0x0100010a, Key_PowerDown = 0x0100010b, Key_Suspend = 0x0100010c, Key_ContrastAdjust = 0x0100010d, Key_LaunchG = 0x0100010e, Key_LaunchH = 0x0100010f, Key_MediaLast = 0x0100ffff, Key_Select = 0x01010000, Key_Yes = 0x01010001, Key_No = 0x01010002, Key_Cancel = 0x01020001, Key_Printer = 0x01020002, Key_Execute = 0x01020003, Key_Sleep = 0x01020004, Key_Play = 0x01020005, Key_Zoom = 0x01020006, Key_Context1 = 0x01100000, Key_Context2 = 0x01100001, Key_Context3 = 0x01100002, Key_Context4 = 0x01100003, Key_Call = 0x01100004, Key_Hangup = 0x01100005, Key_Flip = 0x01100006, Key_ToggleCallHangup = 0x01100007, Key_VoiceDial = 0x01100008, Key_LastNumberRedial = 0x01100009, Key_Camera = 0x01100020, Key_CameraFocus = 0x01100021, Key_unknown = 0x01ffffff }; enum ArrowType { NoArrow, UpArrow, DownArrow, LeftArrow, RightArrow }; enum PenStyle { NoPen, SolidLine, DashLine, DotLine, DashDotLine, DashDotDotLine, CustomDashLine , MPenStyle = 0x0f }; enum PenCapStyle { FlatCap = 0x00, SquareCap = 0x10, RoundCap = 0x20, MPenCapStyle = 0x30 }; enum PenJoinStyle { MiterJoin = 0x00, BevelJoin = 0x40, RoundJoin = 0x80, SvgMiterJoin = 0x100, MPenJoinStyle = 0x1c0 }; enum BrushStyle { NoBrush, SolidPattern, Dense1Pattern, Dense2Pattern, Dense3Pattern, Dense4Pattern, Dense5Pattern, Dense6Pattern, Dense7Pattern, HorPattern, VerPattern, CrossPattern, BDiagPattern, FDiagPattern, DiagCrossPattern, LinearGradientPattern, RadialGradientPattern, ConicalGradientPattern, TexturePattern = 24 }; enum SizeMode { AbsoluteSize, RelativeSize }; enum UIEffect { UI_General, UI_AnimateMenu, UI_FadeMenu, UI_AnimateCombo, UI_AnimateTooltip, UI_FadeTooltip, UI_AnimateToolBox }; enum CursorShape { ArrowCursor, UpArrowCursor, CrossCursor, WaitCursor, IBeamCursor, SizeVerCursor, SizeHorCursor, SizeBDiagCursor, SizeFDiagCursor, SizeAllCursor, BlankCursor, SplitVCursor, SplitHCursor, PointingHandCursor, ForbiddenCursor, WhatsThisCursor, BusyCursor, OpenHandCursor, ClosedHandCursor, DragCopyCursor, DragMoveCursor, DragLinkCursor, LastCursor = DragLinkCursor, BitmapCursor = 24, CustomCursor = 25 }; enum TextFormat { PlainText, RichText, AutoText, LogText }; enum AspectRatioMode { IgnoreAspectRatio, KeepAspectRatio, KeepAspectRatioByExpanding }; enum AnchorAttribute { AnchorName, AnchorHref }; enum DockWidgetArea { LeftDockWidgetArea = 0x1, RightDockWidgetArea = 0x2, TopDockWidgetArea = 0x4, BottomDockWidgetArea = 0x8, DockWidgetArea_Mask = 0xf, AllDockWidgetAreas = DockWidgetArea_Mask, NoDockWidgetArea = 0 }; enum DockWidgetAreaSizes { NDockWidgetAreas = 4 }; typedef QFlags DockWidgetAreas; enum ToolBarArea { LeftToolBarArea = 0x1, RightToolBarArea = 0x2, TopToolBarArea = 0x4, BottomToolBarArea = 0x8, ToolBarArea_Mask = 0xf, AllToolBarAreas = ToolBarArea_Mask, NoToolBarArea = 0 }; enum ToolBarAreaSizes { NToolBarAreas = 4 }; typedef QFlags ToolBarAreas; enum DateFormat { TextDate, ISODate, SystemLocaleDate, LocalDate = SystemLocaleDate, LocaleDate, SystemLocaleShortDate, SystemLocaleLongDate, DefaultLocaleShortDate, DefaultLocaleLongDate }; enum TimeSpec { LocalTime, UTC, OffsetFromUTC }; enum DayOfWeek { Monday = 1, Tuesday = 2, Wednesday = 3, Thursday = 4, Friday = 5, Saturday = 6, Sunday = 7 }; enum ScrollBarPolicy { ScrollBarAsNeeded, ScrollBarAlwaysOff, ScrollBarAlwaysOn }; enum CaseSensitivity { CaseInsensitive, CaseSensitive }; enum Corner { TopLeftCorner = 0x00000, TopRightCorner = 0x00001, BottomLeftCorner = 0x00002, BottomRightCorner = 0x00003 }; enum ConnectionType { AutoConnection, DirectConnection, QueuedConnection, AutoCompatConnection, BlockingQueuedConnection, UniqueConnection = 0x80 }; enum ShortcutContext { WidgetShortcut, WindowShortcut, ApplicationShortcut, WidgetWithChildrenShortcut }; enum FillRule { OddEvenFill, WindingFill }; enum MaskMode { MaskInColor, MaskOutColor }; enum ClipOperation { NoClip, ReplaceClip, IntersectClip, UniteClip }; enum ItemSelectionMode { ContainsItemShape = 0x0, IntersectsItemShape = 0x1, ContainsItemBoundingRect = 0x2, IntersectsItemBoundingRect = 0x3 }; enum TransformationMode { FastTransformation, SmoothTransformation }; enum Axis { XAxis, YAxis, ZAxis }; enum FocusReason { MouseFocusReason, TabFocusReason, BacktabFocusReason, ActiveWindowFocusReason, PopupFocusReason, ShortcutFocusReason, MenuBarFocusReason, OtherFocusReason, NoFocusReason }; enum ContextMenuPolicy { NoContextMenu, DefaultContextMenu, ActionsContextMenu, CustomContextMenu, PreventContextMenu }; enum InputMethodQuery { ImMicroFocus, ImFont, ImCursorPosition, ImSurroundingText, ImCurrentSelection, ImMaximumTextLength, ImAnchorPosition }; enum InputMethodHint { ImhNone = 0x0, ImhHiddenText = 0x1, ImhNoAutoUppercase = 0x2, ImhPreferNumbers = 0x4, ImhPreferUppercase = 0x8, ImhPreferLowercase = 0x10, ImhNoPredictiveText = 0x20, ImhDigitsOnly = 0x10000, ImhFormattedNumbersOnly = 0x20000, ImhUppercaseOnly = 0x40000, ImhLowercaseOnly = 0x80000, ImhDialableCharactersOnly = 0x100000, ImhEmailCharactersOnly = 0x200000, ImhUrlCharactersOnly = 0x400000, ImhExclusiveInputMask = 0xffff0000 }; typedef QFlags InputMethodHints; enum ToolButtonStyle { ToolButtonIconOnly, ToolButtonTextOnly, ToolButtonTextBesideIcon, ToolButtonTextUnderIcon, ToolButtonFollowStyle }; enum LayoutDirection { LeftToRight, RightToLeft, LayoutDirectionAuto }; enum AnchorPoint { AnchorLeft = 0, AnchorHorizontalCenter, AnchorRight, AnchorTop, AnchorVerticalCenter, AnchorBottom }; enum DropAction { CopyAction = 0x1, MoveAction = 0x2, LinkAction = 0x4, ActionMask = 0xff, TargetMoveAction = 0x8002, IgnoreAction = 0x0 }; typedef QFlags DropActions; enum CheckState { Unchecked, PartiallyChecked, Checked }; enum ItemDataRole { DisplayRole = 0, DecorationRole = 1, EditRole = 2, ToolTipRole = 3, StatusTipRole = 4, WhatsThisRole = 5, FontRole = 6, TextAlignmentRole = 7, BackgroundColorRole = 8, BackgroundRole = 8, TextColorRole = 9, ForegroundRole = 9, CheckStateRole = 10, AccessibleTextRole = 11, AccessibleDescriptionRole = 12, SizeHintRole = 13, InitialSortOrderRole = 14, DisplayPropertyRole = 27, DecorationPropertyRole = 28, ToolTipPropertyRole = 29, StatusTipPropertyRole = 30, WhatsThisPropertyRole = 31, UserRole = 32 }; enum ItemFlag { NoItemFlags = 0, ItemIsSelectable = 1, ItemIsEditable = 2, ItemIsDragEnabled = 4, ItemIsDropEnabled = 8, ItemIsUserCheckable = 16, ItemIsEnabled = 32, ItemIsTristate = 64 }; typedef QFlags ItemFlags; enum MatchFlag { MatchExactly = 0, MatchContains = 1, MatchStartsWith = 2, MatchEndsWith = 3, MatchRegExp = 4, MatchWildcard = 5, MatchFixedString = 8, MatchCaseSensitive = 16, MatchWrap = 32, MatchRecursive = 64 }; typedef QFlags MatchFlags; typedef unsigned long HANDLE; typedef WindowFlags WFlags; enum WindowModality { NonModal, WindowModal, ApplicationModal }; enum TextInteractionFlag { NoTextInteraction = 0, TextSelectableByMouse = 1, TextSelectableByKeyboard = 2, LinksAccessibleByMouse = 4, LinksAccessibleByKeyboard = 8, TextEditable = 16, TextEditorInteraction = TextSelectableByMouse | TextSelectableByKeyboard | TextEditable, TextBrowserInteraction = TextSelectableByMouse | LinksAccessibleByMouse | LinksAccessibleByKeyboard }; typedef QFlags TextInteractionFlags; enum EventPriority { HighEventPriority = 1, NormalEventPriority = 0, LowEventPriority = -1 }; enum SizeHint { MinimumSize, PreferredSize, MaximumSize, MinimumDescent, NSizeHints }; enum WindowFrameSection { NoSection, LeftSection, TopLeftSection, TopSection, TopRightSection, RightSection, BottomRightSection, BottomSection, BottomLeftSection, TitleBarArea }; enum Initialization { Uninitialized }; enum CoordinateSystem { DeviceCoordinates, LogicalCoordinates }; enum TouchPointState { TouchPointPressed = 0x01, TouchPointMoved = 0x02, TouchPointStationary = 0x04, TouchPointReleased = 0x08, TouchPointStateMask = 0x0f, TouchPointPrimary = 0x10 }; typedef QFlags TouchPointStates; enum GestureState { NoGesture, GestureStarted = 1, GestureUpdated = 2, GestureFinished = 3, GestureCanceled = 4 }; enum GestureType { TapGesture = 1, TapAndHoldGesture = 2, PanGesture = 3, PinchGesture = 4, SwipeGesture = 5, CustomGesture = 0x0100, LastGestureType = ~0u }; enum GestureFlag { DontStartGestureOnChildren = 0x01, ReceivePartialGestures = 0x02, IgnoredGesturesPropagateToParent = 0x04 }; typedef QFlags GestureFlags; enum NavigationMode { NavigationModeNone, NavigationModeKeypadTabOrder, NavigationModeKeypadDirectional, NavigationModeCursorAuto, NavigationModeCursorForceVisible }; enum CursorMoveStyle { LogicalMoveStyle, VisualMoveStyle }; } inline QFlags operator|(Qt::MouseButtons::enum_type f1, Qt::MouseButtons::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(Qt::MouseButtons::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(Qt::MouseButtons::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } inline QFlags operator|(Qt::Orientations::enum_type f1, Qt::Orientations::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(Qt::Orientations::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(Qt::Orientations::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } inline QFlags operator|(Qt::KeyboardModifiers::enum_type f1, Qt::KeyboardModifiers::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(Qt::KeyboardModifiers::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(Qt::KeyboardModifiers::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } inline QFlags operator|(Qt::WindowFlags::enum_type f1, Qt::WindowFlags::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(Qt::WindowFlags::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(Qt::WindowFlags::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } inline QFlags operator|(Qt::Alignment::enum_type f1, Qt::Alignment::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(Qt::Alignment::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(Qt::Alignment::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } inline QFlags operator|(Qt::ImageConversionFlags::enum_type f1, Qt::ImageConversionFlags::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(Qt::ImageConversionFlags::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(Qt::ImageConversionFlags::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } inline QFlags operator|(Qt::DockWidgetAreas::enum_type f1, Qt::DockWidgetAreas::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(Qt::DockWidgetAreas::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(Qt::DockWidgetAreas::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } inline QFlags operator|(Qt::ToolBarAreas::enum_type f1, Qt::ToolBarAreas::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(Qt::ToolBarAreas::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(Qt::ToolBarAreas::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } inline QFlags operator|(Qt::WindowStates::enum_type f1, Qt::WindowStates::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(Qt::WindowStates::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(Qt::WindowStates::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } inline QFlags operator|(Qt::DropActions::enum_type f1, Qt::DropActions::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(Qt::DropActions::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(Qt::DropActions::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } inline QFlags operator|(Qt::ItemFlags::enum_type f1, Qt::ItemFlags::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(Qt::ItemFlags::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(Qt::ItemFlags::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } inline QFlags operator|(Qt::MatchFlags::enum_type f1, Qt::MatchFlags::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(Qt::MatchFlags::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(Qt::MatchFlags::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } inline QFlags operator|(Qt::TextInteractionFlags::enum_type f1, Qt::TextInteractionFlags::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(Qt::TextInteractionFlags::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(Qt::TextInteractionFlags::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } inline QFlags operator|(Qt::InputMethodHints::enum_type f1, Qt::InputMethodHints::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(Qt::InputMethodHints::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(Qt::InputMethodHints::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } inline QFlags operator|(Qt::TouchPointStates::enum_type f1, Qt::TouchPointStates::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(Qt::TouchPointStates::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(Qt::TouchPointStates::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } inline QFlags operator|(Qt::GestureFlags::enum_type f1, Qt::GestureFlags::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(Qt::GestureFlags::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(Qt::GestureFlags::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } typedef bool (*qInternalCallback)(void **); class QInternal { public: enum PaintDeviceFlags { UnknownDevice = 0x00, Widget = 0x01, Pixmap = 0x02, Image = 0x03, Printer = 0x04, Picture = 0x05, Pbuffer = 0x06, FramebufferObject = 0x07, CustomRaster = 0x08, MacQuartz = 0x09, PaintBuffer = 0x0a, OpenGL = 0x0b }; enum RelayoutType { RelayoutNormal, RelayoutDragging, RelayoutDropped }; enum Callback { ConnectCallback, DisconnectCallback, AdoptCurrentThread, EventNotifyCallback, LastCallback }; enum InternalFunction { CreateThreadForAdoption, RefAdoptedThread, DerefAdoptedThread, SetCurrentThreadToMainThread, SetQObjectSender, GetQObjectSender, ResetQObjectSender, LastInternalFunction }; enum DockPosition { LeftDock, RightDock, TopDock, BottomDock, DockCount }; static bool registerCallback(Callback, qInternalCallback); static bool unregisterCallback(Callback, qInternalCallback); static bool activateCallbacks(Callback, void **); static bool callFunction(InternalFunction func, void **); }; typedef QtValidLicenseForCoreModule QtCoreModule; class QByteArray; class QString; template inline int qYouForgotTheQ_OBJECT_Macro(T, T) { return 0; } template inline void qYouForgotTheQ_OBJECT_Macro(T1, T2) {} const char *qFlagLocation(const char *method); class QObject; class QMetaMethod; class QMetaEnum; class QMetaProperty; class QMetaClassInfo; class QGenericArgument { public: inline QGenericArgument(const char *aName = 0, const void *aData = 0) : _data(aData), _name(aName) {} inline void *data() const { return const_cast(_data); } inline const char *name() const { return _name; } private: const void *_data; const char *_name; }; class QGenericReturnArgument: public QGenericArgument { public: inline QGenericReturnArgument(const char *aName = 0, void *aData = 0) : QGenericArgument(aName, aData) {} }; template class QArgument: public QGenericArgument { public: inline QArgument(const char *aName, const T &aData) : QGenericArgument(aName, static_cast(&aData)) {} }; template class QArgument: public QGenericArgument { public: inline QArgument(const char *aName, T &aData) : QGenericArgument(aName, static_cast(&aData)) {} }; template class QReturnArgument: public QGenericReturnArgument { public: inline QReturnArgument(const char *aName, T &aData) : QGenericReturnArgument(aName, static_cast(&aData)) {} }; struct QMetaObject { const char *className() const; const QMetaObject *superClass() const; QObject *cast(QObject *obj) const; const QObject *cast(const QObject *obj) const; QString tr(const char *s, const char *c) const; QString trUtf8(const char *s, const char *c) const; QString tr(const char *s, const char *c, int n) const; QString trUtf8(const char *s, const char *c, int n) const; int methodOffset() const; int enumeratorOffset() const; int propertyOffset() const; int classInfoOffset() const; int constructorCount() const; int methodCount() const; int enumeratorCount() const; int propertyCount() const; int classInfoCount() const; int indexOfConstructor(const char *constructor) const; int indexOfMethod(const char *method) const; int indexOfSignal(const char *signal) const; int indexOfSlot(const char *slot) const; int indexOfEnumerator(const char *name) const; int indexOfProperty(const char *name) const; int indexOfClassInfo(const char *name) const; QMetaMethod constructor(int index) const; QMetaMethod method(int index) const; QMetaEnum enumerator(int index) const; QMetaProperty property(int index) const; QMetaClassInfo classInfo(int index) const; QMetaProperty userProperty() const; static bool checkConnectArgs(const char *signal, const char *method); static QByteArray normalizedSignature(const char *method); static QByteArray normalizedType(const char *type); static bool connect(const QObject *sender, int signal_index, const QObject *receiver, int method_index, int type = 0, int *types = 0); static bool disconnect(const QObject *sender, int signal_index, const QObject *receiver, int method_index); static bool disconnectOne(const QObject *sender, int signal_index, const QObject *receiver, int method_index); static void connectSlotsByName(QObject *o); static void activate(QObject *sender, int signal_index, void **argv); static void activate(QObject *sender, int from_signal_index, int to_signal_index, void **argv); static void activate(QObject *sender, const QMetaObject *, int local_signal_index, void **argv); static void activate(QObject *sender, const QMetaObject *, int from_local_signal_index, int to_local_signal_index, void **argv); static void addGuard(QObject **ptr); static void removeGuard(QObject **ptr); static void changeGuard(QObject **ptr, QObject *o); static bool invokeMethod(QObject *obj, const char *member, Qt::ConnectionType, QGenericReturnArgument ret, QGenericArgument val0 = QGenericArgument(0), QGenericArgument val1 = QGenericArgument(), QGenericArgument val2 = QGenericArgument(), QGenericArgument val3 = QGenericArgument(), QGenericArgument val4 = QGenericArgument(), QGenericArgument val5 = QGenericArgument(), QGenericArgument val6 = QGenericArgument(), QGenericArgument val7 = QGenericArgument(), QGenericArgument val8 = QGenericArgument(), QGenericArgument val9 = QGenericArgument()); static inline bool invokeMethod(QObject *obj, const char *member, QGenericReturnArgument ret, QGenericArgument val0 = QGenericArgument(0), QGenericArgument val1 = QGenericArgument(), QGenericArgument val2 = QGenericArgument(), QGenericArgument val3 = QGenericArgument(), QGenericArgument val4 = QGenericArgument(), QGenericArgument val5 = QGenericArgument(), QGenericArgument val6 = QGenericArgument(), QGenericArgument val7 = QGenericArgument(), QGenericArgument val8 = QGenericArgument(), QGenericArgument val9 = QGenericArgument()) { return invokeMethod(obj, member, Qt::AutoConnection, ret, val0, val1, val2, val3, val4, val5, val6, val7, val8, val9); } static inline bool invokeMethod(QObject *obj, const char *member, Qt::ConnectionType type, QGenericArgument val0 = QGenericArgument(0), QGenericArgument val1 = QGenericArgument(), QGenericArgument val2 = QGenericArgument(), QGenericArgument val3 = QGenericArgument(), QGenericArgument val4 = QGenericArgument(), QGenericArgument val5 = QGenericArgument(), QGenericArgument val6 = QGenericArgument(), QGenericArgument val7 = QGenericArgument(), QGenericArgument val8 = QGenericArgument(), QGenericArgument val9 = QGenericArgument()) { return invokeMethod(obj, member, type, QGenericReturnArgument(), val0, val1, val2, val3, val4, val5, val6, val7, val8, val9); } static inline bool invokeMethod(QObject *obj, const char *member, QGenericArgument val0 = QGenericArgument(0), QGenericArgument val1 = QGenericArgument(), QGenericArgument val2 = QGenericArgument(), QGenericArgument val3 = QGenericArgument(), QGenericArgument val4 = QGenericArgument(), QGenericArgument val5 = QGenericArgument(), QGenericArgument val6 = QGenericArgument(), QGenericArgument val7 = QGenericArgument(), QGenericArgument val8 = QGenericArgument(), QGenericArgument val9 = QGenericArgument()) { return invokeMethod(obj, member, Qt::AutoConnection, QGenericReturnArgument(), val0, val1, val2, val3, val4, val5, val6, val7, val8, val9); } QObject *newInstance(QGenericArgument val0 = QGenericArgument(0), QGenericArgument val1 = QGenericArgument(), QGenericArgument val2 = QGenericArgument(), QGenericArgument val3 = QGenericArgument(), QGenericArgument val4 = QGenericArgument(), QGenericArgument val5 = QGenericArgument(), QGenericArgument val6 = QGenericArgument(), QGenericArgument val7 = QGenericArgument(), QGenericArgument val8 = QGenericArgument(), QGenericArgument val9 = QGenericArgument()) const; enum Call { InvokeMetaMethod, ReadProperty, WriteProperty, ResetProperty, QueryPropertyDesignable, QueryPropertyScriptable, QueryPropertyStored, QueryPropertyEditable, QueryPropertyUser, CreateInstance }; int static_metacall(Call, int, void **) const; static int metacall(QObject *, Call, int, void **); struct { const QMetaObject *superdata; const char *stringdata; const uint *data; const void *extradata; } d; }; typedef const QMetaObject& (*QMetaObjectAccessor)(); struct QMetaObjectExtraData { const QMetaObject **objects; typedef void (*StaticMetacallFunction)(QObject *, QMetaObject::Call, int, void **); StaticMetacallFunction static_metacall; }; inline const char *QMetaObject::className() const { return d.stringdata; } inline const QMetaObject *QMetaObject::superClass() const { return d.superdata; } typedef QtValidLicenseForCoreModule QtCoreModule; class QString; struct QLatin1Char { public: inline explicit QLatin1Char(char c) : ch(c) {} inline char toLatin1() const { return ch; } inline ushort unicode() const { return ushort(uchar(ch)); } private: char ch; }; class QChar { public: QChar(); QChar(char c); QChar(uchar c); QChar(QLatin1Char ch); QChar(uchar c, uchar r); inline QChar(ushort rc) : ucs(rc){} QChar(short rc); QChar(uint rc); QChar(int rc); enum SpecialCharacter { Null = 0x0000, Nbsp = 0x00a0, ReplacementCharacter = 0xfffd, ObjectReplacementCharacter = 0xfffc, ByteOrderMark = 0xfeff, ByteOrderSwapped = 0xfffe, ParagraphSeparator = 0x2029, LineSeparator = 0x2028 }; QChar(SpecialCharacter sc); enum Category { NoCategory, Mark_NonSpacing, Mark_SpacingCombining, Mark_Enclosing, Number_DecimalDigit, Number_Letter, Number_Other, Separator_Space, Separator_Line, Separator_Paragraph, Other_Control, Other_Format, Other_Surrogate, Other_PrivateUse, Other_NotAssigned, Letter_Uppercase, Letter_Lowercase, Letter_Titlecase, Letter_Modifier, Letter_Other, Punctuation_Connector, Punctuation_Dash, Punctuation_Open, Punctuation_Close, Punctuation_InitialQuote, Punctuation_FinalQuote, Punctuation_Other, Symbol_Math, Symbol_Currency, Symbol_Modifier, Symbol_Other, Punctuation_Dask = Punctuation_Dash }; enum Direction { DirL, DirR, DirEN, DirES, DirET, DirAN, DirCS, DirB, DirS, DirWS, DirON, DirLRE, DirLRO, DirAL, DirRLE, DirRLO, DirPDF, DirNSM, DirBN }; enum Decomposition { NoDecomposition, Canonical, Font, NoBreak, Initial, Medial, Final, Isolated, Circle, Super, Sub, Vertical, Wide, Narrow, Small, Square, Compat, Fraction }; enum Joining { OtherJoining, Dual, Right, Center }; enum CombiningClass { Combining_BelowLeftAttached = 200, Combining_BelowAttached = 202, Combining_BelowRightAttached = 204, Combining_LeftAttached = 208, Combining_RightAttached = 210, Combining_AboveLeftAttached = 212, Combining_AboveAttached = 214, Combining_AboveRightAttached = 216, Combining_BelowLeft = 218, Combining_Below = 220, Combining_BelowRight = 222, Combining_Left = 224, Combining_Right = 226, Combining_AboveLeft = 228, Combining_Above = 230, Combining_AboveRight = 232, Combining_DoubleBelow = 233, Combining_DoubleAbove = 234, Combining_IotaSubscript = 240 }; enum UnicodeVersion { Unicode_Unassigned, Unicode_1_1, Unicode_2_0, Unicode_2_1_2, Unicode_3_0, Unicode_3_1, Unicode_3_2, Unicode_4_0, Unicode_4_1, Unicode_5_0 }; Category category() const; Direction direction() const; Joining joining() const; bool hasMirrored() const; unsigned char combiningClass() const; QChar mirroredChar() const; QString decomposition() const; Decomposition decompositionTag() const; int digitValue() const; QChar toLower() const; QChar toUpper() const; QChar toTitleCase() const; QChar toCaseFolded() const; UnicodeVersion unicodeVersion() const; char toAscii() const; inline char toLatin1() const; inline ushort unicode() const { return ucs; } inline ushort &unicode() { return const_cast(ucs); } static QChar fromAscii(char c); static QChar fromLatin1(char c); inline bool isNull() const { return ucs == 0; } bool isPrint() const; bool isPunct() const; bool isSpace() const; bool isMark() const; bool isLetter() const; bool isNumber() const; bool isLetterOrNumber() const; bool isDigit() const; bool isSymbol() const; inline bool isLower() const { return category() == Letter_Lowercase; } inline bool isUpper() const { return category() == Letter_Uppercase; } inline bool isTitleCase() const { return category() == Letter_Titlecase; } inline bool isHighSurrogate() const { return ((ucs & 0xfc00) == 0xd800); } inline bool isLowSurrogate() const { return ((ucs & 0xfc00) == 0xdc00); } inline uchar cell() const { return uchar(ucs & 0xff); } inline uchar row() const { return uchar((ucs>>8)&0xff); } inline void setCell(uchar cell); inline void setRow(uchar row); static inline bool isHighSurrogate(uint ucs4) { return ((ucs4 & 0xfffffc00) == 0xd800); } static inline bool isLowSurrogate(uint ucs4) { return ((ucs4 & 0xfffffc00) == 0xdc00); } static inline bool requiresSurrogates(uint ucs4) { return (ucs4 >= 0x10000); } static inline uint surrogateToUcs4(ushort high, ushort low) { return (uint(high)<<10) + low - 0x35fdc00; } static inline uint surrogateToUcs4(QChar high, QChar low) { return (uint(high.ucs)<<10) + low.ucs - 0x35fdc00; } static inline ushort highSurrogate(uint ucs4) { return ushort((ucs4>>10) + 0xd7c0); } static inline ushort lowSurrogate(uint ucs4) { return ushort(ucs4%0x400 + 0xdc00); } static Category category(uint ucs4); static Category category(ushort ucs2); static Direction direction(uint ucs4); static Direction direction(ushort ucs2); static Joining joining(uint ucs4); static Joining joining(ushort ucs2); static unsigned char combiningClass(uint ucs4); static unsigned char combiningClass(ushort ucs2); static uint mirroredChar(uint ucs4); static ushort mirroredChar(ushort ucs2); static Decomposition decompositionTag(uint ucs4); static int digitValue(uint ucs4); static int digitValue(ushort ucs2); static uint toLower(uint ucs4); static ushort toLower(ushort ucs2); static uint toUpper(uint ucs4); static ushort toUpper(ushort ucs2); static uint toTitleCase(uint ucs4); static ushort toTitleCase(ushort ucs2); static uint toCaseFolded(uint ucs4); static ushort toCaseFolded(ushort ucs2); static UnicodeVersion unicodeVersion(uint ucs4); static UnicodeVersion unicodeVersion(ushort ucs2); static UnicodeVersion currentUnicodeVersion(); static QString decomposition(uint ucs4); private: ushort ucs; } ; template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QChar)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QChar"; } }; inline QChar::QChar() : ucs(0) {} inline char QChar::toLatin1() const { return ucs > 0xff ? '\0' : char(ucs); } inline QChar QChar::fromLatin1(char c) { return QChar(ushort(uchar(c))); } inline QChar::QChar(uchar c, uchar r) : ucs(ushort((r << 8) | c)){} inline QChar::QChar(short rc) : ucs(ushort(rc)){} inline QChar::QChar(uint rc) : ucs(ushort(rc & 0xffff)){} inline QChar::QChar(int rc) : ucs(ushort(rc & 0xffff)){} inline QChar::QChar(SpecialCharacter s) : ucs(ushort(s)) {} inline QChar::QChar(QLatin1Char ch) : ucs(ch.unicode()) {} inline void QChar::setCell(uchar acell) { ucs = ushort((ucs & 0xff00) + acell); } inline void QChar::setRow(uchar arow) { ucs = ushort((ushort(arow)<<8) + (ucs&0xff)); } inline bool operator==(QChar c1, QChar c2) { return c1.unicode() == c2.unicode(); } inline bool operator!=(QChar c1, QChar c2) { return c1.unicode() != c2.unicode(); } inline bool operator<=(QChar c1, QChar c2) { return c1.unicode() <= c2.unicode(); } inline bool operator>=(QChar c1, QChar c2) { return c1.unicode() >= c2.unicode(); } inline bool operator<(QChar c1, QChar c2) { return c1.unicode() < c2.unicode(); } inline bool operator>(QChar c1, QChar c2) { return c1.unicode() > c2.unicode(); } QDataStream &operator<<(QDataStream &, const QChar &); QDataStream &operator>>(QDataStream &, QChar &); typedef QtValidLicenseForCoreModule QtCoreModule; class QBasicAtomicInt { public: volatile int _q_value; inline bool operator==(int value) const { return _q_value == value; } inline bool operator!=(int value) const { return _q_value != value; } inline bool operator!() const { return _q_value == 0; } inline operator int() const { return _q_value; } inline QBasicAtomicInt &operator=(int value) { _q_value = value; return *this; } static bool isReferenceCountingNative(); static bool isReferenceCountingWaitFree(); bool ref(); bool deref(); static bool isTestAndSetNative(); static bool isTestAndSetWaitFree(); bool testAndSetRelaxed(int expectedValue, int newValue); bool testAndSetAcquire(int expectedValue, int newValue); bool testAndSetRelease(int expectedValue, int newValue); bool testAndSetOrdered(int expectedValue, int newValue); static bool isFetchAndStoreNative(); static bool isFetchAndStoreWaitFree(); int fetchAndStoreRelaxed(int newValue); int fetchAndStoreAcquire(int newValue); int fetchAndStoreRelease(int newValue); int fetchAndStoreOrdered(int newValue); static bool isFetchAndAddNative(); static bool isFetchAndAddWaitFree(); int fetchAndAddRelaxed(int valueToAdd); int fetchAndAddAcquire(int valueToAdd); int fetchAndAddRelease(int valueToAdd); int fetchAndAddOrdered(int valueToAdd); }; template class QBasicAtomicPointer { public: T * volatile _q_value; inline bool operator==(T *value) const { return _q_value == value; } inline bool operator!=(T *value) const { return !operator==(value); } inline bool operator!() const { return operator==(0); } inline operator T *() const { return _q_value; } inline T *operator->() const { return _q_value; } inline QBasicAtomicPointer &operator=(T *value) { _q_value = value; return *this; } static bool isTestAndSetNative(); static bool isTestAndSetWaitFree(); bool testAndSetRelaxed(T *expectedValue, T *newValue); bool testAndSetAcquire(T *expectedValue, T *newValue); bool testAndSetRelease(T *expectedValue, T *newValue); bool testAndSetOrdered(T *expectedValue, T *newValue); static bool isFetchAndStoreNative(); static bool isFetchAndStoreWaitFree(); T *fetchAndStoreRelaxed(T *newValue); T *fetchAndStoreAcquire(T *newValue); T *fetchAndStoreRelease(T *newValue); T *fetchAndStoreOrdered(T *newValue); static bool isFetchAndAddNative(); static bool isFetchAndAddWaitFree(); T *fetchAndAddRelaxed(qptrdiff valueToAdd); T *fetchAndAddAcquire(qptrdiff valueToAdd); T *fetchAndAddRelease(qptrdiff valueToAdd); T *fetchAndAddOrdered(qptrdiff valueToAdd); }; inline bool QBasicAtomicInt::isReferenceCountingNative() { return true; } inline bool QBasicAtomicInt::isReferenceCountingWaitFree() { return false; } inline bool QBasicAtomicInt::isTestAndSetNative() { return true; } inline bool QBasicAtomicInt::isTestAndSetWaitFree() { return false; } inline bool QBasicAtomicInt::isFetchAndStoreNative() { return true; } inline bool QBasicAtomicInt::isFetchAndStoreWaitFree() { return false; } inline bool QBasicAtomicInt::isFetchAndAddNative() { return true; } inline bool QBasicAtomicInt::isFetchAndAddWaitFree() { return false; } template inline bool QBasicAtomicPointer::isTestAndSetNative() { return true; } template inline bool QBasicAtomicPointer::isTestAndSetWaitFree() { return false; } template inline bool QBasicAtomicPointer::isFetchAndStoreNative() { return true; } template inline bool QBasicAtomicPointer::isFetchAndStoreWaitFree() { return false; } template inline bool QBasicAtomicPointer::isFetchAndAddNative() { return true; } template inline bool QBasicAtomicPointer::isFetchAndAddWaitFree() { return false; } inline bool QBasicAtomicInt::ref() { register int originalValue; register int newValue; asm volatile("lwarx %[originalValue]," "%y[_q_value]" "\n" "addi %[newValue], %[originalValue], %[one]\n" "stwcx. %[newValue]," "%y[_q_value]" "\n" "bne- $-12\n" : [originalValue] "=&b" (originalValue), [newValue] "=&r" (newValue), [_q_value] "+Z" (_q_value) : [one] "i" (1) : "cc", "memory"); return newValue != 0; } inline bool QBasicAtomicInt::deref() { register int originalValue; register int newValue; asm volatile("lwarx %[originalValue]," "%y[_q_value]" "\n" "addi %[newValue], %[originalValue], %[minusOne]\n" "stwcx. %[newValue]," "%y[_q_value]" "\n" "bne- $-12\n" : [originalValue] "=&b" (originalValue), [newValue] "=&r" (newValue), [_q_value] "+Z" (_q_value) : [minusOne] "i" (-1) : "cc", "memory"); return newValue != 0; } inline bool QBasicAtomicInt::testAndSetRelaxed(int expectedValue, int newValue) { register int result; asm volatile("lwarx %[result]," "%y[_q_value]" "\n" "xor. %[result], %[result], %[expectedValue]\n" "bne $+12\n" "stwcx. %[newValue]," "%y[_q_value]" "\n" "bne- $-16\n" : [result] "=&r" (result), [_q_value] "+Z" (_q_value) : [expectedValue] "r" (expectedValue), [newValue] "r" (newValue) : "cc", "memory"); return result == 0; } inline bool QBasicAtomicInt::testAndSetAcquire(int expectedValue, int newValue) { register int result; asm volatile("lwarx %[result]," "%y[_q_value]" "\n" "xor. %[result], %[result], %[expectedValue]\n" "bne $+16\n" "stwcx. %[newValue]," "%y[_q_value]" "\n" "bne- $-16\n" "isync\n" : [result] "=&r" (result), [_q_value] "+Z" (_q_value) : [expectedValue] "r" (expectedValue), [newValue] "r" (newValue) : "cc", "memory"); return result == 0; } inline bool QBasicAtomicInt::testAndSetRelease(int expectedValue, int newValue) { register int result; asm volatile("eieio\n" "lwarx %[result]," "%y[_q_value]" "\n" "xor. %[result], %[result], %[expectedValue]\n" "bne $+12\n" "stwcx. %[newValue]," "%y[_q_value]" "\n" "bne- $-16\n" : [result] "=&r" (result), [_q_value] "+Z" (_q_value) : [expectedValue] "r" (expectedValue), [newValue] "r" (newValue) : "cc", "memory"); return result == 0; } inline int QBasicAtomicInt::fetchAndStoreRelaxed(int newValue) { register int originalValue; asm volatile("lwarx %[originalValue]," "%y[_q_value]" "\n" "stwcx. %[newValue]," "%y[_q_value]" "\n" "bne- $-8\n" : [originalValue] "=&r" (originalValue), [_q_value] "+Z" (_q_value) : [newValue] "r" (newValue) : "cc", "memory"); return originalValue; } inline int QBasicAtomicInt::fetchAndStoreAcquire(int newValue) { register int originalValue; asm volatile("lwarx %[originalValue]," "%y[_q_value]" "\n" "stwcx. %[newValue]," "%y[_q_value]" "\n" "bne- $-8\n" "isync\n" : [originalValue] "=&r" (originalValue), [_q_value] "+Z" (_q_value) : [newValue] "r" (newValue) : "cc", "memory"); return originalValue; } inline int QBasicAtomicInt::fetchAndStoreRelease(int newValue) { register int originalValue; asm volatile("eieio\n" "lwarx %[originalValue]," "%y[_q_value]" "\n" "stwcx. %[newValue]," "%y[_q_value]" "\n" "bne- $-8\n" : [originalValue] "=&r" (originalValue), [_q_value] "+Z" (_q_value) : [newValue] "r" (newValue) : "cc", "memory"); return originalValue; } inline int QBasicAtomicInt::fetchAndAddRelaxed(int valueToAdd) { register int originalValue; register int newValue; asm volatile("lwarx %[originalValue]," "%y[_q_value]" "\n" "add %[newValue], %[originalValue], %[valueToAdd]\n" "stwcx. %[newValue]," "%y[_q_value]" "\n" "bne- $-12\n" : [originalValue] "=&r" (originalValue), [newValue] "=&r" (newValue), [_q_value] "+Z" (_q_value) : [valueToAdd] "r" (valueToAdd) : "cc", "memory"); return originalValue; } inline int QBasicAtomicInt::fetchAndAddAcquire(int valueToAdd) { register int originalValue; register int newValue; asm volatile("lwarx %[originalValue]," "%y[_q_value]" "\n" "add %[newValue], %[originalValue], %[valueToAdd]\n" "stwcx. %[newValue]," "%y[_q_value]" "\n" "bne- $-12\n" "isync\n" : [originalValue] "=&r" (originalValue), [newValue] "=&r" (newValue), [_q_value] "+Z" (_q_value) : [valueToAdd] "r" (valueToAdd) : "cc", "memory"); return originalValue; } inline int QBasicAtomicInt::fetchAndAddRelease(int valueToAdd) { register int originalValue; register int newValue; asm volatile("eieio\n" "lwarx %[originalValue]," "%y[_q_value]" "\n" "add %[newValue], %[originalValue], %[valueToAdd]\n" "stwcx. %[newValue]," "%y[_q_value]" "\n" "bne- $-12\n" : [originalValue] "=&r" (originalValue), [newValue] "=&r" (newValue), [_q_value] "+Z" (_q_value) : [valueToAdd] "r" (valueToAdd) : "cc", "memory"); return originalValue; } template inline bool QBasicAtomicPointer::testAndSetRelaxed(T *expectedValue, T *newValue) { register void *result; asm volatile("ldarx"" %[result]," "%y[_q_value]" "\n" "xor. %[result], %[result], %[expectedValue]\n" "bne $+12\n" "stdcx."" %[newValue]," "%y[_q_value]" "\n" "bne- $-16\n" : [result] "=&r" (result), [_q_value] "+Z" (_q_value) : [expectedValue] "r" (expectedValue), [newValue] "r" (newValue) : "cc", "memory"); return result == 0; } template inline bool QBasicAtomicPointer::testAndSetAcquire(T *expectedValue, T *newValue) { register void *result; asm volatile("ldarx"" %[result]," "%y[_q_value]" "\n" "xor. %[result], %[result], %[expectedValue]\n" "bne $+16\n" "stdcx."" %[newValue]," "%y[_q_value]" "\n" "bne- $-16\n" "isync\n" : [result] "=&r" (result), [_q_value] "+Z" (_q_value) : [expectedValue] "r" (expectedValue), [newValue] "r" (newValue) : "cc", "memory"); return result == 0; } template inline bool QBasicAtomicPointer::testAndSetRelease(T *expectedValue, T *newValue) { register void *result; asm volatile("eieio\n" "ldarx"" %[result]," "%y[_q_value]" "\n" "xor. %[result], %[result], %[expectedValue]\n" "bne $+12\n" "stdcx."" %[newValue]," "%y[_q_value]" "\n" "bne- $-16\n" : [result] "=&r" (result), [_q_value] "+Z" (_q_value) : [expectedValue] "r" (expectedValue), [newValue] "r" (newValue) : "cc", "memory"); return result == 0; } template inline T *QBasicAtomicPointer::fetchAndStoreRelaxed(T *newValue) { register T *originalValue; asm volatile("ldarx"" %[originalValue]," "%y[_q_value]" "\n" "stdcx."" %[newValue]," "%y[_q_value]" "\n" "bne- $-8\n" : [originalValue] "=&r" (originalValue), [_q_value] "+Z" (_q_value) : [newValue] "r" (newValue) : "cc", "memory"); return originalValue; } template inline T *QBasicAtomicPointer::fetchAndStoreAcquire(T *newValue) { register T *originalValue; asm volatile("ldarx"" %[originalValue]," "%y[_q_value]" "\n" "stdcx."" %[newValue]," "%y[_q_value]" "\n" "bne- $-8\n" "isync\n" : [originalValue] "=&r" (originalValue), [_q_value] "+Z" (_q_value) : [newValue] "r" (newValue) : "cc", "memory"); return originalValue; } template inline T *QBasicAtomicPointer::fetchAndStoreRelease(T *newValue) { register T *originalValue; asm volatile("eieio\n" "ldarx"" %[originalValue]," "%y[_q_value]" "\n" "stdcx."" %[newValue]," "%y[_q_value]" "\n" "bne- $-8\n" : [originalValue] "=&r" (originalValue), [_q_value] "+Z" (_q_value) : [newValue] "r" (newValue) : "cc", "memory"); return originalValue; } template inline T *QBasicAtomicPointer::fetchAndAddRelaxed(qptrdiff valueToAdd) { register T *originalValue; register T *newValue; asm volatile("ldarx"" %[originalValue]," "%y[_q_value]" "\n" "add %[newValue], %[originalValue], %[valueToAdd]\n" "stdcx."" %[newValue]," "%y[_q_value]" "\n" "bne- $-12\n" : [originalValue] "=&r" (originalValue), [newValue] "=&r" (newValue), [_q_value] "+Z" (_q_value) : [valueToAdd] "r" (valueToAdd * sizeof(T)) : "cc", "memory"); return originalValue; } template inline T *QBasicAtomicPointer::fetchAndAddAcquire(qptrdiff valueToAdd) { register T *originalValue; register T *newValue; asm volatile("ldarx"" %[originalValue]," "%y[_q_value]" "\n" "add %[newValue], %[originalValue], %[valueToAdd]\n" "stdcx."" %[newValue]," "%y[_q_value]" "\n" "bne- $-12\n" "isync\n" : [originalValue] "=&r" (originalValue), [newValue] "=&r" (newValue), [_q_value] "+Z" (_q_value) : [valueToAdd] "r" (valueToAdd * sizeof(T)) : "cc", "memory"); return originalValue; } template inline T *QBasicAtomicPointer::fetchAndAddRelease(qptrdiff valueToAdd) { register T *originalValue; register T *newValue; asm volatile("eieio\n" "ldarx"" %[originalValue]," "%y[_q_value]" "\n" "add %[newValue], %[originalValue], %[valueToAdd]\n" "stdcx."" %[newValue]," "%y[_q_value]" "\n" "bne- $-12\n" : [originalValue] "=&r" (originalValue), [newValue] "=&r" (newValue), [_q_value] "+Z" (_q_value) : [valueToAdd] "r" (valueToAdd * sizeof(T)) : "cc", "memory"); return originalValue; } inline bool QBasicAtomicInt::testAndSetOrdered(int expectedValue, int newValue) { return testAndSetAcquire(expectedValue, newValue); } inline int QBasicAtomicInt::fetchAndStoreOrdered(int newValue) { return fetchAndStoreAcquire(newValue); } inline int QBasicAtomicInt::fetchAndAddOrdered(int valueToAdd) { return fetchAndAddAcquire(valueToAdd); } template inline bool QBasicAtomicPointer::testAndSetOrdered(T *expectedValue, T *newValue) { return testAndSetAcquire(expectedValue, newValue); } template inline T *QBasicAtomicPointer::fetchAndStoreOrdered(T *newValue) { return fetchAndStoreAcquire(newValue); } template inline T *QBasicAtomicPointer::fetchAndAddOrdered(qptrdiff valueToAdd) { return fetchAndAddAcquire(valueToAdd); } typedef QtValidLicenseForCoreModule QtCoreModule; class QAtomicInt : public QBasicAtomicInt { public: inline QAtomicInt(int value = 0) { _q_value = value; } inline QAtomicInt(const QAtomicInt &other) { _q_value = other._q_value; } inline QAtomicInt &operator=(int value) { (void) QBasicAtomicInt::operator=(value); return *this; } inline QAtomicInt &operator=(const QAtomicInt &other) { (void) QBasicAtomicInt::operator=(other); return *this; } }; template class QAtomicPointer : public QBasicAtomicPointer { public: inline QAtomicPointer(T *value = 0) { QBasicAtomicPointer::_q_value = value; } inline QAtomicPointer(const QAtomicPointer &other) { QBasicAtomicPointer::_q_value = other._q_value; } inline QAtomicPointer &operator=(T *value) { (void) QBasicAtomicPointer::operator=(value); return *this; } inline QAtomicPointer &operator=(const QAtomicPointer &other) { (void) QBasicAtomicPointer::operator=(other); return *this; } }; template inline void qAtomicAssign(T *&d, T *x) { if (d == x) return; x->ref.ref(); if (!d->ref.deref()) delete d; d = x; } template inline void qAtomicDetach(T *&d) { if (d->ref == 1) return; T *x = d; d = new T(*d); if (!x->ref.deref()) delete x; } extern "C" { extern void *memcpy (void *__restrict __dest, __const void *__restrict __src, size_t __n) throw () __attribute__ ((__nonnull__ (1, 2))); extern void *memmove (void *__dest, __const void *__src, size_t __n) throw () __attribute__ ((__nonnull__ (1, 2))); extern void *memccpy (void *__restrict __dest, __const void *__restrict __src, int __c, size_t __n) throw () __attribute__ ((__nonnull__ (1, 2))); extern void *memset (void *__s, int __c, size_t __n) throw () __attribute__ ((__nonnull__ (1))); extern int memcmp (__const void *__s1, __const void *__s2, size_t __n) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern "C++" { extern void *memchr (void *__s, int __c, size_t __n) throw () __asm ("memchr") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern __const void *memchr (__const void *__s, int __c, size_t __n) throw () __asm ("memchr") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) void * memchr (void *__s, int __c, size_t __n) throw () { return __builtin_memchr (__s, __c, __n); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __const void * memchr (__const void *__s, int __c, size_t __n) throw () { return __builtin_memchr (__s, __c, __n); } } extern "C++" void *rawmemchr (void *__s, int __c) throw () __asm ("rawmemchr") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern "C++" __const void *rawmemchr (__const void *__s, int __c) throw () __asm ("rawmemchr") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern "C++" void *memrchr (void *__s, int __c, size_t __n) throw () __asm ("memrchr") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern "C++" __const void *memrchr (__const void *__s, int __c, size_t __n) throw () __asm ("memrchr") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern char *strcpy (char *__restrict __dest, __const char *__restrict __src) throw () __attribute__ ((__nonnull__ (1, 2))); extern char *strncpy (char *__restrict __dest, __const char *__restrict __src, size_t __n) throw () __attribute__ ((__nonnull__ (1, 2))); extern char *strcat (char *__restrict __dest, __const char *__restrict __src) throw () __attribute__ ((__nonnull__ (1, 2))); extern char *strncat (char *__restrict __dest, __const char *__restrict __src, size_t __n) throw () __attribute__ ((__nonnull__ (1, 2))); extern int strcmp (__const char *__s1, __const char *__s2) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern int strncmp (__const char *__s1, __const char *__s2, size_t __n) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern int strcoll (__const char *__s1, __const char *__s2) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern size_t strxfrm (char *__restrict __dest, __const char *__restrict __src, size_t __n) throw () __attribute__ ((__nonnull__ (2))); extern int strcoll_l (__const char *__s1, __const char *__s2, __locale_t __l) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2, 3))); extern size_t strxfrm_l (char *__dest, __const char *__src, size_t __n, __locale_t __l) throw () __attribute__ ((__nonnull__ (2, 4))); extern char *strdup (__const char *__s) throw () __attribute__ ((__malloc__)) __attribute__ ((__nonnull__ (1))); extern char *strndup (__const char *__string, size_t __n) throw () __attribute__ ((__malloc__)) __attribute__ ((__nonnull__ (1))); extern "C++" { extern char *strchr (char *__s, int __c) throw () __asm ("strchr") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern __const char *strchr (__const char *__s, int __c) throw () __asm ("strchr") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) char * strchr (char *__s, int __c) throw () { return __builtin_strchr (__s, __c); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __const char * strchr (__const char *__s, int __c) throw () { return __builtin_strchr (__s, __c); } } extern "C++" { extern char *strrchr (char *__s, int __c) throw () __asm ("strrchr") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern __const char *strrchr (__const char *__s, int __c) throw () __asm ("strrchr") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) char * strrchr (char *__s, int __c) throw () { return __builtin_strrchr (__s, __c); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __const char * strrchr (__const char *__s, int __c) throw () { return __builtin_strrchr (__s, __c); } } extern "C++" char *strchrnul (char *__s, int __c) throw () __asm ("strchrnul") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern "C++" __const char *strchrnul (__const char *__s, int __c) throw () __asm ("strchrnul") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern size_t strcspn (__const char *__s, __const char *__reject) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern size_t strspn (__const char *__s, __const char *__accept) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern "C++" { extern char *strpbrk (char *__s, __const char *__accept) throw () __asm ("strpbrk") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern __const char *strpbrk (__const char *__s, __const char *__accept) throw () __asm ("strpbrk") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) char * strpbrk (char *__s, __const char *__accept) throw () { return __builtin_strpbrk (__s, __accept); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __const char * strpbrk (__const char *__s, __const char *__accept) throw () { return __builtin_strpbrk (__s, __accept); } } extern "C++" { extern char *strstr (char *__haystack, __const char *__needle) throw () __asm ("strstr") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern __const char *strstr (__const char *__haystack, __const char *__needle) throw () __asm ("strstr") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) char * strstr (char *__haystack, __const char *__needle) throw () { return __builtin_strstr (__haystack, __needle); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __const char * strstr (__const char *__haystack, __const char *__needle) throw () { return __builtin_strstr (__haystack, __needle); } } extern char *strtok (char *__restrict __s, __const char *__restrict __delim) throw () __attribute__ ((__nonnull__ (2))); extern char *__strtok_r (char *__restrict __s, __const char *__restrict __delim, char **__restrict __save_ptr) throw () __attribute__ ((__nonnull__ (2, 3))); extern char *strtok_r (char *__restrict __s, __const char *__restrict __delim, char **__restrict __save_ptr) throw () __attribute__ ((__nonnull__ (2, 3))); extern "C++" char *strcasestr (char *__haystack, __const char *__needle) throw () __asm ("strcasestr") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern "C++" __const char *strcasestr (__const char *__haystack, __const char *__needle) throw () __asm ("strcasestr") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern void *memmem (__const void *__haystack, size_t __haystacklen, __const void *__needle, size_t __needlelen) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 3))); extern void *__mempcpy (void *__restrict __dest, __const void *__restrict __src, size_t __n) throw () __attribute__ ((__nonnull__ (1, 2))); extern void *mempcpy (void *__restrict __dest, __const void *__restrict __src, size_t __n) throw () __attribute__ ((__nonnull__ (1, 2))); extern size_t strlen (__const char *__s) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern size_t strnlen (__const char *__string, size_t __maxlen) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern char *strerror (int __errnum) throw (); extern char *strerror_r (int __errnum, char *__buf, size_t __buflen) throw () __attribute__ ((__nonnull__ (2))); extern char *strerror_l (int __errnum, __locale_t __l) throw (); extern void __bzero (void *__s, size_t __n) throw () __attribute__ ((__nonnull__ (1))); extern void bcopy (__const void *__src, void *__dest, size_t __n) throw () __attribute__ ((__nonnull__ (1, 2))); extern void bzero (void *__s, size_t __n) throw () __attribute__ ((__nonnull__ (1))); extern int bcmp (__const void *__s1, __const void *__s2, size_t __n) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern "C++" { extern char *index (char *__s, int __c) throw () __asm ("index") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern __const char *index (__const char *__s, int __c) throw () __asm ("index") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) char * index (char *__s, int __c) throw () { return __builtin_index (__s, __c); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __const char * index (__const char *__s, int __c) throw () { return __builtin_index (__s, __c); } } extern "C++" { extern char *rindex (char *__s, int __c) throw () __asm ("rindex") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern __const char *rindex (__const char *__s, int __c) throw () __asm ("rindex") __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) char * rindex (char *__s, int __c) throw () { return __builtin_rindex (__s, __c); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __const char * rindex (__const char *__s, int __c) throw () { return __builtin_rindex (__s, __c); } } extern int ffs (int __i) throw () __attribute__ ((__const__)); extern int ffsl (long int __l) throw () __attribute__ ((__const__)); __extension__ extern int ffsll (long long int __ll) throw () __attribute__ ((__const__)); extern int strcasecmp (__const char *__s1, __const char *__s2) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern int strncasecmp (__const char *__s1, __const char *__s2, size_t __n) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern int strcasecmp_l (__const char *__s1, __const char *__s2, __locale_t __loc) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2, 3))); extern int strncasecmp_l (__const char *__s1, __const char *__s2, size_t __n, __locale_t __loc) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2, 4))); extern char *strsep (char **__restrict __stringp, __const char *__restrict __delim) throw () __attribute__ ((__nonnull__ (1, 2))); extern char *strsignal (int __sig) throw (); extern char *__stpcpy (char *__restrict __dest, __const char *__restrict __src) throw () __attribute__ ((__nonnull__ (1, 2))); extern char *stpcpy (char *__restrict __dest, __const char *__restrict __src) throw () __attribute__ ((__nonnull__ (1, 2))); extern char *__stpncpy (char *__restrict __dest, __const char *__restrict __src, size_t __n) throw () __attribute__ ((__nonnull__ (1, 2))); extern char *stpncpy (char *__restrict __dest, __const char *__restrict __src, size_t __n) throw () __attribute__ ((__nonnull__ (1, 2))); extern int strverscmp (__const char *__s1, __const char *__s2) throw () __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1, 2))); extern char *strfry (char *__string) throw () __attribute__ ((__nonnull__ (1))); extern void *memfrob (void *__s, size_t __n) throw () __attribute__ ((__nonnull__ (1))); extern "C++" char *basename (char *__filename) throw () __asm ("basename") __attribute__ ((__nonnull__ (1))); extern "C++" __const char *basename (__const char *__filename) throw () __asm ("basename") __attribute__ ((__nonnull__ (1))); extern void __warn_memset_zero_len (void) __attribute__((__warning__ ("memset used with constant zero length parameter; this could be due to transposed parameters"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) void * __attribute__ ((__leaf__)) memcpy (void *__restrict __dest, __const void *__restrict __src, size_t __len) throw () { return __builtin___memcpy_chk (__dest, __src, __len, __builtin_object_size (__dest, 0)); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) void * __attribute__ ((__leaf__)) memmove (void *__dest, __const void *__src, size_t __len) throw () { return __builtin___memmove_chk (__dest, __src, __len, __builtin_object_size (__dest, 0)); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) void * __attribute__ ((__leaf__)) mempcpy (void *__restrict __dest, __const void *__restrict __src, size_t __len) throw () { return __builtin___mempcpy_chk (__dest, __src, __len, __builtin_object_size (__dest, 0)); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) void * __attribute__ ((__leaf__)) memset (void *__dest, int __ch, size_t __len) throw () { if (__builtin_constant_p (__len) && __len == 0 && (!__builtin_constant_p (__ch) || __ch != 0)) { __warn_memset_zero_len (); return __dest; } return __builtin___memset_chk (__dest, __ch, __len, __builtin_object_size (__dest, 0)); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) void __attribute__ ((__leaf__)) bcopy (__const void *__src, void *__dest, size_t __len) throw () { (void) __builtin___memmove_chk (__dest, __src, __len, __builtin_object_size (__dest, 0)); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) void __attribute__ ((__leaf__)) bzero (void *__dest, size_t __len) throw () { (void) __builtin___memset_chk (__dest, '\0', __len, __builtin_object_size (__dest, 0)); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) char * __attribute__ ((__leaf__)) strcpy (char *__restrict __dest, __const char *__restrict __src) throw () { return __builtin___strcpy_chk (__dest, __src, __builtin_object_size (__dest, 2 > 1)); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) char * __attribute__ ((__leaf__)) stpcpy (char *__restrict __dest, __const char *__restrict __src) throw () { return __builtin___stpcpy_chk (__dest, __src, __builtin_object_size (__dest, 2 > 1)); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) char * __attribute__ ((__leaf__)) strncpy (char *__restrict __dest, __const char *__restrict __src, size_t __len) throw () { return __builtin___strncpy_chk (__dest, __src, __len, __builtin_object_size (__dest, 2 > 1)); } extern char *__stpncpy_chk (char *__dest, __const char *__src, size_t __n, size_t __destlen) throw (); extern char *__stpncpy_alias (char *__dest, __const char *__src, size_t __n) throw () __asm__ ("" "stpncpy") ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) char * __attribute__ ((__leaf__)) stpncpy (char *__dest, __const char *__src, size_t __n) throw () { if (__builtin_object_size (__dest, 2 > 1) != (size_t) -1 && (!__builtin_constant_p (__n) || __n <= __builtin_object_size (__dest, 2 > 1))) return __stpncpy_chk (__dest, __src, __n, __builtin_object_size (__dest, 2 > 1)); return __stpncpy_alias (__dest, __src, __n); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) char * __attribute__ ((__leaf__)) strcat (char *__restrict __dest, __const char *__restrict __src) throw () { return __builtin___strcat_chk (__dest, __src, __builtin_object_size (__dest, 2 > 1)); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) char * __attribute__ ((__leaf__)) strncat (char *__restrict __dest, __const char *__restrict __src, size_t __len) throw () { return __builtin___strncat_chk (__dest, __src, __len, __builtin_object_size (__dest, 2 > 1)); } } typedef __gnuc_va_list va_list; typedef QtValidLicenseForCoreModule QtCoreModule; char *qstrdup(const char *); inline uint qstrlen(const char *str) { return str ? uint(strlen(str)) : 0; } inline uint qstrnlen(const char *str, uint maxlen) { uint length = 0; if (str) { while (length < maxlen && *str++) length++; } return length; } char *qstrcpy(char *dst, const char *src); char *qstrncpy(char *dst, const char *src, uint len); int qstrcmp(const char *str1, const char *str2); int qstrcmp(const QByteArray &str1, const QByteArray &str2); int qstrcmp(const QByteArray &str1, const char *str2); static inline int qstrcmp(const char *str1, const QByteArray &str2) { return -qstrcmp(str2, str1); } inline int qstrncmp(const char *str1, const char *str2, uint len) { return (str1 && str2) ? strncmp(str1, str2, len) : (str1 ? 1 : (str2 ? -1 : 0)); } int qstricmp(const char *, const char *); int qstrnicmp(const char *, const char *, uint len); int qvsnprintf(char *str, size_t n, const char *fmt, va_list ap); int qsnprintf(char *str, size_t n, const char *fmt, ...); quint16 qChecksum(const char *s, uint len); class QByteRef; class QString; class QDataStream; template class QList; class QByteArray { private: struct Data { QBasicAtomicInt ref; int alloc, size; char *data; char array[1]; }; public: inline QByteArray(); QByteArray(const char *); QByteArray(const char *, int size); QByteArray(int size, char c); QByteArray(int size, Qt::Initialization); inline QByteArray(const QByteArray &); inline ~QByteArray(); QByteArray &operator=(const QByteArray &); QByteArray &operator=(const char *str); inline void swap(QByteArray &other) { qSwap(d, other.d); } inline int size() const; bool isEmpty() const; void resize(int size); QByteArray &fill(char c, int size = -1); int capacity() const; void reserve(int size); void squeeze(); operator const char *() const; operator const void *() const; char *data(); const char *data() const; inline const char *constData() const; inline void detach(); bool isDetached() const; inline bool isSharedWith(const QByteArray &other) const { return d == other.d; } void clear(); char at(int i) const; char operator[](int i) const; char operator[](uint i) const; QByteRef operator[](int i); QByteRef operator[](uint i); int indexOf(char c, int from = 0) const; int indexOf(const char *c, int from = 0) const; int indexOf(const QByteArray &a, int from = 0) const; int lastIndexOf(char c, int from = -1) const; int lastIndexOf(const char *c, int from = -1) const; int lastIndexOf(const QByteArray &a, int from = -1) const; QBool contains(char c) const; QBool contains(const char *a) const; QBool contains(const QByteArray &a) const; int count(char c) const; int count(const char *a) const; int count(const QByteArray &a) const; QByteArray left(int len) const; QByteArray right(int len) const; QByteArray mid(int index, int len = -1) const; bool startsWith(const QByteArray &a) const; bool startsWith(char c) const; bool startsWith(const char *c) const; bool endsWith(const QByteArray &a) const; bool endsWith(char c) const; bool endsWith(const char *c) const; void truncate(int pos); void chop(int n); QByteArray toLower() const; QByteArray toUpper() const; QByteArray trimmed() const; QByteArray simplified() const; QByteArray leftJustified(int width, char fill = ' ', bool truncate = false) const; QByteArray rightJustified(int width, char fill = ' ', bool truncate = false) const; QByteArray &prepend(char c); QByteArray &prepend(const char *s); QByteArray &prepend(const char *s, int len); QByteArray &prepend(const QByteArray &a); QByteArray &append(char c); QByteArray &append(const char *s); QByteArray &append(const char *s, int len); QByteArray &append(const QByteArray &a); QByteArray &insert(int i, char c); QByteArray &insert(int i, const char *s); QByteArray &insert(int i, const char *s, int len); QByteArray &insert(int i, const QByteArray &a); QByteArray &remove(int index, int len); QByteArray &replace(int index, int len, const char *s); QByteArray &replace(int index, int len, const char *s, int alen); QByteArray &replace(int index, int len, const QByteArray &s); QByteArray &replace(char before, const char *after); QByteArray &replace(char before, const QByteArray &after); QByteArray &replace(const char *before, const char *after); QByteArray &replace(const char *before, int bsize, const char *after, int asize); QByteArray &replace(const QByteArray &before, const QByteArray &after); QByteArray &replace(const QByteArray &before, const char *after); QByteArray &replace(const char *before, const QByteArray &after); QByteArray &replace(char before, char after); QByteArray &operator+=(char c); QByteArray &operator+=(const char *s); QByteArray &operator+=(const QByteArray &a); QList split(char sep) const; QByteArray repeated(int times) const; QByteArray &append(const QString &s); QByteArray &insert(int i, const QString &s); QByteArray &replace(const QString &before, const char *after); QByteArray &replace(char c, const QString &after); QByteArray &replace(const QString &before, const QByteArray &after); QByteArray &operator+=(const QString &s); int indexOf(const QString &s, int from = 0) const; int lastIndexOf(const QString &s, int from = -1) const; inline bool operator==(const QString &s2) const; inline bool operator!=(const QString &s2) const; inline bool operator<(const QString &s2) const; inline bool operator>(const QString &s2) const; inline bool operator<=(const QString &s2) const; inline bool operator>=(const QString &s2) const; short toShort(bool *ok = 0, int base = 10) const; ushort toUShort(bool *ok = 0, int base = 10) const; int toInt(bool *ok = 0, int base = 10) const; uint toUInt(bool *ok = 0, int base = 10) const; long toLong(bool *ok = 0, int base = 10) const; ulong toULong(bool *ok = 0, int base = 10) const; qlonglong toLongLong(bool *ok = 0, int base = 10) const; qulonglong toULongLong(bool *ok = 0, int base = 10) const; float toFloat(bool *ok = 0) const; double toDouble(bool *ok = 0) const; QByteArray toBase64() const; QByteArray toHex() const; QByteArray toPercentEncoding(const QByteArray &exclude = QByteArray(), const QByteArray &include = QByteArray(), char percent = '%') const; QByteArray &setNum(short, int base = 10); QByteArray &setNum(ushort, int base = 10); QByteArray &setNum(int, int base = 10); QByteArray &setNum(uint, int base = 10); QByteArray &setNum(qlonglong, int base = 10); QByteArray &setNum(qulonglong, int base = 10); QByteArray &setNum(float, char f = 'g', int prec = 6); QByteArray &setNum(double, char f = 'g', int prec = 6); QByteArray &setRawData(const char *a, uint n); static QByteArray number(int, int base = 10); static QByteArray number(uint, int base = 10); static QByteArray number(qlonglong, int base = 10); static QByteArray number(qulonglong, int base = 10); static QByteArray number(double, char f = 'g', int prec = 6); static QByteArray fromRawData(const char *, int size); static QByteArray fromBase64(const QByteArray &base64); static QByteArray fromHex(const QByteArray &hexEncoded); static QByteArray fromPercentEncoding(const QByteArray &pctEncoded, char percent = '%'); typedef char *iterator; typedef const char *const_iterator; typedef iterator Iterator; typedef const_iterator ConstIterator; iterator begin(); const_iterator begin() const; const_iterator constBegin() const; iterator end(); const_iterator end() const; const_iterator constEnd() const; typedef const char & const_reference; typedef char & reference; typedef char value_type; void push_back(char c); void push_back(const char *c); void push_back(const QByteArray &a); void push_front(char c); void push_front(const char *c); void push_front(const QByteArray &a); inline int count() const { return d->size; } int length() const { return d->size; } bool isNull() const; private: operator QNoImplicitBoolCast() const; static Data shared_null; static Data shared_empty; Data *d; QByteArray(Data *dd, int , int ) : d(dd) {} void realloc(int alloc); void expand(int i); QByteArray nulTerminated() const; friend class QByteRef; friend class QString; friend QByteArray qUncompress(const uchar *data, int nbytes); public: typedef Data * DataPtr; inline DataPtr &data_ptr() { return d; } }; inline QByteArray::QByteArray(): d(&shared_null) { d->ref.ref(); } inline QByteArray::~QByteArray() { if (!d->ref.deref()) qFree(d); } inline int QByteArray::size() const { return d->size; } inline char QByteArray::at(int i) const { qt_noop(); return d->data[i]; } inline char QByteArray::operator[](int i) const { qt_noop(); return d->data[i]; } inline char QByteArray::operator[](uint i) const { qt_noop(); return d->data[i]; } inline bool QByteArray::isEmpty() const { return d->size == 0; } inline QByteArray::operator const char *() const { return d->data; } inline QByteArray::operator const void *() const { return d->data; } inline char *QByteArray::data() { detach(); return d->data; } inline const char *QByteArray::data() const { return d->data; } inline const char *QByteArray::constData() const { return d->data; } inline void QByteArray::detach() { if (d->ref != 1 || d->data != d->array) realloc(d->size); } inline bool QByteArray::isDetached() const { return d->ref == 1; } inline QByteArray::QByteArray(const QByteArray &a) : d(a.d) { d->ref.ref(); } inline int QByteArray::capacity() const { return d->alloc; } inline void QByteArray::reserve(int asize) { if (d->ref != 1 || asize > d->alloc) realloc(asize); } inline void QByteArray::squeeze() { if (d->size < d->alloc) realloc(d->size); } class QByteRef { QByteArray &a; int i; inline QByteRef(QByteArray &array, int idx) : a(array),i(idx) {} friend class QByteArray; public: inline operator char() const { return i < a.d->size ? a.d->data[i] : char(0); } inline QByteRef &operator=(char c) { if (i >= a.d->size) a.expand(i); else a.detach(); a.d->data[i] = c; return *this; } inline QByteRef &operator=(const QByteRef &c) { if (i >= a.d->size) a.expand(i); else a.detach(); a.d->data[i] = c.a.d->data[c.i]; return *this; } inline bool operator==(char c) const { return a.d->data[i] == c; } inline bool operator!=(char c) const { return a.d->data[i] != c; } inline bool operator>(char c) const { return a.d->data[i] > c; } inline bool operator>=(char c) const { return a.d->data[i] >= c; } inline bool operator<(char c) const { return a.d->data[i] < c; } inline bool operator<=(char c) const { return a.d->data[i] <= c; } }; inline QByteRef QByteArray::operator[](int i) { qt_noop(); return QByteRef(*this, i); } inline QByteRef QByteArray::operator[](uint i) { return QByteRef(*this, i); } inline QByteArray::iterator QByteArray::begin() { detach(); return d->data; } inline QByteArray::const_iterator QByteArray::begin() const { return d->data; } inline QByteArray::const_iterator QByteArray::constBegin() const { return d->data; } inline QByteArray::iterator QByteArray::end() { detach(); return d->data + d->size; } inline QByteArray::const_iterator QByteArray::end() const { return d->data + d->size; } inline QByteArray::const_iterator QByteArray::constEnd() const { return d->data + d->size; } inline QByteArray &QByteArray::operator+=(char c) { return append(c); } inline QByteArray &QByteArray::operator+=(const char *s) { return append(s); } inline QByteArray &QByteArray::operator+=(const QByteArray &a) { return append(a); } inline void QByteArray::push_back(char c) { append(c); } inline void QByteArray::push_back(const char *c) { append(c); } inline void QByteArray::push_back(const QByteArray &a) { append(a); } inline void QByteArray::push_front(char c) { prepend(c); } inline void QByteArray::push_front(const char *c) { prepend(c); } inline void QByteArray::push_front(const QByteArray &a) { prepend(a); } inline QBool QByteArray::contains(const QByteArray &a) const { return QBool(indexOf(a) != -1); } inline QBool QByteArray::contains(char c) const { return QBool(indexOf(c) != -1); } inline bool operator==(const QByteArray &a1, const QByteArray &a2) { return (a1.size() == a2.size()) && (memcmp(a1.constData(), a2.constData(), a1.size())==0); } inline bool operator==(const QByteArray &a1, const char *a2) { return a2 ? qstrcmp(a1,a2) == 0 : a1.isEmpty(); } inline bool operator==(const char *a1, const QByteArray &a2) { return a1 ? qstrcmp(a1,a2) == 0 : a2.isEmpty(); } inline bool operator!=(const QByteArray &a1, const QByteArray &a2) { return !(a1==a2); } inline bool operator!=(const QByteArray &a1, const char *a2) { return a2 ? qstrcmp(a1,a2) != 0 : !a1.isEmpty(); } inline bool operator!=(const char *a1, const QByteArray &a2) { return a1 ? qstrcmp(a1,a2) != 0 : !a2.isEmpty(); } inline bool operator<(const QByteArray &a1, const QByteArray &a2) { return qstrcmp(a1, a2) < 0; } inline bool operator<(const QByteArray &a1, const char *a2) { return qstrcmp(a1, a2) < 0; } inline bool operator<(const char *a1, const QByteArray &a2) { return qstrcmp(a1, a2) < 0; } inline bool operator<=(const QByteArray &a1, const QByteArray &a2) { return qstrcmp(a1, a2) <= 0; } inline bool operator<=(const QByteArray &a1, const char *a2) { return qstrcmp(a1, a2) <= 0; } inline bool operator<=(const char *a1, const QByteArray &a2) { return qstrcmp(a1, a2) <= 0; } inline bool operator>(const QByteArray &a1, const QByteArray &a2) { return qstrcmp(a1, a2) > 0; } inline bool operator>(const QByteArray &a1, const char *a2) { return qstrcmp(a1, a2) > 0; } inline bool operator>(const char *a1, const QByteArray &a2) { return qstrcmp(a1, a2) > 0; } inline bool operator>=(const QByteArray &a1, const QByteArray &a2) { return qstrcmp(a1, a2) >= 0; } inline bool operator>=(const QByteArray &a1, const char *a2) { return qstrcmp(a1, a2) >= 0; } inline bool operator>=(const char *a1, const QByteArray &a2) { return qstrcmp(a1, a2) >= 0; } inline const QByteArray operator+(const QByteArray &a1, const QByteArray &a2) { return QByteArray(a1) += a2; } inline const QByteArray operator+(const QByteArray &a1, const char *a2) { return QByteArray(a1) += a2; } inline const QByteArray operator+(const QByteArray &a1, char a2) { return QByteArray(a1) += a2; } inline const QByteArray operator+(const char *a1, const QByteArray &a2) { return QByteArray(a1) += a2; } inline const QByteArray operator+(char a1, const QByteArray &a2) { return QByteArray(&a1, 1) += a2; } inline QBool QByteArray::contains(const char *c) const { return QBool(indexOf(c) != -1); } inline QByteArray &QByteArray::replace(char before, const char *c) { return replace(&before, 1, c, qstrlen(c)); } inline QByteArray &QByteArray::replace(const QByteArray &before, const char *c) { return replace(before.constData(), before.size(), c, qstrlen(c)); } inline QByteArray &QByteArray::replace(const char *before, const char *after) { return replace(before, qstrlen(before), after, qstrlen(after)); } inline QByteArray &QByteArray::setNum(short n, int base) { return setNum(qlonglong(n), base); } inline QByteArray &QByteArray::setNum(ushort n, int base) { return setNum(qulonglong(n), base); } inline QByteArray &QByteArray::setNum(int n, int base) { return setNum(qlonglong(n), base); } inline QByteArray &QByteArray::setNum(uint n, int base) { return setNum(qulonglong(n), base); } inline QByteArray &QByteArray::setNum(float n, char f, int prec) { return setNum(double(n),f,prec); } QDataStream &operator<<(QDataStream &, const QByteArray &); QDataStream &operator>>(QDataStream &, QByteArray &); QByteArray qCompress(const uchar* data, int nbytes, int compressionLevel = -1); QByteArray qUncompress(const uchar* data, int nbytes); inline QByteArray qCompress(const QByteArray& data, int compressionLevel = -1) { return qCompress(reinterpret_cast(data.constData()), data.size(), compressionLevel); } inline QByteArray qUncompress(const QByteArray& data) { return qUncompress(reinterpret_cast(data.constData()), data.size()); } template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QByteArray)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QByteArray"; } }; template <> inline bool qIsDetached(QByteArray &t) { return t.isDetached(); } template <> inline void qSwap(QByteArray &value1, QByteArray &value2) { qSwap(value1.data_ptr(), value2.data_ptr()); } namespace std { template<> inline void swap< ::QByteArray>(::QByteArray &value1, ::QByteArray &value2) { swap(value1.data_ptr(), value2.data_ptr()); } } typedef std::basic_string QStdWString; typedef QtValidLicenseForCoreModule QtCoreModule; class QCharRef; class QRegExp; class QStringList; class QTextCodec; class QLatin1String; class QStringRef; template class QVector; class QString { public: inline QString(); QString(const QChar *unicode, int size); explicit QString(const QChar *unicode); QString(QChar c); QString(int size, QChar c); inline QString(const QLatin1String &latin1); inline QString(const QString &); inline ~QString(); QString &operator=(QChar c); QString &operator=(const QString &); inline QString &operator=(const QLatin1String &); inline void swap(QString &other) { qSwap(d, other.d); } inline int size() const { return d->size; } inline int count() const { return d->size; } inline int length() const; inline bool isEmpty() const; void resize(int size); QString &fill(QChar c, int size = -1); void truncate(int pos); void chop(int n); int capacity() const; inline void reserve(int size); inline void squeeze() { if (d->size < d->alloc || d->ref != 1) realloc(); d->capacity = 0;} inline const QChar *unicode() const; inline QChar *data(); inline const QChar *data() const; inline const QChar *constData() const; inline void detach(); inline bool isDetached() const; inline bool isSharedWith(const QString &other) const { return d == other.d; } void clear(); inline const QChar at(int i) const; const QChar operator[](int i) const; QCharRef operator[](int i); const QChar operator[](uint i) const; QCharRef operator[](uint i); QString arg(qlonglong a, int fieldwidth=0, int base=10, const QChar &fillChar = QLatin1Char(' ')) const __attribute__ ((warn_unused_result)); QString arg(qulonglong a, int fieldwidth=0, int base=10, const QChar &fillChar = QLatin1Char(' ')) const __attribute__ ((warn_unused_result)); QString arg(long a, int fieldwidth=0, int base=10, const QChar &fillChar = QLatin1Char(' ')) const __attribute__ ((warn_unused_result)); QString arg(ulong a, int fieldwidth=0, int base=10, const QChar &fillChar = QLatin1Char(' ')) const __attribute__ ((warn_unused_result)); QString arg(int a, int fieldWidth = 0, int base = 10, const QChar &fillChar = QLatin1Char(' ')) const __attribute__ ((warn_unused_result)); QString arg(uint a, int fieldWidth = 0, int base = 10, const QChar &fillChar = QLatin1Char(' ')) const __attribute__ ((warn_unused_result)); QString arg(short a, int fieldWidth = 0, int base = 10, const QChar &fillChar = QLatin1Char(' ')) const __attribute__ ((warn_unused_result)); QString arg(ushort a, int fieldWidth = 0, int base = 10, const QChar &fillChar = QLatin1Char(' ')) const __attribute__ ((warn_unused_result)); QString arg(double a, int fieldWidth = 0, char fmt = 'g', int prec = -1, const QChar &fillChar = QLatin1Char(' ')) const __attribute__ ((warn_unused_result)); QString arg(char a, int fieldWidth = 0, const QChar &fillChar = QLatin1Char(' ')) const __attribute__ ((warn_unused_result)); QString arg(QChar a, int fieldWidth = 0, const QChar &fillChar = QLatin1Char(' ')) const __attribute__ ((warn_unused_result)); QString arg(const QString &a, int fieldWidth = 0, const QChar &fillChar = QLatin1Char(' ')) const __attribute__ ((warn_unused_result)); QString arg(const QString &a1, const QString &a2) const __attribute__ ((warn_unused_result)); QString arg(const QString &a1, const QString &a2, const QString &a3) const __attribute__ ((warn_unused_result)); QString arg(const QString &a1, const QString &a2, const QString &a3, const QString &a4) const __attribute__ ((warn_unused_result)); QString arg(const QString &a1, const QString &a2, const QString &a3, const QString &a4, const QString &a5) const __attribute__ ((warn_unused_result)); QString arg(const QString &a1, const QString &a2, const QString &a3, const QString &a4, const QString &a5, const QString &a6) const __attribute__ ((warn_unused_result)); QString arg(const QString &a1, const QString &a2, const QString &a3, const QString &a4, const QString &a5, const QString &a6, const QString &a7) const __attribute__ ((warn_unused_result)); QString arg(const QString &a1, const QString &a2, const QString &a3, const QString &a4, const QString &a5, const QString &a6, const QString &a7, const QString &a8) const __attribute__ ((warn_unused_result)); QString arg(const QString &a1, const QString &a2, const QString &a3, const QString &a4, const QString &a5, const QString &a6, const QString &a7, const QString &a8, const QString &a9) const __attribute__ ((warn_unused_result)); QString &vsprintf(const char *format, va_list ap) __attribute__ ((format (printf, 2, 0))) ; QString &sprintf(const char *format, ...) __attribute__ ((format (printf, 2, 3))) ; int indexOf(QChar c, int from = 0, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int indexOf(const QString &s, int from = 0, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int indexOf(const QLatin1String &s, int from = 0, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int indexOf(const QStringRef &s, int from = 0, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int lastIndexOf(QChar c, int from = -1, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int lastIndexOf(const QString &s, int from = -1, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int lastIndexOf(const QLatin1String &s, int from = -1, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int lastIndexOf(const QStringRef &s, int from = -1, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; inline QBool contains(QChar c, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; inline QBool contains(const QString &s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; inline QBool contains(const QStringRef &s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int count(QChar c, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int count(const QString &s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int count(const QStringRef &s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int indexOf(const QRegExp &, int from = 0) const; int lastIndexOf(const QRegExp &, int from = -1) const; inline QBool contains(const QRegExp &rx) const { return QBool(indexOf(rx) != -1); } int count(const QRegExp &) const; int indexOf(QRegExp &, int from = 0) const; int lastIndexOf(QRegExp &, int from = -1) const; inline QBool contains(QRegExp &rx) const { return QBool(indexOf(rx) != -1); } enum SectionFlag { SectionDefault = 0x00, SectionSkipEmpty = 0x01, SectionIncludeLeadingSep = 0x02, SectionIncludeTrailingSep = 0x04, SectionCaseInsensitiveSeps = 0x08 }; typedef QFlags SectionFlags; QString section(QChar sep, int start, int end = -1, SectionFlags flags = SectionDefault) const; QString section(const QString &in_sep, int start, int end = -1, SectionFlags flags = SectionDefault) const; QString section(const QRegExp ®, int start, int end = -1, SectionFlags flags = SectionDefault) const; QString left(int n) const __attribute__ ((warn_unused_result)); QString right(int n) const __attribute__ ((warn_unused_result)); QString mid(int position, int n = -1) const __attribute__ ((warn_unused_result)); QStringRef leftRef(int n) const __attribute__ ((warn_unused_result)); QStringRef rightRef(int n) const __attribute__ ((warn_unused_result)); QStringRef midRef(int position, int n = -1) const __attribute__ ((warn_unused_result)); bool startsWith(const QString &s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; bool startsWith(const QStringRef &s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; bool startsWith(const QLatin1String &s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; bool startsWith(const QChar &c, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; bool endsWith(const QString &s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; bool endsWith(const QStringRef &s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; bool endsWith(const QLatin1String &s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; bool endsWith(const QChar &c, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; QString leftJustified(int width, QChar fill = QLatin1Char(' '), bool trunc = false) const __attribute__ ((warn_unused_result)); QString rightJustified(int width, QChar fill = QLatin1Char(' '), bool trunc = false) const __attribute__ ((warn_unused_result)); QString toLower() const __attribute__ ((warn_unused_result)); QString toUpper() const __attribute__ ((warn_unused_result)); QString toCaseFolded() const __attribute__ ((warn_unused_result)); QString trimmed() const __attribute__ ((warn_unused_result)); QString simplified() const __attribute__ ((warn_unused_result)); QString &insert(int i, QChar c); QString &insert(int i, const QChar *uc, int len); inline QString &insert(int i, const QString &s) { return insert(i, s.constData(), s.length()); } QString &insert(int i, const QLatin1String &s); QString &append(QChar c); QString &append(const QString &s); QString &append(const QStringRef &s); QString &append(const QLatin1String &s); inline QString &prepend(QChar c) { return insert(0, c); } inline QString &prepend(const QString &s) { return insert(0, s); } inline QString &prepend(const QLatin1String &s) { return insert(0, s); } inline QString &operator+=(QChar c) { if (d->ref != 1 || d->size + 1 > d->alloc) realloc(grow(d->size + 1)); d->data[d->size++] = c.unicode(); d->data[d->size] = '\0'; return *this; } inline QString &operator+=(QChar::SpecialCharacter c) { return append(QChar(c)); } inline QString &operator+=(const QString &s) { return append(s); } inline QString &operator+=(const QStringRef &s) { return append(s); } inline QString &operator+=(const QLatin1String &s) { return append(s); } QString &remove(int i, int len); QString &remove(QChar c, Qt::CaseSensitivity cs = Qt::CaseSensitive); QString &remove(const QString &s, Qt::CaseSensitivity cs = Qt::CaseSensitive); QString &replace(int i, int len, QChar after); QString &replace(int i, int len, const QChar *s, int slen); QString &replace(int i, int len, const QString &after); QString &replace(QChar before, QChar after, Qt::CaseSensitivity cs = Qt::CaseSensitive); QString &replace(const QChar *before, int blen, const QChar *after, int alen, Qt::CaseSensitivity cs = Qt::CaseSensitive); QString &replace(const QLatin1String &before, const QLatin1String &after, Qt::CaseSensitivity cs = Qt::CaseSensitive); QString &replace(const QLatin1String &before, const QString &after, Qt::CaseSensitivity cs = Qt::CaseSensitive); QString &replace(const QString &before, const QLatin1String &after, Qt::CaseSensitivity cs = Qt::CaseSensitive); QString &replace(const QString &before, const QString &after, Qt::CaseSensitivity cs = Qt::CaseSensitive); QString &replace(QChar c, const QString &after, Qt::CaseSensitivity cs = Qt::CaseSensitive); QString &replace(QChar c, const QLatin1String &after, Qt::CaseSensitivity cs = Qt::CaseSensitive); QString &replace(const QRegExp &rx, const QString &after); inline QString &remove(const QRegExp &rx) { return replace(rx, QString()); } enum SplitBehavior { KeepEmptyParts, SkipEmptyParts }; QStringList split(const QString &sep, SplitBehavior behavior = KeepEmptyParts, Qt::CaseSensitivity cs = Qt::CaseSensitive) const __attribute__ ((warn_unused_result)); QStringList split(const QChar &sep, SplitBehavior behavior = KeepEmptyParts, Qt::CaseSensitivity cs = Qt::CaseSensitive) const __attribute__ ((warn_unused_result)); QStringList split(const QRegExp &sep, SplitBehavior behavior = KeepEmptyParts) const __attribute__ ((warn_unused_result)); enum NormalizationForm { NormalizationForm_D, NormalizationForm_C, NormalizationForm_KD, NormalizationForm_KC }; QString normalized(NormalizationForm mode) const __attribute__ ((warn_unused_result)); QString normalized(NormalizationForm mode, QChar::UnicodeVersion version) const __attribute__ ((warn_unused_result)); QString repeated(int times) const; const ushort *utf16() const; QByteArray toAscii() const __attribute__ ((warn_unused_result)); QByteArray toLatin1() const __attribute__ ((warn_unused_result)); QByteArray toUtf8() const __attribute__ ((warn_unused_result)); QByteArray toLocal8Bit() const __attribute__ ((warn_unused_result)); QVector toUcs4() const __attribute__ ((warn_unused_result)); static QString fromAscii(const char *, int size = -1); static QString fromLatin1(const char *, int size = -1); static QString fromUtf8(const char *, int size = -1); static QString fromLocal8Bit(const char *, int size = -1); static QString fromUtf16(const ushort *, int size = -1); static QString fromUcs4(const uint *, int size = -1); static QString fromRawData(const QChar *, int size); int toWCharArray(wchar_t *array) const; static QString fromWCharArray(const wchar_t *, int size = -1); QString &setRawData(const QChar *unicode, int size); QString &setUnicode(const QChar *unicode, int size); inline QString &setUtf16(const ushort *utf16, int size); int compare(const QString &s) const; int compare(const QString &s, Qt::CaseSensitivity cs) const; int compare(const QLatin1String &other, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; static inline int compare(const QString &s1, const QString &s2) { return s1.compare(s2); } static inline int compare(const QString &s1, const QString &s2, Qt::CaseSensitivity cs) { return s1.compare(s2, cs); } static inline int compare(const QString& s1, const QLatin1String &s2, Qt::CaseSensitivity cs = Qt::CaseSensitive) { return s1.compare(s2, cs); } static inline int compare(const QLatin1String& s1, const QString &s2, Qt::CaseSensitivity cs = Qt::CaseSensitive) { return -s2.compare(s1, cs); } int compare(const QStringRef &s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; static int compare(const QString &s1, const QStringRef &s2, Qt::CaseSensitivity = Qt::CaseSensitive); int localeAwareCompare(const QString& s) const; static int localeAwareCompare(const QString& s1, const QString& s2) { return s1.localeAwareCompare(s2); } int localeAwareCompare(const QStringRef &s) const; static int localeAwareCompare(const QString& s1, const QStringRef& s2); short toShort(bool *ok=0, int base=10) const; ushort toUShort(bool *ok=0, int base=10) const; int toInt(bool *ok=0, int base=10) const; uint toUInt(bool *ok=0, int base=10) const; long toLong(bool *ok=0, int base=10) const; ulong toULong(bool *ok=0, int base=10) const; qlonglong toLongLong(bool *ok=0, int base=10) const; qulonglong toULongLong(bool *ok=0, int base=10) const; float toFloat(bool *ok=0) const; double toDouble(bool *ok=0) const; QString &setNum(short, int base=10); QString &setNum(ushort, int base=10); QString &setNum(int, int base=10); QString &setNum(uint, int base=10); QString &setNum(long, int base=10); QString &setNum(ulong, int base=10); QString &setNum(qlonglong, int base=10); QString &setNum(qulonglong, int base=10); QString &setNum(float, char f='g', int prec=6); QString &setNum(double, char f='g', int prec=6); static QString number(int, int base=10); static QString number(uint, int base=10); static QString number(long, int base=10); static QString number(ulong, int base=10); static QString number(qlonglong, int base=10); static QString number(qulonglong, int base=10); static QString number(double, char f='g', int prec=6); bool operator==(const QString &s) const; bool operator<(const QString &s) const; inline bool operator>(const QString &s) const { return s < *this; } inline bool operator!=(const QString &s) const { return !operator==(s); } inline bool operator<=(const QString &s) const { return !operator>(s); } inline bool operator>=(const QString &s) const { return !operator<(s); } bool operator==(const QLatin1String &s) const; bool operator<(const QLatin1String &s) const; bool operator>(const QLatin1String &s) const; inline bool operator!=(const QLatin1String &s) const { return !operator==(s); } inline bool operator<=(const QLatin1String &s) const { return !operator>(s); } inline bool operator>=(const QLatin1String &s) const { return !operator<(s); } inline QString(const char *ch) : d(fromAscii_helper(ch)) {} inline QString(const QByteArray &a) : d(fromAscii_helper(a.constData(), qstrnlen(a.constData(), a.size()))) {} inline QString &operator=(const char *ch) { return (*this = fromAscii(ch)); } inline QString &operator=(const QByteArray &a) { return (*this = fromAscii(a.constData(), qstrnlen(a.constData(), a.size()))); } inline QString &operator=(char c) { return (*this = QChar::fromAscii(c)); } inline QString &prepend(const char *s) { return prepend(QString::fromAscii(s)); } inline QString &prepend(const QByteArray &s) { return prepend(QString::fromAscii(s.constData(), qstrnlen(s.constData(), s.size()))); } inline QString &append(const char *s) { return append(QString::fromAscii(s)); } inline QString &append(const QByteArray &s) { return append(QString::fromAscii(s.constData(), qstrnlen(s.constData(), s.size()))); } inline QString &operator+=(const char *s) { return append(QString::fromAscii(s)); } inline QString &operator+=(const QByteArray &s) { return append(QString::fromAscii(s.constData(), qstrnlen(s.constData(), s.size()))); } inline QString &operator+=(char c) { return append(QChar::fromAscii(c)); } inline bool operator==(const char *s) const; inline bool operator!=(const char *s) const; inline bool operator<(const char *s) const; inline bool operator<=(const char *s2) const; inline bool operator>(const char *s2) const; inline bool operator>=(const char *s2) const; inline bool operator==(const QByteArray &s) const; inline bool operator!=(const QByteArray &s) const; inline bool operator<(const QByteArray &s) const { return *this < QString::fromAscii(s.constData(), s.size()); } inline bool operator>(const QByteArray &s) const { return *this > QString::fromAscii(s.constData(), s.size()); } inline bool operator<=(const QByteArray &s) const { return *this <= QString::fromAscii(s.constData(), s.size()); } inline bool operator>=(const QByteArray &s) const { return *this >= QString::fromAscii(s.constData(), s.size()); } typedef QChar *iterator; typedef const QChar *const_iterator; typedef iterator Iterator; typedef const_iterator ConstIterator; iterator begin(); const_iterator begin() const; const_iterator constBegin() const; iterator end(); const_iterator end() const; const_iterator constEnd() const; typedef const QChar & const_reference; typedef QChar & reference; typedef QChar value_type; inline void push_back(QChar c) { append(c); } inline void push_back(const QString &s) { append(s); } inline void push_front(QChar c) { prepend(c); } inline void push_front(const QString &s) { prepend(s); } static inline QString fromStdString(const std::string &s); inline std::string toStdString() const; static inline QString fromStdWString(const QStdWString &s); inline QStdWString toStdWString() const; struct Null { }; static const Null null; inline QString(const Null &): d(&shared_null) { d->ref.ref(); } inline QString &operator=(const Null &) { *this = QString(); return *this; } inline bool isNull() const { return d == &shared_null; } bool isSimpleText() const { if (!d->clean) updateProperties(); return d->simpletext; } bool isRightToLeft() const; QString(int size, Qt::Initialization); private: struct Data { QBasicAtomicInt ref; int alloc, size; ushort *data; ushort clean : 1; ushort simpletext : 1; ushort righttoleft : 1; ushort asciiCache : 1; ushort capacity : 1; ushort reserved : 11; ushort array[1]; }; static Data shared_null; static Data shared_empty; Data *d; QString(Data *dd, int ) : d(dd) {} static QTextCodec *codecForCStrings; static int grow(int); static void free(Data *); void realloc(); void realloc(int alloc); void expand(int i); void updateProperties() const; QString multiArg(int numArgs, const QString **args) const; static int compare_helper(const QChar *data1, int length1, const QChar *data2, int length2, Qt::CaseSensitivity cs = Qt::CaseSensitive); static int compare_helper(const QChar *data1, int length1, QLatin1String s2, Qt::CaseSensitivity cs = Qt::CaseSensitive); static int localeAwareCompare_helper(const QChar *data1, int length1, const QChar *data2, int length2); static Data *fromLatin1_helper(const char *str, int size = -1); static Data *fromAscii_helper(const char *str, int size = -1); void replace_helper(uint *indices, int nIndices, int blen, const QChar *after, int alen); friend class QCharRef; friend class QCFString; friend class QTextCodec; friend class QStringRef; friend struct QAbstractConcatenable; friend inline bool qStringComparisonHelper(const QString &s1, const char *s2); friend inline bool qStringComparisonHelper(const QStringRef &s1, const char *s2); public: typedef Data * DataPtr; inline DataPtr &data_ptr() { return d; } }; class QLatin1String { public: inline explicit QLatin1String(const char *s) : chars(s) {} inline QLatin1String &operator=(const QLatin1String &other) { chars = other.chars; return *this; } inline const char *latin1() const { return chars; } inline bool operator==(const QString &s) const { return s == *this; } inline bool operator!=(const QString &s) const { return s != *this; } inline bool operator>(const QString &s) const { return s < *this; } inline bool operator<(const QString &s) const { return s > *this; } inline bool operator>=(const QString &s) const { return s <= *this; } inline bool operator<=(const QString &s) const { return s >= *this; } inline bool operator==(const char *s) const { return QString::fromAscii(s) == *this; } inline bool operator!=(const char *s) const { return QString::fromAscii(s) != *this; } inline bool operator<(const char *s) const { return QString::fromAscii(s) > *this; } inline bool operator>(const char *s) const { return QString::fromAscii(s) < *this; } inline bool operator<=(const char *s) const { return QString::fromAscii(s) >= *this; } inline bool operator>=(const char *s) const { return QString::fromAscii(s) <= *this; } private: const char *chars; }; inline QString::QString(const QLatin1String &aLatin1) : d(fromLatin1_helper(aLatin1.latin1())) { } inline int QString::length() const { return d->size; } inline const QChar QString::at(int i) const { qt_noop(); return d->data[i]; } inline const QChar QString::operator[](int i) const { qt_noop(); return d->data[i]; } inline const QChar QString::operator[](uint i) const { qt_noop(); return d->data[i]; } inline bool QString::isEmpty() const { return d->size == 0; } inline const QChar *QString::unicode() const { return reinterpret_cast(d->data); } inline const QChar *QString::data() const { return reinterpret_cast(d->data); } inline QChar *QString::data() { detach(); return reinterpret_cast(d->data); } inline const QChar *QString::constData() const { return reinterpret_cast(d->data); } inline void QString::detach() { if (d->ref != 1 || d->data != d->array) realloc(); } inline bool QString::isDetached() const { return d->ref == 1; } inline QString &QString::operator=(const QLatin1String &s) { *this = fromLatin1(s.latin1()); return *this; } inline void QString::clear() { if (!isNull()) *this = QString(); } inline QString::QString(const QString &other) : d(other.d) { qt_noop(); d->ref.ref(); } inline int QString::capacity() const { return d->alloc; } inline QString &QString::setNum(short n, int base) { return setNum(qlonglong(n), base); } inline QString &QString::setNum(ushort n, int base) { return setNum(qulonglong(n), base); } inline QString &QString::setNum(int n, int base) { return setNum(qlonglong(n), base); } inline QString &QString::setNum(uint n, int base) { return setNum(qulonglong(n), base); } inline QString &QString::setNum(long n, int base) { return setNum(qlonglong(n), base); } inline QString &QString::setNum(ulong n, int base) { return setNum(qulonglong(n), base); } inline QString &QString::setNum(float n, char f, int prec) { return setNum(double(n),f,prec); } inline QString QString::arg(int a, int fieldWidth, int base, const QChar &fillChar) const { return arg(qlonglong(a), fieldWidth, base, fillChar); } inline QString QString::arg(uint a, int fieldWidth, int base, const QChar &fillChar) const { return arg(qulonglong(a), fieldWidth, base, fillChar); } inline QString QString::arg(long a, int fieldWidth, int base, const QChar &fillChar) const { return arg(qlonglong(a), fieldWidth, base, fillChar); } inline QString QString::arg(ulong a, int fieldWidth, int base, const QChar &fillChar) const { return arg(qulonglong(a), fieldWidth, base, fillChar); } inline QString QString::arg(short a, int fieldWidth, int base, const QChar &fillChar) const { return arg(qlonglong(a), fieldWidth, base, fillChar); } inline QString QString::arg(ushort a, int fieldWidth, int base, const QChar &fillChar) const { return arg(qulonglong(a), fieldWidth, base, fillChar); } inline QString QString::arg(const QString &a1, const QString &a2) const { const QString *args[2] = { &a1, &a2 }; return multiArg(2, args); } inline QString QString::arg(const QString &a1, const QString &a2, const QString &a3) const { const QString *args[3] = { &a1, &a2, &a3 }; return multiArg(3, args); } inline QString QString::arg(const QString &a1, const QString &a2, const QString &a3, const QString &a4) const { const QString *args[4] = { &a1, &a2, &a3, &a4 }; return multiArg(4, args); } inline QString QString::arg(const QString &a1, const QString &a2, const QString &a3, const QString &a4, const QString &a5) const { const QString *args[5] = { &a1, &a2, &a3, &a4, &a5 }; return multiArg(5, args); } inline QString QString::arg(const QString &a1, const QString &a2, const QString &a3, const QString &a4, const QString &a5, const QString &a6) const { const QString *args[6] = { &a1, &a2, &a3, &a4, &a5, &a6 }; return multiArg(6, args); } inline QString QString::arg(const QString &a1, const QString &a2, const QString &a3, const QString &a4, const QString &a5, const QString &a6, const QString &a7) const { const QString *args[7] = { &a1, &a2, &a3, &a4, &a5, &a6, &a7 }; return multiArg(7, args); } inline QString QString::arg(const QString &a1, const QString &a2, const QString &a3, const QString &a4, const QString &a5, const QString &a6, const QString &a7, const QString &a8) const { const QString *args[8] = { &a1, &a2, &a3, &a4, &a5, &a6, &a7, &a8 }; return multiArg(8, args); } inline QString QString::arg(const QString &a1, const QString &a2, const QString &a3, const QString &a4, const QString &a5, const QString &a6, const QString &a7, const QString &a8, const QString &a9) const { const QString *args[9] = { &a1, &a2, &a3, &a4, &a5, &a6, &a7, &a8, &a9 }; return multiArg(9, args); } inline QString QString::section(QChar asep, int astart, int aend, SectionFlags aflags) const { return section(QString(asep), astart, aend, aflags); } class QCharRef { QString &s; int i; inline QCharRef(QString &str, int idx) : s(str),i(idx) {} friend class QString; public: inline operator QChar() const { return i < s.d->size ? s.d->data[i] : 0; } inline QCharRef &operator=(const QChar &c) { if (i >= s.d->size) s.expand(i); else s.detach(); s.d->data[i] = c.unicode(); return *this; } inline QCharRef &operator=(char c) { return operator=(QChar::fromAscii(c)); } inline QCharRef &operator=(uchar c) { return operator=(QChar::fromAscii(c)); } inline QCharRef &operator=(const QCharRef &c) { return operator=(QChar(c)); } inline QCharRef &operator=(ushort rc) { return operator=(QChar(rc)); } inline QCharRef &operator=(short rc) { return operator=(QChar(rc)); } inline QCharRef &operator=(uint rc) { return operator=(QChar(rc)); } inline QCharRef &operator=(int rc) { return operator=(QChar(rc)); } inline bool isNull() const { return QChar(*this).isNull(); } inline bool isPrint() const { return QChar(*this).isPrint(); } inline bool isPunct() const { return QChar(*this).isPunct(); } inline bool isSpace() const { return QChar(*this).isSpace(); } inline bool isMark() const { return QChar(*this).isMark(); } inline bool isLetter() const { return QChar(*this).isLetter(); } inline bool isNumber() const { return QChar(*this).isNumber(); } inline bool isLetterOrNumber() { return QChar(*this).isLetterOrNumber(); } inline bool isDigit() const { return QChar(*this).isDigit(); } inline bool isLower() const { return QChar(*this).isLower(); } inline bool isUpper() const { return QChar(*this).isUpper(); } inline bool isTitleCase() const { return QChar(*this).isTitleCase(); } inline int digitValue() const { return QChar(*this).digitValue(); } QChar toLower() const { return QChar(*this).toLower(); } QChar toUpper() const { return QChar(*this).toUpper(); } QChar toTitleCase () const { return QChar(*this).toTitleCase(); } QChar::Category category() const { return QChar(*this).category(); } QChar::Direction direction() const { return QChar(*this).direction(); } QChar::Joining joining() const { return QChar(*this).joining(); } bool hasMirrored() const { return QChar(*this).hasMirrored(); } QChar mirroredChar() const { return QChar(*this).mirroredChar(); } QString decomposition() const { return QChar(*this).decomposition(); } QChar::Decomposition decompositionTag() const { return QChar(*this).decompositionTag(); } uchar combiningClass() const { return QChar(*this).combiningClass(); } QChar::UnicodeVersion unicodeVersion() const { return QChar(*this).unicodeVersion(); } inline uchar cell() const { return QChar(*this).cell(); } inline uchar row() const { return QChar(*this).row(); } inline void setCell(uchar cell); inline void setRow(uchar row); char toAscii() const { return QChar(*this).toAscii(); } char toLatin1() const { return QChar(*this).toLatin1(); } ushort unicode() const { return QChar(*this).unicode(); } ushort& unicode() { return s.data()[i].unicode(); } }; inline void QCharRef::setRow(uchar arow) { QChar(*this).setRow(arow); } inline void QCharRef::setCell(uchar acell) { QChar(*this).setCell(acell); } inline QString::QString() : d(&shared_null) { d->ref.ref(); } inline QString::~QString() { if (!d->ref.deref()) free(d); } inline void QString::reserve(int asize) { if (d->ref != 1 || asize > d->alloc) realloc(asize); d->capacity = 1;} inline QString &QString::setUtf16(const ushort *autf16, int asize) { return setUnicode(reinterpret_cast(autf16), asize); } inline QCharRef QString::operator[](int i) { qt_noop(); return QCharRef(*this, i); } inline QCharRef QString::operator[](uint i) { return QCharRef(*this, i); } inline QString::iterator QString::begin() { detach(); return reinterpret_cast(d->data); } inline QString::const_iterator QString::begin() const { return reinterpret_cast(d->data); } inline QString::const_iterator QString::constBegin() const { return reinterpret_cast(d->data); } inline QString::iterator QString::end() { detach(); return reinterpret_cast(d->data + d->size); } inline QString::const_iterator QString::end() const { return reinterpret_cast(d->data + d->size); } inline QString::const_iterator QString::constEnd() const { return reinterpret_cast(d->data + d->size); } inline QBool QString::contains(const QString &s, Qt::CaseSensitivity cs) const { return QBool(indexOf(s, 0, cs) != -1); } inline QBool QString::contains(const QStringRef &s, Qt::CaseSensitivity cs) const { return QBool(indexOf(s, 0, cs) != -1); } inline QBool QString::contains(QChar c, Qt::CaseSensitivity cs) const { return QBool(indexOf(c, 0, cs) != -1); } inline bool operator==(QString::Null, QString::Null) { return true; } inline bool operator==(QString::Null, const QString &s) { return s.isNull(); } inline bool operator==(const QString &s, QString::Null) { return s.isNull(); } inline bool operator!=(QString::Null, QString::Null) { return false; } inline bool operator!=(QString::Null, const QString &s) { return !s.isNull(); } inline bool operator!=(const QString &s, QString::Null) { return !s.isNull(); } inline bool qStringComparisonHelper(const QString &s1, const char *s2) { if (QString::codecForCStrings) return (s1 == QString::fromAscii(s2)); return (s1 == QLatin1String(s2)); } inline bool QString::operator==(const char *s) const { return qStringComparisonHelper(*this, s); } inline bool QString::operator!=(const char *s) const { return !qStringComparisonHelper(*this, s); } inline bool QString::operator<(const char *s) const { return *this < QString::fromAscii(s); } inline bool QString::operator>(const char *s) const { return *this > QString::fromAscii(s); } inline bool QString::operator<=(const char *s) const { return *this <= QString::fromAscii(s); } inline bool QString::operator>=(const char *s) const { return *this >= QString::fromAscii(s); } inline bool operator==(const char *s1, const QString &s2) { return qStringComparisonHelper(s2, s1); } inline bool operator!=(const char *s1, const QString &s2) { return !qStringComparisonHelper(s2, s1); } inline bool operator<(const char *s1, const QString &s2) { return (QString::fromAscii(s1) < s2); } inline bool operator>(const char *s1, const QString &s2) { return (QString::fromAscii(s1) > s2); } inline bool operator<=(const char *s1, const QString &s2) { return (QString::fromAscii(s1) <= s2); } inline bool operator>=(const char *s1, const QString &s2) { return (QString::fromAscii(s1) >= s2); } inline bool operator==(const char *s1, const QLatin1String &s2) { return QString::fromAscii(s1) == s2; } inline bool operator!=(const char *s1, const QLatin1String &s2) { return QString::fromAscii(s1) != s2; } inline bool operator<(const char *s1, const QLatin1String &s2) { return (QString::fromAscii(s1) < s2); } inline bool operator>(const char *s1, const QLatin1String &s2) { return (QString::fromAscii(s1) > s2); } inline bool operator<=(const char *s1, const QLatin1String &s2) { return (QString::fromAscii(s1) <= s2); } inline bool operator>=(const char *s1, const QLatin1String &s2) { return (QString::fromAscii(s1) >= s2); } inline bool operator==(const QLatin1String &s1, const QLatin1String &s2) { return (qstrcmp(s1.latin1(), s2.latin1()) == 0); } inline bool operator!=(const QLatin1String &s1, const QLatin1String &s2) { return (qstrcmp(s1.latin1(), s2.latin1()) != 0); } inline bool operator<(const QLatin1String &s1, const QLatin1String &s2) { return (qstrcmp(s1.latin1(), s2.latin1()) < 0); } inline bool operator<=(const QLatin1String &s1, const QLatin1String &s2) { return (qstrcmp(s1.latin1(), s2.latin1()) <= 0); } inline bool operator>(const QLatin1String &s1, const QLatin1String &s2) { return (qstrcmp(s1.latin1(), s2.latin1()) > 0); } inline bool operator>=(const QLatin1String &s1, const QLatin1String &s2) { return (qstrcmp(s1.latin1(), s2.latin1()) >= 0); } inline bool QString::operator==(const QByteArray &s) const { return qStringComparisonHelper(*this, s.constData()); } inline bool QString::operator!=(const QByteArray &s) const { return !qStringComparisonHelper(*this, s.constData()); } inline bool QByteArray::operator==(const QString &s) const { return qStringComparisonHelper(s, constData()); } inline bool QByteArray::operator!=(const QString &s) const { return !qStringComparisonHelper(s, constData()); } inline bool QByteArray::operator<(const QString &s) const { return QString::fromAscii(constData(), size()) < s; } inline bool QByteArray::operator>(const QString &s) const { return QString::fromAscii(constData(), size()) > s; } inline bool QByteArray::operator<=(const QString &s) const { return QString::fromAscii(constData(), size()) <= s; } inline bool QByteArray::operator>=(const QString &s) const { return QString::fromAscii(constData(), size()) >= s; } inline QByteArray &QByteArray::append(const QString &s) { return append(s.toAscii()); } inline QByteArray &QByteArray::insert(int i, const QString &s) { return insert(i, s.toAscii()); } inline QByteArray &QByteArray::replace(char c, const QString &after) { return replace(c, after.toAscii()); } inline QByteArray &QByteArray::replace(const QString &before, const char *after) { return replace(before.toAscii(), after); } inline QByteArray &QByteArray::replace(const QString &before, const QByteArray &after) { return replace(before.toAscii(), after); } inline QByteArray &QByteArray::operator+=(const QString &s) { return operator+=(s.toAscii()); } inline int QByteArray::indexOf(const QString &s, int from) const { return indexOf(s.toAscii(), from); } inline int QByteArray::lastIndexOf(const QString &s, int from) const { return lastIndexOf(s.toAscii(), from); } inline const QString operator+(const QString &s1, const QString &s2) { QString t(s1); t += s2; return t; } inline const QString operator+(const QString &s1, QChar s2) { QString t(s1); t += s2; return t; } inline const QString operator+(QChar s1, const QString &s2) { QString t(s1); t += s2; return t; } inline const QString operator+(const QString &s1, const char *s2) { QString t(s1); t += QString::fromAscii(s2); return t; } inline const QString operator+(const char *s1, const QString &s2) { QString t = QString::fromAscii(s1); t += s2; return t; } inline const QString operator+(char c, const QString &s) { QString t = s; t.prepend(QChar::fromAscii(c)); return t; } inline const QString operator+(const QString &s, char c) { QString t = s; t += QChar::fromAscii(c); return t; } inline const QString operator+(const QByteArray &ba, const QString &s) { QString t = QString::fromAscii(ba.constData(), qstrnlen(ba.constData(), ba.size())); t += s; return t; } inline const QString operator+(const QString &s, const QByteArray &ba) { QString t(s); t += QString::fromAscii(ba.constData(), qstrnlen(ba.constData(), ba.size())); return t; } inline std::string QString::toStdString() const { const QByteArray asc = toAscii(); return std::string(asc.constData(), asc.length()); } inline QString QString::fromStdString(const std::string &s) { return fromAscii(s.data(), int(s.size())); } inline QStdWString QString::toStdWString() const { QStdWString str; str.resize(length()); str.resize(toWCharArray(&(*str.begin()))); return str; } inline QString QString::fromStdWString(const QStdWString &s) { return fromWCharArray(s.data(), int(s.size())); } QDataStream &operator<<(QDataStream &, const QString &); QDataStream &operator>>(QDataStream &, QString &); template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QString)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QString"; } }; template <> inline bool qIsDetached(QString &t) { return t.isDetached(); } template <> inline void qSwap(QString &value1, QString &value2) { qSwap(value1.data_ptr(), value2.data_ptr()); } namespace std { template<> inline void swap< ::QString>(::QString &value1, ::QString &value2) { swap(value1.data_ptr(), value2.data_ptr()); } } inline QFlags operator|(QString::SectionFlags::enum_type f1, QString::SectionFlags::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(QString::SectionFlags::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(QString::SectionFlags::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } class QStringRef { const QString *m_string; int m_position; int m_size; public: inline QStringRef():m_string(0), m_position(0), m_size(0){} inline QStringRef(const QString *string, int position, int size); inline QStringRef(const QString *string); inline QStringRef(const QStringRef &other) :m_string(other.m_string), m_position(other.m_position), m_size(other.m_size) {} inline ~QStringRef(){} inline const QString *string() const { return m_string; } inline int position() const { return m_position; } inline int size() const { return m_size; } inline int count() const { return m_size; } inline int length() const { return m_size; } inline QStringRef &operator=(const QStringRef &other) { m_string = other.m_string; m_position = other.m_position; m_size = other.m_size; return *this; } int indexOf(const QString &str, int from = 0, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int indexOf(QChar ch, int from = 0, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int indexOf(QLatin1String str, int from = 0, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int indexOf(const QStringRef &str, int from = 0, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int lastIndexOf(const QString &str, int from = -1, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int lastIndexOf(QChar ch, int from = -1, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int lastIndexOf(QLatin1String str, int from = -1, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int lastIndexOf(const QStringRef &str, int from = -1, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; inline QBool contains(const QString &str, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; inline QBool contains(QChar ch, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; inline QBool contains(QLatin1String str, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; inline QBool contains(const QStringRef &str, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int count(const QString &s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int count(QChar c, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int count(const QStringRef &s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; bool startsWith(const QString &s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; bool startsWith(QLatin1String s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; bool startsWith(QChar c, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; bool startsWith(const QStringRef &c, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; bool endsWith(const QString &s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; bool endsWith(QLatin1String s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; bool endsWith(QChar c, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; bool endsWith(const QStringRef &c, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; inline QStringRef &operator=(const QString *string); inline const QChar *unicode() const { if (!m_string) return reinterpret_cast(QString::shared_null.data); return m_string->unicode() + m_position; } inline const QChar *data() const { return unicode(); } inline const QChar *constData() const { return unicode(); } QByteArray toAscii() const __attribute__ ((warn_unused_result)); QByteArray toLatin1() const __attribute__ ((warn_unused_result)); QByteArray toUtf8() const __attribute__ ((warn_unused_result)); QByteArray toLocal8Bit() const __attribute__ ((warn_unused_result)); QVector toUcs4() const __attribute__ ((warn_unused_result)); inline void clear() { m_string = 0; m_position = m_size = 0; } QString toString() const; inline bool isEmpty() const { return m_size == 0; } inline bool isNull() const { return m_string == 0 || m_string->isNull(); } QStringRef appendTo(QString *string) const; inline const QChar at(int i) const { qt_noop(); return m_string->at(i + m_position); } int compare(const QString &s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int compare(const QStringRef &s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; int compare(QLatin1String s, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; static int compare(const QStringRef &s1, const QString &s2, Qt::CaseSensitivity = Qt::CaseSensitive); static int compare(const QStringRef &s1, const QStringRef &s2, Qt::CaseSensitivity = Qt::CaseSensitive); static int compare(const QStringRef &s1, QLatin1String s2, Qt::CaseSensitivity cs = Qt::CaseSensitive); int localeAwareCompare(const QString &s) const; int localeAwareCompare(const QStringRef &s) const; static int localeAwareCompare(const QStringRef &s1, const QString &s2); static int localeAwareCompare(const QStringRef &s1, const QStringRef &s2); }; inline QStringRef &QStringRef::operator=(const QString *aString) { m_string = aString; m_position = 0; m_size = aString?aString->size():0; return *this; } inline QStringRef::QStringRef(const QString *aString, int aPosition, int aSize) :m_string(aString), m_position(aPosition), m_size(aSize){} inline QStringRef::QStringRef(const QString *aString) :m_string(aString), m_position(0), m_size(aString?aString->size() : 0){} bool operator==(const QStringRef &s1,const QStringRef &s2); inline bool operator!=(const QStringRef &s1,const QStringRef &s2) { return !(s1 == s2); } bool operator==(const QString &s1,const QStringRef &s2); inline bool operator!=(const QString &s1,const QStringRef &s2) { return !(s1 == s2); } inline bool operator==(const QStringRef &s1,const QString &s2) { return s2 == s1; } inline bool operator!=(const QStringRef &s1,const QString &s2) { return s2 != s1; } bool operator==(const QLatin1String &s1, const QStringRef &s2); inline bool operator!=(const QLatin1String &s1,const QStringRef &s2) { return !(s1 == s2); } inline bool operator==(const QStringRef &s1,const QLatin1String &s2) { return s2 == s1; } inline bool operator!=(const QStringRef &s1,const QLatin1String &s2) { return s2 != s1; } bool operator<(const QStringRef &s1,const QStringRef &s2); inline bool operator>(const QStringRef &s1, const QStringRef &s2) { return s2 < s1; } inline bool operator<=(const QStringRef &s1, const QStringRef &s2) { return !(s1 > s2); } inline bool operator>=(const QStringRef &s1, const QStringRef &s2) { return !(s1 < s2); } inline bool qStringComparisonHelper(const QStringRef &s1, const char *s2) { if (QString::codecForCStrings) return (s1 == QString::fromAscii(s2)); return (s1 == QLatin1String(s2)); } inline bool operator==(const char *s1, const QStringRef &s2) { return qStringComparisonHelper(s2, s1); } inline bool operator==(const QStringRef &s1, const char *s2) { return qStringComparisonHelper(s1, s2); } inline bool operator!=(const char *s1, const QStringRef &s2) { return !qStringComparisonHelper(s2, s1); } inline bool operator!=(const QStringRef &s1, const char *s2) { return !qStringComparisonHelper(s1, s2); } inline int QString::compare(const QStringRef &s, Qt::CaseSensitivity cs) const { return QString::compare_helper(constData(), length(), s.constData(), s.length(), cs); } inline int QString::compare(const QString &s1, const QStringRef &s2, Qt::CaseSensitivity cs) { return QString::compare_helper(s1.constData(), s1.length(), s2.constData(), s2.length(), cs); } inline int QStringRef::compare(const QString &s, Qt::CaseSensitivity cs) const { return QString::compare_helper(constData(), length(), s.constData(), s.length(), cs); } inline int QStringRef::compare(const QStringRef &s, Qt::CaseSensitivity cs) const { return QString::compare_helper(constData(), length(), s.constData(), s.length(), cs); } inline int QStringRef::compare(QLatin1String s, Qt::CaseSensitivity cs) const { return QString::compare_helper(constData(), length(), s, cs); } inline int QStringRef::compare(const QStringRef &s1, const QString &s2, Qt::CaseSensitivity cs) { return QString::compare_helper(s1.constData(), s1.length(), s2.constData(), s2.length(), cs); } inline int QStringRef::compare(const QStringRef &s1, const QStringRef &s2, Qt::CaseSensitivity cs) { return QString::compare_helper(s1.constData(), s1.length(), s2.constData(), s2.length(), cs); } inline int QStringRef::compare(const QStringRef &s1, QLatin1String s2, Qt::CaseSensitivity cs) { return QString::compare_helper(s1.constData(), s1.length(), s2, cs); } inline int QString::localeAwareCompare(const QStringRef &s) const { return localeAwareCompare_helper(constData(), length(), s.constData(), s.length()); } inline int QString::localeAwareCompare(const QString& s1, const QStringRef& s2) { return localeAwareCompare_helper(s1.constData(), s1.length(), s2.constData(), s2.length()); } inline int QStringRef::localeAwareCompare(const QString &s) const { return QString::localeAwareCompare_helper(constData(), length(), s.constData(), s.length()); } inline int QStringRef::localeAwareCompare(const QStringRef &s) const { return QString::localeAwareCompare_helper(constData(), length(), s.constData(), s.length()); } inline int QStringRef::localeAwareCompare(const QStringRef &s1, const QString &s2) { return QString::localeAwareCompare_helper(s1.constData(), s1.length(), s2.constData(), s2.length()); } inline int QStringRef::localeAwareCompare(const QStringRef &s1, const QStringRef &s2) { return QString::localeAwareCompare_helper(s1.constData(), s1.length(), s2.constData(), s2.length()); } inline QBool QStringRef::contains(const QString &s, Qt::CaseSensitivity cs) const { return QBool(indexOf(s, 0, cs) != -1); } inline QBool QStringRef::contains(QLatin1String s, Qt::CaseSensitivity cs) const { return QBool(indexOf(s, 0, cs) != -1); } inline QBool QStringRef::contains(QChar c, Qt::CaseSensitivity cs) const { return QBool(indexOf(c, 0, cs) != -1); } inline QBool QStringRef::contains(const QStringRef &s, Qt::CaseSensitivity cs) const { return QBool(indexOf(s, 0, cs) != -1); } typedef QtValidLicenseForCoreModule QtCoreModule; namespace std __attribute__ ((__visibility__ ("default"))) { class locale { public: typedef int category; class facet; class id; class _Impl; friend class facet; friend class _Impl; template friend bool has_facet(const locale&) throw(); template friend const _Facet& use_facet(const locale&); template friend struct __use_cache; static const category none = 0; static const category ctype = 1L << 0; static const category numeric = 1L << 1; static const category collate = 1L << 2; static const category time = 1L << 3; static const category monetary = 1L << 4; static const category messages = 1L << 5; static const category all = (ctype | numeric | collate | time | monetary | messages); locale() throw(); locale(const locale& __other) throw(); explicit locale(const char* __s); locale(const locale& __base, const char* __s, category __cat); locale(const locale& __base, const locale& __add, category __cat); template locale(const locale& __other, _Facet* __f); ~locale() throw(); const locale& operator=(const locale& __other) throw(); template locale combine(const locale& __other) const; string name() const; bool operator==(const locale& __other) const throw(); bool operator!=(const locale& __other) const throw() { return !(this->operator==(__other)); } template bool operator()(const basic_string<_Char, _Traits, _Alloc>& __s1, const basic_string<_Char, _Traits, _Alloc>& __s2) const; static locale global(const locale&); static const locale& classic(); private: _Impl* _M_impl; static _Impl* _S_classic; static _Impl* _S_global; static const char* const* const _S_categories; enum { _S_categories_size = 6 + 6 }; static __gthread_once_t _S_once; explicit locale(_Impl*) throw(); static void _S_initialize(); static void _S_initialize_once() throw(); static category _S_normalize_category(category); void _M_coalesce(const locale& __base, const locale& __add, category __cat); }; class locale::facet { private: friend class locale; friend class locale::_Impl; mutable _Atomic_word _M_refcount; static __c_locale _S_c_locale; static const char _S_c_name[2]; static __gthread_once_t _S_once; static void _S_initialize_once(); protected: explicit facet(size_t __refs = 0) throw() : _M_refcount(__refs ? 1 : 0) { } virtual ~facet(); static void _S_create_c_locale(__c_locale& __cloc, const char* __s, __c_locale __old = 0); static __c_locale _S_clone_c_locale(__c_locale& __cloc) throw(); static void _S_destroy_c_locale(__c_locale& __cloc); static __c_locale _S_lc_ctype_c_locale(__c_locale __cloc, const char* __s); static __c_locale _S_get_c_locale(); __attribute__ ((__const__)) static const char* _S_get_c_name() throw(); private: void _M_add_reference() const throw() { __gnu_cxx::__atomic_add_dispatch(&_M_refcount, 1); } void _M_remove_reference() const throw() { ; if (__gnu_cxx::__exchange_and_add_dispatch(&_M_refcount, -1) == 1) { ; try { delete this; } catch(...) { } } } facet(const facet&); facet& operator=(const facet&); }; class locale::id { private: friend class locale; friend class locale::_Impl; template friend const _Facet& use_facet(const locale&); template friend bool has_facet(const locale&) throw(); mutable size_t _M_index; static _Atomic_word _S_refcount; void operator=(const id&); id(const id&); public: id() { } size_t _M_id() const throw(); }; class locale::_Impl { public: friend class locale; friend class locale::facet; template friend bool has_facet(const locale&) throw(); template friend const _Facet& use_facet(const locale&); template friend struct __use_cache; private: _Atomic_word _M_refcount; const facet** _M_facets; size_t _M_facets_size; const facet** _M_caches; char** _M_names; static const locale::id* const _S_id_ctype[]; static const locale::id* const _S_id_numeric[]; static const locale::id* const _S_id_collate[]; static const locale::id* const _S_id_time[]; static const locale::id* const _S_id_monetary[]; static const locale::id* const _S_id_messages[]; static const locale::id* const* const _S_facet_categories[]; void _M_add_reference() throw() { __gnu_cxx::__atomic_add_dispatch(&_M_refcount, 1); } void _M_remove_reference() throw() { ; if (__gnu_cxx::__exchange_and_add_dispatch(&_M_refcount, -1) == 1) { ; try { delete this; } catch(...) { } } } _Impl(const _Impl&, size_t); _Impl(const char*, size_t); _Impl(size_t) throw(); ~_Impl() throw(); _Impl(const _Impl&); void operator=(const _Impl&); bool _M_check_same_name() { bool __ret = true; if (_M_names[1]) for (size_t __i = 0; __ret && __i < _S_categories_size - 1; ++__i) __ret = __builtin_strcmp(_M_names[__i], _M_names[__i + 1]) == 0; return __ret; } void _M_replace_categories(const _Impl*, category); void _M_replace_category(const _Impl*, const locale::id* const*); void _M_replace_facet(const _Impl*, const locale::id*); void _M_install_facet(const locale::id*, const facet*); template void _M_init_facet(_Facet* __facet) { _M_install_facet(&_Facet::id, __facet); } void _M_install_cache(const facet*, size_t); }; template bool has_facet(const locale& __loc) throw(); template const _Facet& use_facet(const locale& __loc); template class collate : public locale::facet { public: typedef _CharT char_type; typedef basic_string<_CharT> string_type; protected: __c_locale _M_c_locale_collate; public: static locale::id id; explicit collate(size_t __refs = 0) : facet(__refs), _M_c_locale_collate(_S_get_c_locale()) { } explicit collate(__c_locale __cloc, size_t __refs = 0) : facet(__refs), _M_c_locale_collate(_S_clone_c_locale(__cloc)) { } int compare(const _CharT* __lo1, const _CharT* __hi1, const _CharT* __lo2, const _CharT* __hi2) const { return this->do_compare(__lo1, __hi1, __lo2, __hi2); } string_type transform(const _CharT* __lo, const _CharT* __hi) const { return this->do_transform(__lo, __hi); } long hash(const _CharT* __lo, const _CharT* __hi) const { return this->do_hash(__lo, __hi); } int _M_compare(const _CharT*, const _CharT*) const throw(); size_t _M_transform(_CharT*, const _CharT*, size_t) const throw(); protected: virtual ~collate() { _S_destroy_c_locale(_M_c_locale_collate); } virtual int do_compare(const _CharT* __lo1, const _CharT* __hi1, const _CharT* __lo2, const _CharT* __hi2) const; virtual string_type do_transform(const _CharT* __lo, const _CharT* __hi) const; virtual long do_hash(const _CharT* __lo, const _CharT* __hi) const; }; template locale::id collate<_CharT>::id; template<> int collate::_M_compare(const char*, const char*) const throw(); template<> size_t collate::_M_transform(char*, const char*, size_t) const throw(); template<> int collate::_M_compare(const wchar_t*, const wchar_t*) const throw(); template<> size_t collate::_M_transform(wchar_t*, const wchar_t*, size_t) const throw(); template class collate_byname : public collate<_CharT> { public: typedef _CharT char_type; typedef basic_string<_CharT> string_type; explicit collate_byname(const char* __s, size_t __refs = 0) : collate<_CharT>(__refs) { if (__builtin_strcmp(__s, "C") != 0 && __builtin_strcmp(__s, "POSIX") != 0) { this->_S_destroy_c_locale(this->_M_c_locale_collate); this->_S_create_c_locale(this->_M_c_locale_collate, __s); } } protected: virtual ~collate_byname() { } }; } namespace std __attribute__ ((__visibility__ ("default"))) { template locale:: locale(const locale& __other, _Facet* __f) { _M_impl = new _Impl(*__other._M_impl, 1); try { _M_impl->_M_install_facet(&_Facet::id, __f); } catch(...) { _M_impl->_M_remove_reference(); throw; } delete [] _M_impl->_M_names[0]; _M_impl->_M_names[0] = 0; } template locale locale:: combine(const locale& __other) const { _Impl* __tmp = new _Impl(*_M_impl, 1); try { __tmp->_M_replace_facet(__other._M_impl, &_Facet::id); } catch(...) { __tmp->_M_remove_reference(); throw; } return locale(__tmp); } template bool locale:: operator()(const basic_string<_CharT, _Traits, _Alloc>& __s1, const basic_string<_CharT, _Traits, _Alloc>& __s2) const { typedef std::collate<_CharT> __collate_type; const __collate_type& __collate = use_facet<__collate_type>(*this); return (__collate.compare(__s1.data(), __s1.data() + __s1.length(), __s2.data(), __s2.data() + __s2.length()) < 0); } template bool has_facet(const locale& __loc) throw() { const size_t __i = _Facet::id._M_id(); const locale::facet** __facets = __loc._M_impl->_M_facets; return (__i < __loc._M_impl->_M_facets_size && dynamic_cast(__facets[__i])); } template const _Facet& use_facet(const locale& __loc) { const size_t __i = _Facet::id._M_id(); const locale::facet** __facets = __loc._M_impl->_M_facets; if (__i >= __loc._M_impl->_M_facets_size || !__facets[__i]) __throw_bad_cast(); return dynamic_cast(*__facets[__i]); } template int collate<_CharT>::_M_compare(const _CharT*, const _CharT*) const throw () { return 0; } template size_t collate<_CharT>::_M_transform(_CharT*, const _CharT*, size_t) const throw () { return 0; } template int collate<_CharT>:: do_compare(const _CharT* __lo1, const _CharT* __hi1, const _CharT* __lo2, const _CharT* __hi2) const { const string_type __one(__lo1, __hi1); const string_type __two(__lo2, __hi2); const _CharT* __p = __one.c_str(); const _CharT* __pend = __one.data() + __one.length(); const _CharT* __q = __two.c_str(); const _CharT* __qend = __two.data() + __two.length(); for (;;) { const int __res = _M_compare(__p, __q); if (__res) return __res; __p += char_traits<_CharT>::length(__p); __q += char_traits<_CharT>::length(__q); if (__p == __pend && __q == __qend) return 0; else if (__p == __pend) return -1; else if (__q == __qend) return 1; __p++; __q++; } } template typename collate<_CharT>::string_type collate<_CharT>:: do_transform(const _CharT* __lo, const _CharT* __hi) const { string_type __ret; const string_type __str(__lo, __hi); const _CharT* __p = __str.c_str(); const _CharT* __pend = __str.data() + __str.length(); size_t __len = (__hi - __lo) * 2; _CharT* __c = new _CharT[__len]; try { for (;;) { size_t __res = _M_transform(__c, __p, __len); if (__res >= __len) { __len = __res + 1; delete [] __c, __c = 0; __c = new _CharT[__len]; __res = _M_transform(__c, __p, __len); } __ret.append(__c, __res); __p += char_traits<_CharT>::length(__p); if (__p == __pend) break; __p++; __ret.push_back(_CharT()); } } catch(...) { delete [] __c; throw; } delete [] __c; return __ret; } template long collate<_CharT>:: do_hash(const _CharT* __lo, const _CharT* __hi) const { unsigned long __val = 0; for (; __lo < __hi; ++__lo) __val = *__lo + ((__val << 7) | (__val >> (__gnu_cxx::__numeric_traits:: __digits - 7))); return static_cast(__val); } extern template class collate; extern template class collate_byname; extern template const collate& use_facet >(const locale&); extern template bool has_facet >(const locale&); extern template class collate; extern template class collate_byname; extern template const collate& use_facet >(const locale&); extern template bool has_facet >(const locale&); } namespace std __attribute__ ((__visibility__ ("default"))) { enum _Ios_Fmtflags { _S_boolalpha = 1L << 0, _S_dec = 1L << 1, _S_fixed = 1L << 2, _S_hex = 1L << 3, _S_internal = 1L << 4, _S_left = 1L << 5, _S_oct = 1L << 6, _S_right = 1L << 7, _S_scientific = 1L << 8, _S_showbase = 1L << 9, _S_showpoint = 1L << 10, _S_showpos = 1L << 11, _S_skipws = 1L << 12, _S_unitbuf = 1L << 13, _S_uppercase = 1L << 14, _S_adjustfield = _S_left | _S_right | _S_internal, _S_basefield = _S_dec | _S_oct | _S_hex, _S_floatfield = _S_scientific | _S_fixed, _S_ios_fmtflags_end = 1L << 16 }; inline _Ios_Fmtflags operator&(_Ios_Fmtflags __a, _Ios_Fmtflags __b) { return _Ios_Fmtflags(static_cast(__a) & static_cast(__b)); } inline _Ios_Fmtflags operator|(_Ios_Fmtflags __a, _Ios_Fmtflags __b) { return _Ios_Fmtflags(static_cast(__a) | static_cast(__b)); } inline _Ios_Fmtflags operator^(_Ios_Fmtflags __a, _Ios_Fmtflags __b) { return _Ios_Fmtflags(static_cast(__a) ^ static_cast(__b)); } inline _Ios_Fmtflags operator~(_Ios_Fmtflags __a) { return _Ios_Fmtflags(~static_cast(__a)); } inline const _Ios_Fmtflags& operator|=(_Ios_Fmtflags& __a, _Ios_Fmtflags __b) { return __a = __a | __b; } inline const _Ios_Fmtflags& operator&=(_Ios_Fmtflags& __a, _Ios_Fmtflags __b) { return __a = __a & __b; } inline const _Ios_Fmtflags& operator^=(_Ios_Fmtflags& __a, _Ios_Fmtflags __b) { return __a = __a ^ __b; } enum _Ios_Openmode { _S_app = 1L << 0, _S_ate = 1L << 1, _S_bin = 1L << 2, _S_in = 1L << 3, _S_out = 1L << 4, _S_trunc = 1L << 5, _S_ios_openmode_end = 1L << 16 }; inline _Ios_Openmode operator&(_Ios_Openmode __a, _Ios_Openmode __b) { return _Ios_Openmode(static_cast(__a) & static_cast(__b)); } inline _Ios_Openmode operator|(_Ios_Openmode __a, _Ios_Openmode __b) { return _Ios_Openmode(static_cast(__a) | static_cast(__b)); } inline _Ios_Openmode operator^(_Ios_Openmode __a, _Ios_Openmode __b) { return _Ios_Openmode(static_cast(__a) ^ static_cast(__b)); } inline _Ios_Openmode operator~(_Ios_Openmode __a) { return _Ios_Openmode(~static_cast(__a)); } inline const _Ios_Openmode& operator|=(_Ios_Openmode& __a, _Ios_Openmode __b) { return __a = __a | __b; } inline const _Ios_Openmode& operator&=(_Ios_Openmode& __a, _Ios_Openmode __b) { return __a = __a & __b; } inline const _Ios_Openmode& operator^=(_Ios_Openmode& __a, _Ios_Openmode __b) { return __a = __a ^ __b; } enum _Ios_Iostate { _S_goodbit = 0, _S_badbit = 1L << 0, _S_eofbit = 1L << 1, _S_failbit = 1L << 2, _S_ios_iostate_end = 1L << 16 }; inline _Ios_Iostate operator&(_Ios_Iostate __a, _Ios_Iostate __b) { return _Ios_Iostate(static_cast(__a) & static_cast(__b)); } inline _Ios_Iostate operator|(_Ios_Iostate __a, _Ios_Iostate __b) { return _Ios_Iostate(static_cast(__a) | static_cast(__b)); } inline _Ios_Iostate operator^(_Ios_Iostate __a, _Ios_Iostate __b) { return _Ios_Iostate(static_cast(__a) ^ static_cast(__b)); } inline _Ios_Iostate operator~(_Ios_Iostate __a) { return _Ios_Iostate(~static_cast(__a)); } inline const _Ios_Iostate& operator|=(_Ios_Iostate& __a, _Ios_Iostate __b) { return __a = __a | __b; } inline const _Ios_Iostate& operator&=(_Ios_Iostate& __a, _Ios_Iostate __b) { return __a = __a & __b; } inline const _Ios_Iostate& operator^=(_Ios_Iostate& __a, _Ios_Iostate __b) { return __a = __a ^ __b; } enum _Ios_Seekdir { _S_beg = 0, _S_cur = 1, _S_end = 2, _S_ios_seekdir_end = 1L << 16 }; class ios_base { public: class failure : public exception { public: explicit failure(const string& __str) throw(); virtual ~failure() throw(); virtual const char* what() const throw(); private: string _M_msg; }; typedef _Ios_Fmtflags fmtflags; static const fmtflags boolalpha = _S_boolalpha; static const fmtflags dec = _S_dec; static const fmtflags fixed = _S_fixed; static const fmtflags hex = _S_hex; static const fmtflags internal = _S_internal; static const fmtflags left = _S_left; static const fmtflags oct = _S_oct; static const fmtflags right = _S_right; static const fmtflags scientific = _S_scientific; static const fmtflags showbase = _S_showbase; static const fmtflags showpoint = _S_showpoint; static const fmtflags showpos = _S_showpos; static const fmtflags skipws = _S_skipws; static const fmtflags unitbuf = _S_unitbuf; static const fmtflags uppercase = _S_uppercase; static const fmtflags adjustfield = _S_adjustfield; static const fmtflags basefield = _S_basefield; static const fmtflags floatfield = _S_floatfield; typedef _Ios_Iostate iostate; static const iostate badbit = _S_badbit; static const iostate eofbit = _S_eofbit; static const iostate failbit = _S_failbit; static const iostate goodbit = _S_goodbit; typedef _Ios_Openmode openmode; static const openmode app = _S_app; static const openmode ate = _S_ate; static const openmode binary = _S_bin; static const openmode in = _S_in; static const openmode out = _S_out; static const openmode trunc = _S_trunc; typedef _Ios_Seekdir seekdir; static const seekdir beg = _S_beg; static const seekdir cur = _S_cur; static const seekdir end = _S_end; typedef int io_state; typedef int open_mode; typedef int seek_dir; typedef std::streampos streampos; typedef std::streamoff streamoff; enum event { erase_event, imbue_event, copyfmt_event }; typedef void (*event_callback) (event, ios_base&, int); void register_callback(event_callback __fn, int __index); protected: streamsize _M_precision; streamsize _M_width; fmtflags _M_flags; iostate _M_exception; iostate _M_streambuf_state; struct _Callback_list { _Callback_list* _M_next; ios_base::event_callback _M_fn; int _M_index; _Atomic_word _M_refcount; _Callback_list(ios_base::event_callback __fn, int __index, _Callback_list* __cb) : _M_next(__cb), _M_fn(__fn), _M_index(__index), _M_refcount(0) { } void _M_add_reference() { __gnu_cxx::__atomic_add_dispatch(&_M_refcount, 1); } int _M_remove_reference() { ; int __res = __gnu_cxx::__exchange_and_add_dispatch(&_M_refcount, -1); if (__res == 0) { ; } return __res; } }; _Callback_list* _M_callbacks; void _M_call_callbacks(event __ev) throw(); void _M_dispose_callbacks(void) throw(); struct _Words { void* _M_pword; long _M_iword; _Words() : _M_pword(0), _M_iword(0) { } }; _Words _M_word_zero; enum { _S_local_word_size = 8 }; _Words _M_local_word[_S_local_word_size]; int _M_word_size; _Words* _M_word; _Words& _M_grow_words(int __index, bool __iword); locale _M_ios_locale; void _M_init() throw(); public: class Init { friend class ios_base; public: Init(); ~Init(); private: static _Atomic_word _S_refcount; static bool _S_synced_with_stdio; }; fmtflags flags() const { return _M_flags; } fmtflags flags(fmtflags __fmtfl) { fmtflags __old = _M_flags; _M_flags = __fmtfl; return __old; } fmtflags setf(fmtflags __fmtfl) { fmtflags __old = _M_flags; _M_flags |= __fmtfl; return __old; } fmtflags setf(fmtflags __fmtfl, fmtflags __mask) { fmtflags __old = _M_flags; _M_flags &= ~__mask; _M_flags |= (__fmtfl & __mask); return __old; } void unsetf(fmtflags __mask) { _M_flags &= ~__mask; } streamsize precision() const { return _M_precision; } streamsize precision(streamsize __prec) { streamsize __old = _M_precision; _M_precision = __prec; return __old; } streamsize width() const { return _M_width; } streamsize width(streamsize __wide) { streamsize __old = _M_width; _M_width = __wide; return __old; } static bool sync_with_stdio(bool __sync = true); locale imbue(const locale& __loc) throw(); locale getloc() const { return _M_ios_locale; } const locale& _M_getloc() const { return _M_ios_locale; } static int xalloc() throw(); long& iword(int __ix) { _Words& __word = (__ix < _M_word_size) ? _M_word[__ix] : _M_grow_words(__ix, true); return __word._M_iword; } void*& pword(int __ix) { _Words& __word = (__ix < _M_word_size) ? _M_word[__ix] : _M_grow_words(__ix, false); return __word._M_pword; } virtual ~ios_base(); protected: ios_base() throw (); private: ios_base(const ios_base&); ios_base& operator=(const ios_base&); }; inline ios_base& boolalpha(ios_base& __base) { __base.setf(ios_base::boolalpha); return __base; } inline ios_base& noboolalpha(ios_base& __base) { __base.unsetf(ios_base::boolalpha); return __base; } inline ios_base& showbase(ios_base& __base) { __base.setf(ios_base::showbase); return __base; } inline ios_base& noshowbase(ios_base& __base) { __base.unsetf(ios_base::showbase); return __base; } inline ios_base& showpoint(ios_base& __base) { __base.setf(ios_base::showpoint); return __base; } inline ios_base& noshowpoint(ios_base& __base) { __base.unsetf(ios_base::showpoint); return __base; } inline ios_base& showpos(ios_base& __base) { __base.setf(ios_base::showpos); return __base; } inline ios_base& noshowpos(ios_base& __base) { __base.unsetf(ios_base::showpos); return __base; } inline ios_base& skipws(ios_base& __base) { __base.setf(ios_base::skipws); return __base; } inline ios_base& noskipws(ios_base& __base) { __base.unsetf(ios_base::skipws); return __base; } inline ios_base& uppercase(ios_base& __base) { __base.setf(ios_base::uppercase); return __base; } inline ios_base& nouppercase(ios_base& __base) { __base.unsetf(ios_base::uppercase); return __base; } inline ios_base& unitbuf(ios_base& __base) { __base.setf(ios_base::unitbuf); return __base; } inline ios_base& nounitbuf(ios_base& __base) { __base.unsetf(ios_base::unitbuf); return __base; } inline ios_base& internal(ios_base& __base) { __base.setf(ios_base::internal, ios_base::adjustfield); return __base; } inline ios_base& left(ios_base& __base) { __base.setf(ios_base::left, ios_base::adjustfield); return __base; } inline ios_base& right(ios_base& __base) { __base.setf(ios_base::right, ios_base::adjustfield); return __base; } inline ios_base& dec(ios_base& __base) { __base.setf(ios_base::dec, ios_base::basefield); return __base; } inline ios_base& hex(ios_base& __base) { __base.setf(ios_base::hex, ios_base::basefield); return __base; } inline ios_base& oct(ios_base& __base) { __base.setf(ios_base::oct, ios_base::basefield); return __base; } inline ios_base& fixed(ios_base& __base) { __base.setf(ios_base::fixed, ios_base::floatfield); return __base; } inline ios_base& scientific(ios_base& __base) { __base.setf(ios_base::scientific, ios_base::floatfield); return __base; } } namespace std __attribute__ ((__visibility__ ("default"))) { template streamsize __copy_streambufs_eof(basic_streambuf<_CharT, _Traits>*, basic_streambuf<_CharT, _Traits>*, bool&); template class basic_streambuf { public: typedef _CharT char_type; typedef _Traits traits_type; typedef typename traits_type::int_type int_type; typedef typename traits_type::pos_type pos_type; typedef typename traits_type::off_type off_type; typedef basic_streambuf __streambuf_type; friend class basic_ios; friend class basic_istream; friend class basic_ostream; friend class istreambuf_iterator; friend class ostreambuf_iterator; friend streamsize __copy_streambufs_eof<>(__streambuf_type*, __streambuf_type*, bool&); template friend typename __gnu_cxx::__enable_if<__is_char<_CharT2>::__value, _CharT2*>::__type __copy_move_a2(istreambuf_iterator<_CharT2>, istreambuf_iterator<_CharT2>, _CharT2*); template friend typename __gnu_cxx::__enable_if<__is_char<_CharT2>::__value, istreambuf_iterator<_CharT2> >::__type find(istreambuf_iterator<_CharT2>, istreambuf_iterator<_CharT2>, const _CharT2&); template friend basic_istream<_CharT2, _Traits2>& operator>>(basic_istream<_CharT2, _Traits2>&, _CharT2*); template friend basic_istream<_CharT2, _Traits2>& operator>>(basic_istream<_CharT2, _Traits2>&, basic_string<_CharT2, _Traits2, _Alloc>&); template friend basic_istream<_CharT2, _Traits2>& getline(basic_istream<_CharT2, _Traits2>&, basic_string<_CharT2, _Traits2, _Alloc>&, _CharT2); protected: char_type* _M_in_beg; char_type* _M_in_cur; char_type* _M_in_end; char_type* _M_out_beg; char_type* _M_out_cur; char_type* _M_out_end; locale _M_buf_locale; public: virtual ~basic_streambuf() { } locale pubimbue(const locale &__loc) { locale __tmp(this->getloc()); this->imbue(__loc); _M_buf_locale = __loc; return __tmp; } locale getloc() const { return _M_buf_locale; } __streambuf_type* pubsetbuf(char_type* __s, streamsize __n) { return this->setbuf(__s, __n); } pos_type pubseekoff(off_type __off, ios_base::seekdir __way, ios_base::openmode __mode = ios_base::in | ios_base::out) { return this->seekoff(__off, __way, __mode); } pos_type pubseekpos(pos_type __sp, ios_base::openmode __mode = ios_base::in | ios_base::out) { return this->seekpos(__sp, __mode); } int pubsync() { return this->sync(); } streamsize in_avail() { const streamsize __ret = this->egptr() - this->gptr(); return __ret ? __ret : this->showmanyc(); } int_type snextc() { int_type __ret = traits_type::eof(); if (__builtin_expect(!traits_type::eq_int_type(this->sbumpc(), __ret), true)) __ret = this->sgetc(); return __ret; } int_type sbumpc() { int_type __ret; if (__builtin_expect(this->gptr() < this->egptr(), true)) { __ret = traits_type::to_int_type(*this->gptr()); this->gbump(1); } else __ret = this->uflow(); return __ret; } int_type sgetc() { int_type __ret; if (__builtin_expect(this->gptr() < this->egptr(), true)) __ret = traits_type::to_int_type(*this->gptr()); else __ret = this->underflow(); return __ret; } streamsize sgetn(char_type* __s, streamsize __n) { return this->xsgetn(__s, __n); } int_type sputbackc(char_type __c) { int_type __ret; const bool __testpos = this->eback() < this->gptr(); if (__builtin_expect(!__testpos || !traits_type::eq(__c, this->gptr()[-1]), false)) __ret = this->pbackfail(traits_type::to_int_type(__c)); else { this->gbump(-1); __ret = traits_type::to_int_type(*this->gptr()); } return __ret; } int_type sungetc() { int_type __ret; if (__builtin_expect(this->eback() < this->gptr(), true)) { this->gbump(-1); __ret = traits_type::to_int_type(*this->gptr()); } else __ret = this->pbackfail(); return __ret; } int_type sputc(char_type __c) { int_type __ret; if (__builtin_expect(this->pptr() < this->epptr(), true)) { *this->pptr() = __c; this->pbump(1); __ret = traits_type::to_int_type(__c); } else __ret = this->overflow(traits_type::to_int_type(__c)); return __ret; } streamsize sputn(const char_type* __s, streamsize __n) { return this->xsputn(__s, __n); } protected: basic_streambuf() : _M_in_beg(0), _M_in_cur(0), _M_in_end(0), _M_out_beg(0), _M_out_cur(0), _M_out_end(0), _M_buf_locale(locale()) { } char_type* eback() const { return _M_in_beg; } char_type* gptr() const { return _M_in_cur; } char_type* egptr() const { return _M_in_end; } void gbump(int __n) { _M_in_cur += __n; } void setg(char_type* __gbeg, char_type* __gnext, char_type* __gend) { _M_in_beg = __gbeg; _M_in_cur = __gnext; _M_in_end = __gend; } char_type* pbase() const { return _M_out_beg; } char_type* pptr() const { return _M_out_cur; } char_type* epptr() const { return _M_out_end; } void pbump(int __n) { _M_out_cur += __n; } void setp(char_type* __pbeg, char_type* __pend) { _M_out_beg = _M_out_cur = __pbeg; _M_out_end = __pend; } virtual void imbue(const locale&) { } virtual basic_streambuf* setbuf(char_type*, streamsize) { return this; } virtual pos_type seekoff(off_type, ios_base::seekdir, ios_base::openmode = ios_base::in | ios_base::out) { return pos_type(off_type(-1)); } virtual pos_type seekpos(pos_type, ios_base::openmode = ios_base::in | ios_base::out) { return pos_type(off_type(-1)); } virtual int sync() { return 0; } virtual streamsize showmanyc() { return 0; } virtual streamsize xsgetn(char_type* __s, streamsize __n); virtual int_type underflow() { return traits_type::eof(); } virtual int_type uflow() { int_type __ret = traits_type::eof(); const bool __testeof = traits_type::eq_int_type(this->underflow(), __ret); if (!__testeof) { __ret = traits_type::to_int_type(*this->gptr()); this->gbump(1); } return __ret; } virtual int_type pbackfail(int_type = traits_type::eof()) { return traits_type::eof(); } virtual streamsize xsputn(const char_type* __s, streamsize __n); virtual int_type overflow(int_type = traits_type::eof()) { return traits_type::eof(); } public: void stossc() { if (this->gptr() < this->egptr()) this->gbump(1); else this->uflow(); } void __safe_gbump(streamsize __n) { _M_in_cur += __n; } void __safe_pbump(streamsize __n) { _M_out_cur += __n; } private: basic_streambuf(const __streambuf_type& __sb) : _M_in_beg(__sb._M_in_beg), _M_in_cur(__sb._M_in_cur), _M_in_end(__sb._M_in_end), _M_out_beg(__sb._M_out_beg), _M_out_cur(__sb._M_out_cur), _M_out_end(__sb._M_out_cur), _M_buf_locale(__sb._M_buf_locale) { } __streambuf_type& operator=(const __streambuf_type&) { return *this; }; }; template<> streamsize __copy_streambufs_eof(basic_streambuf* __sbin, basic_streambuf* __sbout, bool& __ineof); template<> streamsize __copy_streambufs_eof(basic_streambuf* __sbin, basic_streambuf* __sbout, bool& __ineof); } namespace std __attribute__ ((__visibility__ ("default"))) { template streamsize basic_streambuf<_CharT, _Traits>:: xsgetn(char_type* __s, streamsize __n) { streamsize __ret = 0; while (__ret < __n) { const streamsize __buf_len = this->egptr() - this->gptr(); if (__buf_len) { const streamsize __remaining = __n - __ret; const streamsize __len = std::min(__buf_len, __remaining); traits_type::copy(__s, this->gptr(), __len); __ret += __len; __s += __len; this->__safe_gbump(__len); } if (__ret < __n) { const int_type __c = this->uflow(); if (!traits_type::eq_int_type(__c, traits_type::eof())) { traits_type::assign(*__s++, traits_type::to_char_type(__c)); ++__ret; } else break; } } return __ret; } template streamsize basic_streambuf<_CharT, _Traits>:: xsputn(const char_type* __s, streamsize __n) { streamsize __ret = 0; while (__ret < __n) { const streamsize __buf_len = this->epptr() - this->pptr(); if (__buf_len) { const streamsize __remaining = __n - __ret; const streamsize __len = std::min(__buf_len, __remaining); traits_type::copy(this->pptr(), __s, __len); __ret += __len; __s += __len; this->__safe_pbump(__len); } if (__ret < __n) { int_type __c = this->overflow(traits_type::to_int_type(*__s)); if (!traits_type::eq_int_type(__c, traits_type::eof())) { ++__ret; ++__s; } else break; } } return __ret; } template streamsize __copy_streambufs_eof(basic_streambuf<_CharT, _Traits>* __sbin, basic_streambuf<_CharT, _Traits>* __sbout, bool& __ineof) { streamsize __ret = 0; __ineof = true; typename _Traits::int_type __c = __sbin->sgetc(); while (!_Traits::eq_int_type(__c, _Traits::eof())) { __c = __sbout->sputc(_Traits::to_char_type(__c)); if (_Traits::eq_int_type(__c, _Traits::eof())) { __ineof = false; break; } ++__ret; __c = __sbin->snextc(); } return __ret; } template inline streamsize __copy_streambufs(basic_streambuf<_CharT, _Traits>* __sbin, basic_streambuf<_CharT, _Traits>* __sbout) { bool __ineof; return __copy_streambufs_eof(__sbin, __sbout, __ineof); } extern template class basic_streambuf; extern template streamsize __copy_streambufs(basic_streambuf*, basic_streambuf*); extern template streamsize __copy_streambufs_eof(basic_streambuf*, basic_streambuf*, bool&); extern template class basic_streambuf; extern template streamsize __copy_streambufs(basic_streambuf*, basic_streambuf*); extern template streamsize __copy_streambufs_eof(basic_streambuf*, basic_streambuf*, bool&); } typedef unsigned long int wctype_t; enum { __ISwupper = 0, __ISwlower = 1, __ISwalpha = 2, __ISwdigit = 3, __ISwxdigit = 4, __ISwspace = 5, __ISwprint = 6, __ISwgraph = 7, __ISwblank = 8, __ISwcntrl = 9, __ISwpunct = 10, __ISwalnum = 11, _ISwupper = (1 << (__ISwupper)), _ISwlower = (1 << (__ISwlower)), _ISwalpha = (1 << (__ISwalpha)), _ISwdigit = (1 << (__ISwdigit)), _ISwxdigit = (1 << (__ISwxdigit)), _ISwspace = (1 << (__ISwspace)), _ISwprint = (1 << (__ISwprint)), _ISwgraph = (1 << (__ISwgraph)), _ISwblank = (1 << (__ISwblank)), _ISwcntrl = (1 << (__ISwcntrl)), _ISwpunct = (1 << (__ISwpunct)), _ISwalnum = (1 << (__ISwalnum)) }; extern "C" { extern int iswalnum (wint_t __wc) throw (); extern int iswalpha (wint_t __wc) throw (); extern int iswcntrl (wint_t __wc) throw (); extern int iswdigit (wint_t __wc) throw (); extern int iswgraph (wint_t __wc) throw (); extern int iswlower (wint_t __wc) throw (); extern int iswprint (wint_t __wc) throw (); extern int iswpunct (wint_t __wc) throw (); extern int iswspace (wint_t __wc) throw (); extern int iswupper (wint_t __wc) throw (); extern int iswxdigit (wint_t __wc) throw (); extern int iswblank (wint_t __wc) throw (); extern wctype_t wctype (__const char *__property) throw (); extern int iswctype (wint_t __wc, wctype_t __desc) throw (); typedef __const __int32_t *wctrans_t; extern wint_t towlower (wint_t __wc) throw (); extern wint_t towupper (wint_t __wc) throw (); } extern "C" { extern wctrans_t wctrans (__const char *__property) throw (); extern wint_t towctrans (wint_t __wc, wctrans_t __desc) throw (); extern int iswalnum_l (wint_t __wc, __locale_t __locale) throw (); extern int iswalpha_l (wint_t __wc, __locale_t __locale) throw (); extern int iswcntrl_l (wint_t __wc, __locale_t __locale) throw (); extern int iswdigit_l (wint_t __wc, __locale_t __locale) throw (); extern int iswgraph_l (wint_t __wc, __locale_t __locale) throw (); extern int iswlower_l (wint_t __wc, __locale_t __locale) throw (); extern int iswprint_l (wint_t __wc, __locale_t __locale) throw (); extern int iswpunct_l (wint_t __wc, __locale_t __locale) throw (); extern int iswspace_l (wint_t __wc, __locale_t __locale) throw (); extern int iswupper_l (wint_t __wc, __locale_t __locale) throw (); extern int iswxdigit_l (wint_t __wc, __locale_t __locale) throw (); extern int iswblank_l (wint_t __wc, __locale_t __locale) throw (); extern wctype_t wctype_l (__const char *__property, __locale_t __locale) throw (); extern int iswctype_l (wint_t __wc, wctype_t __desc, __locale_t __locale) throw (); extern wint_t towlower_l (wint_t __wc, __locale_t __locale) throw (); extern wint_t towupper_l (wint_t __wc, __locale_t __locale) throw (); extern wctrans_t wctrans_l (__const char *__property, __locale_t __locale) throw (); extern wint_t towctrans_l (wint_t __wc, wctrans_t __desc, __locale_t __locale) throw (); } namespace std { using ::wctrans_t; using ::wctype_t; using ::wint_t; using ::iswalnum; using ::iswalpha; using ::iswblank; using ::iswcntrl; using ::iswctype; using ::iswdigit; using ::iswgraph; using ::iswlower; using ::iswprint; using ::iswpunct; using ::iswspace; using ::iswupper; using ::iswxdigit; using ::towctrans; using ::towlower; using ::towupper; using ::wctrans; using ::wctype; } namespace std __attribute__ ((__visibility__ ("default"))) { struct ctype_base { typedef const int* __to_type; typedef unsigned short mask; static const mask upper = _ISupper; static const mask lower = _ISlower; static const mask alpha = _ISalpha; static const mask digit = _ISdigit; static const mask xdigit = _ISxdigit; static const mask space = _ISspace; static const mask print = _ISprint; static const mask graph = _ISalpha | _ISdigit | _ISpunct; static const mask cntrl = _IScntrl; static const mask punct = _ISpunct; static const mask alnum = _ISalpha | _ISdigit; }; } namespace std __attribute__ ((__visibility__ ("default"))) { template class istreambuf_iterator : public iterator { public: typedef _CharT char_type; typedef _Traits traits_type; typedef typename _Traits::int_type int_type; typedef basic_streambuf<_CharT, _Traits> streambuf_type; typedef basic_istream<_CharT, _Traits> istream_type; template friend typename __gnu_cxx::__enable_if<__is_char<_CharT2>::__value, ostreambuf_iterator<_CharT2> >::__type copy(istreambuf_iterator<_CharT2>, istreambuf_iterator<_CharT2>, ostreambuf_iterator<_CharT2>); template friend typename __gnu_cxx::__enable_if<__is_char<_CharT2>::__value, _CharT2*>::__type __copy_move_a2(istreambuf_iterator<_CharT2>, istreambuf_iterator<_CharT2>, _CharT2*); template friend typename __gnu_cxx::__enable_if<__is_char<_CharT2>::__value, istreambuf_iterator<_CharT2> >::__type find(istreambuf_iterator<_CharT2>, istreambuf_iterator<_CharT2>, const _CharT2&); private: mutable streambuf_type* _M_sbuf; mutable int_type _M_c; public: istreambuf_iterator() throw() : _M_sbuf(0), _M_c(traits_type::eof()) { } istreambuf_iterator(istream_type& __s) throw() : _M_sbuf(__s.rdbuf()), _M_c(traits_type::eof()) { } istreambuf_iterator(streambuf_type* __s) throw() : _M_sbuf(__s), _M_c(traits_type::eof()) { } char_type operator*() const { return traits_type::to_char_type(_M_get()); } istreambuf_iterator& operator++() { ; if (_M_sbuf) { _M_sbuf->sbumpc(); _M_c = traits_type::eof(); } return *this; } istreambuf_iterator operator++(int) { ; istreambuf_iterator __old = *this; if (_M_sbuf) { __old._M_c = _M_sbuf->sbumpc(); _M_c = traits_type::eof(); } return __old; } bool equal(const istreambuf_iterator& __b) const { return _M_at_eof() == __b._M_at_eof(); } private: int_type _M_get() const { const int_type __eof = traits_type::eof(); int_type __ret = __eof; if (_M_sbuf) { if (!traits_type::eq_int_type(_M_c, __eof)) __ret = _M_c; else if (!traits_type::eq_int_type((__ret = _M_sbuf->sgetc()), __eof)) _M_c = __ret; else _M_sbuf = 0; } return __ret; } bool _M_at_eof() const { const int_type __eof = traits_type::eof(); return traits_type::eq_int_type(_M_get(), __eof); } }; template inline bool operator==(const istreambuf_iterator<_CharT, _Traits>& __a, const istreambuf_iterator<_CharT, _Traits>& __b) { return __a.equal(__b); } template inline bool operator!=(const istreambuf_iterator<_CharT, _Traits>& __a, const istreambuf_iterator<_CharT, _Traits>& __b) { return !__a.equal(__b); } template class ostreambuf_iterator : public iterator { public: typedef _CharT char_type; typedef _Traits traits_type; typedef basic_streambuf<_CharT, _Traits> streambuf_type; typedef basic_ostream<_CharT, _Traits> ostream_type; template friend typename __gnu_cxx::__enable_if<__is_char<_CharT2>::__value, ostreambuf_iterator<_CharT2> >::__type copy(istreambuf_iterator<_CharT2>, istreambuf_iterator<_CharT2>, ostreambuf_iterator<_CharT2>); private: streambuf_type* _M_sbuf; bool _M_failed; public: ostreambuf_iterator(ostream_type& __s) throw () : _M_sbuf(__s.rdbuf()), _M_failed(!_M_sbuf) { } ostreambuf_iterator(streambuf_type* __s) throw () : _M_sbuf(__s), _M_failed(!_M_sbuf) { } ostreambuf_iterator& operator=(_CharT __c) { if (!_M_failed && _Traits::eq_int_type(_M_sbuf->sputc(__c), _Traits::eof())) _M_failed = true; return *this; } ostreambuf_iterator& operator*() { return *this; } ostreambuf_iterator& operator++(int) { return *this; } ostreambuf_iterator& operator++() { return *this; } bool failed() const throw() { return _M_failed; } ostreambuf_iterator& _M_put(const _CharT* __ws, streamsize __len) { if (__builtin_expect(!_M_failed, true) && __builtin_expect(this->_M_sbuf->sputn(__ws, __len) != __len, false)) _M_failed = true; return *this; } }; template typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, ostreambuf_iterator<_CharT> >::__type copy(istreambuf_iterator<_CharT> __first, istreambuf_iterator<_CharT> __last, ostreambuf_iterator<_CharT> __result) { if (__first._M_sbuf && !__last._M_sbuf && !__result._M_failed) { bool __ineof; __copy_streambufs_eof(__first._M_sbuf, __result._M_sbuf, __ineof); if (!__ineof) __result._M_failed = true; } return __result; } template typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, ostreambuf_iterator<_CharT> >::__type __copy_move_a2(_CharT* __first, _CharT* __last, ostreambuf_iterator<_CharT> __result) { const streamsize __num = __last - __first; if (__num > 0) __result._M_put(__first, __num); return __result; } template typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, ostreambuf_iterator<_CharT> >::__type __copy_move_a2(const _CharT* __first, const _CharT* __last, ostreambuf_iterator<_CharT> __result) { const streamsize __num = __last - __first; if (__num > 0) __result._M_put(__first, __num); return __result; } template typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, _CharT*>::__type __copy_move_a2(istreambuf_iterator<_CharT> __first, istreambuf_iterator<_CharT> __last, _CharT* __result) { typedef istreambuf_iterator<_CharT> __is_iterator_type; typedef typename __is_iterator_type::traits_type traits_type; typedef typename __is_iterator_type::streambuf_type streambuf_type; typedef typename traits_type::int_type int_type; if (__first._M_sbuf && !__last._M_sbuf) { streambuf_type* __sb = __first._M_sbuf; int_type __c = __sb->sgetc(); while (!traits_type::eq_int_type(__c, traits_type::eof())) { const streamsize __n = __sb->egptr() - __sb->gptr(); if (__n > 1) { traits_type::copy(__result, __sb->gptr(), __n); __sb->__safe_gbump(__n); __result += __n; __c = __sb->underflow(); } else { *__result++ = traits_type::to_char_type(__c); __c = __sb->snextc(); } } } return __result; } template typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, istreambuf_iterator<_CharT> >::__type find(istreambuf_iterator<_CharT> __first, istreambuf_iterator<_CharT> __last, const _CharT& __val) { typedef istreambuf_iterator<_CharT> __is_iterator_type; typedef typename __is_iterator_type::traits_type traits_type; typedef typename __is_iterator_type::streambuf_type streambuf_type; typedef typename traits_type::int_type int_type; if (__first._M_sbuf && !__last._M_sbuf) { const int_type __ival = traits_type::to_int_type(__val); streambuf_type* __sb = __first._M_sbuf; int_type __c = __sb->sgetc(); while (!traits_type::eq_int_type(__c, traits_type::eof()) && !traits_type::eq_int_type(__c, __ival)) { streamsize __n = __sb->egptr() - __sb->gptr(); if (__n > 1) { const _CharT* __p = traits_type::find(__sb->gptr(), __n, __val); if (__p) __n = __p - __sb->gptr(); __sb->__safe_gbump(__n); __c = __sb->sgetc(); } else __c = __sb->snextc(); } if (!traits_type::eq_int_type(__c, traits_type::eof())) __first._M_c = __c; else __first._M_sbuf = 0; } return __first; } } namespace std __attribute__ ((__visibility__ ("default"))) { template void __convert_to_v(const char*, _Tp&, ios_base::iostate&, const __c_locale&) throw(); template<> void __convert_to_v(const char*, float&, ios_base::iostate&, const __c_locale&) throw(); template<> void __convert_to_v(const char*, double&, ios_base::iostate&, const __c_locale&) throw(); template<> void __convert_to_v(const char*, long double&, ios_base::iostate&, const __c_locale&) throw(); template struct __pad { static void _S_pad(ios_base& __io, _CharT __fill, _CharT* __news, const _CharT* __olds, streamsize __newlen, streamsize __oldlen); }; template _CharT* __add_grouping(_CharT* __s, _CharT __sep, const char* __gbeg, size_t __gsize, const _CharT* __first, const _CharT* __last); template inline ostreambuf_iterator<_CharT> __write(ostreambuf_iterator<_CharT> __s, const _CharT* __ws, int __len) { __s._M_put(__ws, __len); return __s; } template inline _OutIter __write(_OutIter __s, const _CharT* __ws, int __len) { for (int __j = 0; __j < __len; __j++, ++__s) *__s = __ws[__j]; return __s; } template class __ctype_abstract_base : public locale::facet, public ctype_base { public: typedef _CharT char_type; bool is(mask __m, char_type __c) const { return this->do_is(__m, __c); } const char_type* is(const char_type *__lo, const char_type *__hi, mask *__vec) const { return this->do_is(__lo, __hi, __vec); } const char_type* scan_is(mask __m, const char_type* __lo, const char_type* __hi) const { return this->do_scan_is(__m, __lo, __hi); } const char_type* scan_not(mask __m, const char_type* __lo, const char_type* __hi) const { return this->do_scan_not(__m, __lo, __hi); } char_type toupper(char_type __c) const { return this->do_toupper(__c); } const char_type* toupper(char_type *__lo, const char_type* __hi) const { return this->do_toupper(__lo, __hi); } char_type tolower(char_type __c) const { return this->do_tolower(__c); } const char_type* tolower(char_type* __lo, const char_type* __hi) const { return this->do_tolower(__lo, __hi); } char_type widen(char __c) const { return this->do_widen(__c); } const char* widen(const char* __lo, const char* __hi, char_type* __to) const { return this->do_widen(__lo, __hi, __to); } char narrow(char_type __c, char __dfault) const { return this->do_narrow(__c, __dfault); } const char_type* narrow(const char_type* __lo, const char_type* __hi, char __dfault, char *__to) const { return this->do_narrow(__lo, __hi, __dfault, __to); } protected: explicit __ctype_abstract_base(size_t __refs = 0): facet(__refs) { } virtual ~__ctype_abstract_base() { } virtual bool do_is(mask __m, char_type __c) const = 0; virtual const char_type* do_is(const char_type* __lo, const char_type* __hi, mask* __vec) const = 0; virtual const char_type* do_scan_is(mask __m, const char_type* __lo, const char_type* __hi) const = 0; virtual const char_type* do_scan_not(mask __m, const char_type* __lo, const char_type* __hi) const = 0; virtual char_type do_toupper(char_type) const = 0; virtual const char_type* do_toupper(char_type* __lo, const char_type* __hi) const = 0; virtual char_type do_tolower(char_type) const = 0; virtual const char_type* do_tolower(char_type* __lo, const char_type* __hi) const = 0; virtual char_type do_widen(char) const = 0; virtual const char* do_widen(const char* __lo, const char* __hi, char_type* __dest) const = 0; virtual char do_narrow(char_type, char __dfault) const = 0; virtual const char_type* do_narrow(const char_type* __lo, const char_type* __hi, char __dfault, char* __dest) const = 0; }; template class ctype : public __ctype_abstract_base<_CharT> { public: typedef _CharT char_type; typedef typename __ctype_abstract_base<_CharT>::mask mask; static locale::id id; explicit ctype(size_t __refs = 0) : __ctype_abstract_base<_CharT>(__refs) { } protected: virtual ~ctype(); virtual bool do_is(mask __m, char_type __c) const; virtual const char_type* do_is(const char_type* __lo, const char_type* __hi, mask* __vec) const; virtual const char_type* do_scan_is(mask __m, const char_type* __lo, const char_type* __hi) const; virtual const char_type* do_scan_not(mask __m, const char_type* __lo, const char_type* __hi) const; virtual char_type do_toupper(char_type __c) const; virtual const char_type* do_toupper(char_type* __lo, const char_type* __hi) const; virtual char_type do_tolower(char_type __c) const; virtual const char_type* do_tolower(char_type* __lo, const char_type* __hi) const; virtual char_type do_widen(char __c) const; virtual const char* do_widen(const char* __lo, const char* __hi, char_type* __dest) const; virtual char do_narrow(char_type, char __dfault) const; virtual const char_type* do_narrow(const char_type* __lo, const char_type* __hi, char __dfault, char* __dest) const; }; template locale::id ctype<_CharT>::id; template<> class ctype : public locale::facet, public ctype_base { public: typedef char char_type; protected: __c_locale _M_c_locale_ctype; bool _M_del; __to_type _M_toupper; __to_type _M_tolower; const mask* _M_table; mutable char _M_widen_ok; mutable char _M_widen[1 + static_cast(-1)]; mutable char _M_narrow[1 + static_cast(-1)]; mutable char _M_narrow_ok; public: static locale::id id; static const size_t table_size = 1 + static_cast(-1); explicit ctype(const mask* __table = 0, bool __del = false, size_t __refs = 0); explicit ctype(__c_locale __cloc, const mask* __table = 0, bool __del = false, size_t __refs = 0); inline bool is(mask __m, char __c) const; inline const char* is(const char* __lo, const char* __hi, mask* __vec) const; inline const char* scan_is(mask __m, const char* __lo, const char* __hi) const; inline const char* scan_not(mask __m, const char* __lo, const char* __hi) const; char_type toupper(char_type __c) const { return this->do_toupper(__c); } const char_type* toupper(char_type *__lo, const char_type* __hi) const { return this->do_toupper(__lo, __hi); } char_type tolower(char_type __c) const { return this->do_tolower(__c); } const char_type* tolower(char_type* __lo, const char_type* __hi) const { return this->do_tolower(__lo, __hi); } char_type widen(char __c) const { if (_M_widen_ok) return _M_widen[static_cast(__c)]; this->_M_widen_init(); return this->do_widen(__c); } const char* widen(const char* __lo, const char* __hi, char_type* __to) const { if (_M_widen_ok == 1) { __builtin_memcpy(__to, __lo, __hi - __lo); return __hi; } if (!_M_widen_ok) _M_widen_init(); return this->do_widen(__lo, __hi, __to); } char narrow(char_type __c, char __dfault) const { if (_M_narrow[static_cast(__c)]) return _M_narrow[static_cast(__c)]; const char __t = do_narrow(__c, __dfault); if (__t != __dfault) _M_narrow[static_cast(__c)] = __t; return __t; } const char_type* narrow(const char_type* __lo, const char_type* __hi, char __dfault, char *__to) const { if (__builtin_expect(_M_narrow_ok == 1, true)) { __builtin_memcpy(__to, __lo, __hi - __lo); return __hi; } if (!_M_narrow_ok) _M_narrow_init(); return this->do_narrow(__lo, __hi, __dfault, __to); } const mask* table() const throw() { return _M_table; } static const mask* classic_table() throw(); protected: virtual ~ctype(); virtual char_type do_toupper(char_type) const; virtual const char_type* do_toupper(char_type* __lo, const char_type* __hi) const; virtual char_type do_tolower(char_type) const; virtual const char_type* do_tolower(char_type* __lo, const char_type* __hi) const; virtual char_type do_widen(char __c) const { return __c; } virtual const char* do_widen(const char* __lo, const char* __hi, char_type* __dest) const { __builtin_memcpy(__dest, __lo, __hi - __lo); return __hi; } virtual char do_narrow(char_type __c, char) const { return __c; } virtual const char_type* do_narrow(const char_type* __lo, const char_type* __hi, char, char* __dest) const { __builtin_memcpy(__dest, __lo, __hi - __lo); return __hi; } private: void _M_narrow_init() const; void _M_widen_init() const; }; template<> class ctype : public __ctype_abstract_base { public: typedef wchar_t char_type; typedef wctype_t __wmask_type; protected: __c_locale _M_c_locale_ctype; bool _M_narrow_ok; char _M_narrow[128]; wint_t _M_widen[1 + static_cast(-1)]; mask _M_bit[16]; __wmask_type _M_wmask[16]; public: static locale::id id; explicit ctype(size_t __refs = 0); explicit ctype(__c_locale __cloc, size_t __refs = 0); protected: __wmask_type _M_convert_to_wmask(const mask __m) const throw(); virtual ~ctype(); virtual bool do_is(mask __m, char_type __c) const; virtual const char_type* do_is(const char_type* __lo, const char_type* __hi, mask* __vec) const; virtual const char_type* do_scan_is(mask __m, const char_type* __lo, const char_type* __hi) const; virtual const char_type* do_scan_not(mask __m, const char_type* __lo, const char_type* __hi) const; virtual char_type do_toupper(char_type) const; virtual const char_type* do_toupper(char_type* __lo, const char_type* __hi) const; virtual char_type do_tolower(char_type) const; virtual const char_type* do_tolower(char_type* __lo, const char_type* __hi) const; virtual char_type do_widen(char) const; virtual const char* do_widen(const char* __lo, const char* __hi, char_type* __dest) const; virtual char do_narrow(char_type, char __dfault) const; virtual const char_type* do_narrow(const char_type* __lo, const char_type* __hi, char __dfault, char* __dest) const; void _M_initialize_ctype() throw(); }; template class ctype_byname : public ctype<_CharT> { public: typedef typename ctype<_CharT>::mask mask; explicit ctype_byname(const char* __s, size_t __refs = 0); protected: virtual ~ctype_byname() { }; }; template<> class ctype_byname : public ctype { public: explicit ctype_byname(const char* __s, size_t __refs = 0); protected: virtual ~ctype_byname(); }; template<> class ctype_byname : public ctype { public: explicit ctype_byname(const char* __s, size_t __refs = 0); protected: virtual ~ctype_byname(); }; } namespace std __attribute__ ((__visibility__ ("default"))) { bool ctype:: is(mask __m, char __c) const { return _M_table[static_cast(__c)] & __m; } const char* ctype:: is(const char* __low, const char* __high, mask* __vec) const { while (__low < __high) *__vec++ = _M_table[static_cast(*__low++)]; return __high; } const char* ctype:: scan_is(mask __m, const char* __low, const char* __high) const { while (__low < __high && !(_M_table[static_cast(*__low)] & __m)) ++__low; return __low; } const char* ctype:: scan_not(mask __m, const char* __low, const char* __high) const { while (__low < __high && (_M_table[static_cast(*__low)] & __m) != 0) ++__low; return __low; } } namespace std __attribute__ ((__visibility__ ("default"))) { class __num_base { public: enum { _S_ominus, _S_oplus, _S_ox, _S_oX, _S_odigits, _S_odigits_end = _S_odigits + 16, _S_oudigits = _S_odigits_end, _S_oudigits_end = _S_oudigits + 16, _S_oe = _S_odigits + 14, _S_oE = _S_oudigits + 14, _S_oend = _S_oudigits_end }; static const char* _S_atoms_out; static const char* _S_atoms_in; enum { _S_iminus, _S_iplus, _S_ix, _S_iX, _S_izero, _S_ie = _S_izero + 14, _S_iE = _S_izero + 20, _S_iend = 26 }; static void _S_format_float(const ios_base& __io, char* __fptr, char __mod) throw(); }; template struct __numpunct_cache : public locale::facet { const char* _M_grouping; size_t _M_grouping_size; bool _M_use_grouping; const _CharT* _M_truename; size_t _M_truename_size; const _CharT* _M_falsename; size_t _M_falsename_size; _CharT _M_decimal_point; _CharT _M_thousands_sep; _CharT _M_atoms_out[__num_base::_S_oend]; _CharT _M_atoms_in[__num_base::_S_iend]; bool _M_allocated; __numpunct_cache(size_t __refs = 0) : facet(__refs), _M_grouping(0), _M_grouping_size(0), _M_use_grouping(false), _M_truename(0), _M_truename_size(0), _M_falsename(0), _M_falsename_size(0), _M_decimal_point(_CharT()), _M_thousands_sep(_CharT()), _M_allocated(false) { } ~__numpunct_cache(); void _M_cache(const locale& __loc); private: __numpunct_cache& operator=(const __numpunct_cache&); explicit __numpunct_cache(const __numpunct_cache&); }; template __numpunct_cache<_CharT>::~__numpunct_cache() { if (_M_allocated) { delete [] _M_grouping; delete [] _M_truename; delete [] _M_falsename; } } template class numpunct : public locale::facet { public: typedef _CharT char_type; typedef basic_string<_CharT> string_type; typedef __numpunct_cache<_CharT> __cache_type; protected: __cache_type* _M_data; public: static locale::id id; explicit numpunct(size_t __refs = 0) : facet(__refs), _M_data(0) { _M_initialize_numpunct(); } explicit numpunct(__cache_type* __cache, size_t __refs = 0) : facet(__refs), _M_data(__cache) { _M_initialize_numpunct(); } explicit numpunct(__c_locale __cloc, size_t __refs = 0) : facet(__refs), _M_data(0) { _M_initialize_numpunct(__cloc); } char_type decimal_point() const { return this->do_decimal_point(); } char_type thousands_sep() const { return this->do_thousands_sep(); } string grouping() const { return this->do_grouping(); } string_type truename() const { return this->do_truename(); } string_type falsename() const { return this->do_falsename(); } protected: virtual ~numpunct(); virtual char_type do_decimal_point() const { return _M_data->_M_decimal_point; } virtual char_type do_thousands_sep() const { return _M_data->_M_thousands_sep; } virtual string do_grouping() const { return _M_data->_M_grouping; } virtual string_type do_truename() const { return _M_data->_M_truename; } virtual string_type do_falsename() const { return _M_data->_M_falsename; } void _M_initialize_numpunct(__c_locale __cloc = 0); }; template locale::id numpunct<_CharT>::id; template<> numpunct::~numpunct(); template<> void numpunct::_M_initialize_numpunct(__c_locale __cloc); template<> numpunct::~numpunct(); template<> void numpunct::_M_initialize_numpunct(__c_locale __cloc); template class numpunct_byname : public numpunct<_CharT> { public: typedef _CharT char_type; typedef basic_string<_CharT> string_type; explicit numpunct_byname(const char* __s, size_t __refs = 0) : numpunct<_CharT>(__refs) { if (__builtin_strcmp(__s, "C") != 0 && __builtin_strcmp(__s, "POSIX") != 0) { __c_locale __tmp; this->_S_create_c_locale(__tmp, __s); this->_M_initialize_numpunct(__tmp); this->_S_destroy_c_locale(__tmp); } } protected: virtual ~numpunct_byname() { } }; namespace __gnu_cxx_ldbl128 { template class num_get : public locale::facet { public: typedef _CharT char_type; typedef _InIter iter_type; static locale::id id; explicit num_get(size_t __refs = 0) : facet(__refs) { } iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, bool& __v) const { return this->do_get(__in, __end, __io, __err, __v); } iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, long& __v) const { return this->do_get(__in, __end, __io, __err, __v); } iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned short& __v) const { return this->do_get(__in, __end, __io, __err, __v); } iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned int& __v) const { return this->do_get(__in, __end, __io, __err, __v); } iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned long& __v) const { return this->do_get(__in, __end, __io, __err, __v); } iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, long long& __v) const { return this->do_get(__in, __end, __io, __err, __v); } iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned long long& __v) const { return this->do_get(__in, __end, __io, __err, __v); } iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, float& __v) const { return this->do_get(__in, __end, __io, __err, __v); } iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, double& __v) const { return this->do_get(__in, __end, __io, __err, __v); } iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, long double& __v) const { return this->do_get(__in, __end, __io, __err, __v); } iter_type get(iter_type __in, iter_type __end, ios_base& __io, ios_base::iostate& __err, void*& __v) const { return this->do_get(__in, __end, __io, __err, __v); } protected: virtual ~num_get() { } iter_type _M_extract_float(iter_type, iter_type, ios_base&, ios_base::iostate&, string&) const; template iter_type _M_extract_int(iter_type, iter_type, ios_base&, ios_base::iostate&, _ValueT&) const; template typename __gnu_cxx::__enable_if<__is_char<_CharT2>::__value, int>::__type _M_find(const _CharT2*, size_t __len, _CharT2 __c) const { int __ret = -1; if (__len <= 10) { if (__c >= _CharT2('0') && __c < _CharT2(_CharT2('0') + __len)) __ret = __c - _CharT2('0'); } else { if (__c >= _CharT2('0') && __c <= _CharT2('9')) __ret = __c - _CharT2('0'); else if (__c >= _CharT2('a') && __c <= _CharT2('f')) __ret = 10 + (__c - _CharT2('a')); else if (__c >= _CharT2('A') && __c <= _CharT2('F')) __ret = 10 + (__c - _CharT2('A')); } return __ret; } template typename __gnu_cxx::__enable_if::__value, int>::__type _M_find(const _CharT2* __zero, size_t __len, _CharT2 __c) const { int __ret = -1; const char_type* __q = char_traits<_CharT2>::find(__zero, __len, __c); if (__q) { __ret = __q - __zero; if (__ret > 15) __ret -= 6; } return __ret; } virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate&, bool&) const; virtual iter_type do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, long& __v) const { return _M_extract_int(__beg, __end, __io, __err, __v); } virtual iter_type do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned short& __v) const { return _M_extract_int(__beg, __end, __io, __err, __v); } virtual iter_type do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned int& __v) const { return _M_extract_int(__beg, __end, __io, __err, __v); } virtual iter_type do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned long& __v) const { return _M_extract_int(__beg, __end, __io, __err, __v); } virtual iter_type do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, long long& __v) const { return _M_extract_int(__beg, __end, __io, __err, __v); } virtual iter_type do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, unsigned long long& __v) const { return _M_extract_int(__beg, __end, __io, __err, __v); } virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& __err, float&) const; virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& __err, double&) const; virtual iter_type __do_get(iter_type, iter_type, ios_base&, ios_base::iostate& __err, double&) const; virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& __err, void*&) const; virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& __err, long double&) const; }; template locale::id num_get<_CharT, _InIter>::id; template class num_put : public locale::facet { public: typedef _CharT char_type; typedef _OutIter iter_type; static locale::id id; explicit num_put(size_t __refs = 0) : facet(__refs) { } iter_type put(iter_type __s, ios_base& __f, char_type __fill, bool __v) const { return this->do_put(__s, __f, __fill, __v); } iter_type put(iter_type __s, ios_base& __f, char_type __fill, long __v) const { return this->do_put(__s, __f, __fill, __v); } iter_type put(iter_type __s, ios_base& __f, char_type __fill, unsigned long __v) const { return this->do_put(__s, __f, __fill, __v); } iter_type put(iter_type __s, ios_base& __f, char_type __fill, long long __v) const { return this->do_put(__s, __f, __fill, __v); } iter_type put(iter_type __s, ios_base& __f, char_type __fill, unsigned long long __v) const { return this->do_put(__s, __f, __fill, __v); } iter_type put(iter_type __s, ios_base& __f, char_type __fill, double __v) const { return this->do_put(__s, __f, __fill, __v); } iter_type put(iter_type __s, ios_base& __f, char_type __fill, long double __v) const { return this->do_put(__s, __f, __fill, __v); } iter_type put(iter_type __s, ios_base& __f, char_type __fill, const void* __v) const { return this->do_put(__s, __f, __fill, __v); } protected: template iter_type _M_insert_float(iter_type, ios_base& __io, char_type __fill, char __mod, _ValueT __v) const; void _M_group_float(const char* __grouping, size_t __grouping_size, char_type __sep, const char_type* __p, char_type* __new, char_type* __cs, int& __len) const; template iter_type _M_insert_int(iter_type, ios_base& __io, char_type __fill, _ValueT __v) const; void _M_group_int(const char* __grouping, size_t __grouping_size, char_type __sep, ios_base& __io, char_type* __new, char_type* __cs, int& __len) const; void _M_pad(char_type __fill, streamsize __w, ios_base& __io, char_type* __new, const char_type* __cs, int& __len) const; virtual ~num_put() { }; virtual iter_type do_put(iter_type, ios_base&, char_type __fill, bool __v) const; virtual iter_type do_put(iter_type __s, ios_base& __io, char_type __fill, long __v) const { return _M_insert_int(__s, __io, __fill, __v); } virtual iter_type do_put(iter_type __s, ios_base& __io, char_type __fill, unsigned long __v) const { return _M_insert_int(__s, __io, __fill, __v); } virtual iter_type do_put(iter_type __s, ios_base& __io, char_type __fill, long long __v) const { return _M_insert_int(__s, __io, __fill, __v); } virtual iter_type do_put(iter_type __s, ios_base& __io, char_type __fill, unsigned long long __v) const { return _M_insert_int(__s, __io, __fill, __v); } virtual iter_type do_put(iter_type, ios_base&, char_type __fill, double __v) const; virtual iter_type __do_put(iter_type, ios_base&, char_type __fill, double __v) const; virtual iter_type do_put(iter_type, ios_base&, char_type __fill, const void* __v) const; virtual iter_type do_put(iter_type, ios_base&, char_type __fill, long double __v) const; }; template locale::id num_put<_CharT, _OutIter>::id; } template inline bool isspace(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::space, __c); } template inline bool isprint(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::print, __c); } template inline bool iscntrl(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::cntrl, __c); } template inline bool isupper(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::upper, __c); } template inline bool islower(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::lower, __c); } template inline bool isalpha(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::alpha, __c); } template inline bool isdigit(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::digit, __c); } template inline bool ispunct(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::punct, __c); } template inline bool isxdigit(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::xdigit, __c); } template inline bool isalnum(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::alnum, __c); } template inline bool isgraph(_CharT __c, const locale& __loc) { return use_facet >(__loc).is(ctype_base::graph, __c); } template inline _CharT toupper(_CharT __c, const locale& __loc) { return use_facet >(__loc).toupper(__c); } template inline _CharT tolower(_CharT __c, const locale& __loc) { return use_facet >(__loc).tolower(__c); } } namespace std __attribute__ ((__visibility__ ("default"))) { template struct __use_cache { const _Facet* operator() (const locale& __loc) const; }; template struct __use_cache<__numpunct_cache<_CharT> > { const __numpunct_cache<_CharT>* operator() (const locale& __loc) const { const size_t __i = numpunct<_CharT>::id._M_id(); const locale::facet** __caches = __loc._M_impl->_M_caches; if (!__caches[__i]) { __numpunct_cache<_CharT>* __tmp = 0; try { __tmp = new __numpunct_cache<_CharT>; __tmp->_M_cache(__loc); } catch(...) { delete __tmp; throw; } __loc._M_impl->_M_install_cache(__tmp, __i); } return static_cast*>(__caches[__i]); } }; template void __numpunct_cache<_CharT>::_M_cache(const locale& __loc) { _M_allocated = true; const numpunct<_CharT>& __np = use_facet >(__loc); char* __grouping = 0; _CharT* __truename = 0; _CharT* __falsename = 0; try { _M_grouping_size = __np.grouping().size(); __grouping = new char[_M_grouping_size]; __np.grouping().copy(__grouping, _M_grouping_size); _M_grouping = __grouping; _M_use_grouping = (_M_grouping_size && static_cast(_M_grouping[0]) > 0 && (_M_grouping[0] != __gnu_cxx::__numeric_traits::__max)); _M_truename_size = __np.truename().size(); __truename = new _CharT[_M_truename_size]; __np.truename().copy(__truename, _M_truename_size); _M_truename = __truename; _M_falsename_size = __np.falsename().size(); __falsename = new _CharT[_M_falsename_size]; __np.falsename().copy(__falsename, _M_falsename_size); _M_falsename = __falsename; _M_decimal_point = __np.decimal_point(); _M_thousands_sep = __np.thousands_sep(); const ctype<_CharT>& __ct = use_facet >(__loc); __ct.widen(__num_base::_S_atoms_out, __num_base::_S_atoms_out + __num_base::_S_oend, _M_atoms_out); __ct.widen(__num_base::_S_atoms_in, __num_base::_S_atoms_in + __num_base::_S_iend, _M_atoms_in); } catch(...) { delete [] __grouping; delete [] __truename; delete [] __falsename; throw; } } __attribute__ ((__pure__)) bool __verify_grouping(const char* __grouping, size_t __grouping_size, const string& __grouping_tmp) throw (); namespace __gnu_cxx_ldbl128 { template _InIter num_get<_CharT, _InIter>:: _M_extract_float(_InIter __beg, _InIter __end, ios_base& __io, ios_base::iostate& __err, string& __xtrc) const { typedef char_traits<_CharT> __traits_type; typedef __numpunct_cache<_CharT> __cache_type; __use_cache<__cache_type> __uc; const locale& __loc = __io._M_getloc(); const __cache_type* __lc = __uc(__loc); const _CharT* __lit = __lc->_M_atoms_in; char_type __c = char_type(); bool __testeof = __beg == __end; if (!__testeof) { __c = *__beg; const bool __plus = __c == __lit[__num_base::_S_iplus]; if ((__plus || __c == __lit[__num_base::_S_iminus]) && !(__lc->_M_use_grouping && __c == __lc->_M_thousands_sep) && !(__c == __lc->_M_decimal_point)) { __xtrc += __plus ? '+' : '-'; if (++__beg != __end) __c = *__beg; else __testeof = true; } } bool __found_mantissa = false; int __sep_pos = 0; while (!__testeof) { if ((__lc->_M_use_grouping && __c == __lc->_M_thousands_sep) || __c == __lc->_M_decimal_point) break; else if (__c == __lit[__num_base::_S_izero]) { if (!__found_mantissa) { __xtrc += '0'; __found_mantissa = true; } ++__sep_pos; if (++__beg != __end) __c = *__beg; else __testeof = true; } else break; } bool __found_dec = false; bool __found_sci = false; string __found_grouping; if (__lc->_M_use_grouping) __found_grouping.reserve(32); const char_type* __lit_zero = __lit + __num_base::_S_izero; if (!__lc->_M_allocated) while (!__testeof) { const int __digit = _M_find(__lit_zero, 10, __c); if (__digit != -1) { __xtrc += '0' + __digit; __found_mantissa = true; } else if (__c == __lc->_M_decimal_point && !__found_dec && !__found_sci) { __xtrc += '.'; __found_dec = true; } else if ((__c == __lit[__num_base::_S_ie] || __c == __lit[__num_base::_S_iE]) && !__found_sci && __found_mantissa) { __xtrc += 'e'; __found_sci = true; if (++__beg != __end) { __c = *__beg; const bool __plus = __c == __lit[__num_base::_S_iplus]; if (__plus || __c == __lit[__num_base::_S_iminus]) __xtrc += __plus ? '+' : '-'; else continue; } else { __testeof = true; break; } } else break; if (++__beg != __end) __c = *__beg; else __testeof = true; } else while (!__testeof) { if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep) { if (!__found_dec && !__found_sci) { if (__sep_pos) { __found_grouping += static_cast(__sep_pos); __sep_pos = 0; } else { __xtrc.clear(); break; } } else break; } else if (__c == __lc->_M_decimal_point) { if (!__found_dec && !__found_sci) { if (__found_grouping.size()) __found_grouping += static_cast(__sep_pos); __xtrc += '.'; __found_dec = true; } else break; } else { const char_type* __q = __traits_type::find(__lit_zero, 10, __c); if (__q) { __xtrc += '0' + (__q - __lit_zero); __found_mantissa = true; ++__sep_pos; } else if ((__c == __lit[__num_base::_S_ie] || __c == __lit[__num_base::_S_iE]) && !__found_sci && __found_mantissa) { if (__found_grouping.size() && !__found_dec) __found_grouping += static_cast(__sep_pos); __xtrc += 'e'; __found_sci = true; if (++__beg != __end) { __c = *__beg; const bool __plus = __c == __lit[__num_base::_S_iplus]; if ((__plus || __c == __lit[__num_base::_S_iminus]) && !(__lc->_M_use_grouping && __c == __lc->_M_thousands_sep) && !(__c == __lc->_M_decimal_point)) __xtrc += __plus ? '+' : '-'; else continue; } else { __testeof = true; break; } } else break; } if (++__beg != __end) __c = *__beg; else __testeof = true; } if (__found_grouping.size()) { if (!__found_dec && !__found_sci) __found_grouping += static_cast(__sep_pos); if (!std::__verify_grouping(__lc->_M_grouping, __lc->_M_grouping_size, __found_grouping)) __err = ios_base::failbit; } return __beg; } template template _InIter num_get<_CharT, _InIter>:: _M_extract_int(_InIter __beg, _InIter __end, ios_base& __io, ios_base::iostate& __err, _ValueT& __v) const { typedef char_traits<_CharT> __traits_type; using __gnu_cxx::__add_unsigned; typedef typename __add_unsigned<_ValueT>::__type __unsigned_type; typedef __numpunct_cache<_CharT> __cache_type; __use_cache<__cache_type> __uc; const locale& __loc = __io._M_getloc(); const __cache_type* __lc = __uc(__loc); const _CharT* __lit = __lc->_M_atoms_in; char_type __c = char_type(); const ios_base::fmtflags __basefield = __io.flags() & ios_base::basefield; const bool __oct = __basefield == ios_base::oct; int __base = __oct ? 8 : (__basefield == ios_base::hex ? 16 : 10); bool __testeof = __beg == __end; bool __negative = false; if (!__testeof) { __c = *__beg; __negative = __c == __lit[__num_base::_S_iminus]; if ((__negative || __c == __lit[__num_base::_S_iplus]) && !(__lc->_M_use_grouping && __c == __lc->_M_thousands_sep) && !(__c == __lc->_M_decimal_point)) { if (++__beg != __end) __c = *__beg; else __testeof = true; } } bool __found_zero = false; int __sep_pos = 0; while (!__testeof) { if ((__lc->_M_use_grouping && __c == __lc->_M_thousands_sep) || __c == __lc->_M_decimal_point) break; else if (__c == __lit[__num_base::_S_izero] && (!__found_zero || __base == 10)) { __found_zero = true; ++__sep_pos; if (__basefield == 0) __base = 8; if (__base == 8) __sep_pos = 0; } else if (__found_zero && (__c == __lit[__num_base::_S_ix] || __c == __lit[__num_base::_S_iX])) { if (__basefield == 0) __base = 16; if (__base == 16) { __found_zero = false; __sep_pos = 0; } else break; } else break; if (++__beg != __end) { __c = *__beg; if (!__found_zero) break; } else __testeof = true; } const size_t __len = (__base == 16 ? __num_base::_S_iend - __num_base::_S_izero : __base); string __found_grouping; if (__lc->_M_use_grouping) __found_grouping.reserve(32); bool __testfail = false; bool __testoverflow = false; const __unsigned_type __max = (__negative && __gnu_cxx::__numeric_traits<_ValueT>::__is_signed) ? -__gnu_cxx::__numeric_traits<_ValueT>::__min : __gnu_cxx::__numeric_traits<_ValueT>::__max; const __unsigned_type __smax = __max / __base; __unsigned_type __result = 0; int __digit = 0; const char_type* __lit_zero = __lit + __num_base::_S_izero; if (!__lc->_M_allocated) while (!__testeof) { __digit = _M_find(__lit_zero, __len, __c); if (__digit == -1) break; if (__result > __smax) __testoverflow = true; else { __result *= __base; __testoverflow |= __result > __max - __digit; __result += __digit; ++__sep_pos; } if (++__beg != __end) __c = *__beg; else __testeof = true; } else while (!__testeof) { if (__lc->_M_use_grouping && __c == __lc->_M_thousands_sep) { if (__sep_pos) { __found_grouping += static_cast(__sep_pos); __sep_pos = 0; } else { __testfail = true; break; } } else if (__c == __lc->_M_decimal_point) break; else { const char_type* __q = __traits_type::find(__lit_zero, __len, __c); if (!__q) break; __digit = __q - __lit_zero; if (__digit > 15) __digit -= 6; if (__result > __smax) __testoverflow = true; else { __result *= __base; __testoverflow |= __result > __max - __digit; __result += __digit; ++__sep_pos; } } if (++__beg != __end) __c = *__beg; else __testeof = true; } if (__found_grouping.size()) { __found_grouping += static_cast(__sep_pos); if (!std::__verify_grouping(__lc->_M_grouping, __lc->_M_grouping_size, __found_grouping)) __err = ios_base::failbit; } if ((!__sep_pos && !__found_zero && !__found_grouping.size()) || __testfail) { __v = 0; __err = ios_base::failbit; } else if (__testoverflow) { if (__negative && __gnu_cxx::__numeric_traits<_ValueT>::__is_signed) __v = __gnu_cxx::__numeric_traits<_ValueT>::__min; else __v = __gnu_cxx::__numeric_traits<_ValueT>::__max; __err = ios_base::failbit; } else __v = __negative ? -__result : __result; if (__testeof) __err |= ios_base::eofbit; return __beg; } template _InIter num_get<_CharT, _InIter>:: do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, bool& __v) const { if (!(__io.flags() & ios_base::boolalpha)) { long __l = -1; __beg = _M_extract_int(__beg, __end, __io, __err, __l); if (__l == 0 || __l == 1) __v = bool(__l); else { __v = true; __err = ios_base::failbit; if (__beg == __end) __err |= ios_base::eofbit; } } else { typedef __numpunct_cache<_CharT> __cache_type; __use_cache<__cache_type> __uc; const locale& __loc = __io._M_getloc(); const __cache_type* __lc = __uc(__loc); bool __testf = true; bool __testt = true; bool __donef = __lc->_M_falsename_size == 0; bool __donet = __lc->_M_truename_size == 0; bool __testeof = false; size_t __n = 0; while (!__donef || !__donet) { if (__beg == __end) { __testeof = true; break; } const char_type __c = *__beg; if (!__donef) __testf = __c == __lc->_M_falsename[__n]; if (!__testf && __donet) break; if (!__donet) __testt = __c == __lc->_M_truename[__n]; if (!__testt && __donef) break; if (!__testt && !__testf) break; ++__n; ++__beg; __donef = !__testf || __n >= __lc->_M_falsename_size; __donet = !__testt || __n >= __lc->_M_truename_size; } if (__testf && __n == __lc->_M_falsename_size && __n) { __v = false; if (__testt && __n == __lc->_M_truename_size) __err = ios_base::failbit; else __err = __testeof ? ios_base::eofbit : ios_base::goodbit; } else if (__testt && __n == __lc->_M_truename_size && __n) { __v = true; __err = __testeof ? ios_base::eofbit : ios_base::goodbit; } else { __v = false; __err = ios_base::failbit; if (__testeof) __err |= ios_base::eofbit; } } return __beg; } template _InIter num_get<_CharT, _InIter>:: do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, float& __v) const { string __xtrc; __xtrc.reserve(32); __beg = _M_extract_float(__beg, __end, __io, __err, __xtrc); std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale()); if (__beg == __end) __err |= ios_base::eofbit; return __beg; } template _InIter num_get<_CharT, _InIter>:: do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, double& __v) const { string __xtrc; __xtrc.reserve(32); __beg = _M_extract_float(__beg, __end, __io, __err, __xtrc); std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale()); if (__beg == __end) __err |= ios_base::eofbit; return __beg; } template _InIter num_get<_CharT, _InIter>:: __do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, double& __v) const { string __xtrc; __xtrc.reserve(32); __beg = _M_extract_float(__beg, __end, __io, __err, __xtrc); std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale()); if (__beg == __end) __err |= ios_base::eofbit; return __beg; } template _InIter num_get<_CharT, _InIter>:: do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, long double& __v) const { string __xtrc; __xtrc.reserve(32); __beg = _M_extract_float(__beg, __end, __io, __err, __xtrc); std::__convert_to_v(__xtrc.c_str(), __v, __err, _S_get_c_locale()); if (__beg == __end) __err |= ios_base::eofbit; return __beg; } template _InIter num_get<_CharT, _InIter>:: do_get(iter_type __beg, iter_type __end, ios_base& __io, ios_base::iostate& __err, void*& __v) const { typedef ios_base::fmtflags fmtflags; const fmtflags __fmt = __io.flags(); __io.flags((__fmt & ~ios_base::basefield) | ios_base::hex); typedef __gnu_cxx::__conditional_type<(sizeof(void*) <= sizeof(unsigned long)), unsigned long, unsigned long long>::__type _UIntPtrType; _UIntPtrType __ul; __beg = _M_extract_int(__beg, __end, __io, __err, __ul); __io.flags(__fmt); __v = reinterpret_cast(__ul); return __beg; } template void num_put<_CharT, _OutIter>:: _M_pad(_CharT __fill, streamsize __w, ios_base& __io, _CharT* __new, const _CharT* __cs, int& __len) const { __pad<_CharT, char_traits<_CharT> >::_S_pad(__io, __fill, __new, __cs, __w, __len); __len = static_cast(__w); } } template int __int_to_char(_CharT* __bufend, _ValueT __v, const _CharT* __lit, ios_base::fmtflags __flags, bool __dec) { _CharT* __buf = __bufend; if (__builtin_expect(__dec, true)) { do { *--__buf = __lit[(__v % 10) + __num_base::_S_odigits]; __v /= 10; } while (__v != 0); } else if ((__flags & ios_base::basefield) == ios_base::oct) { do { *--__buf = __lit[(__v & 0x7) + __num_base::_S_odigits]; __v >>= 3; } while (__v != 0); } else { const bool __uppercase = __flags & ios_base::uppercase; const int __case_offset = __uppercase ? __num_base::_S_oudigits : __num_base::_S_odigits; do { *--__buf = __lit[(__v & 0xf) + __case_offset]; __v >>= 4; } while (__v != 0); } return __bufend - __buf; } namespace __gnu_cxx_ldbl128 { template void num_put<_CharT, _OutIter>:: _M_group_int(const char* __grouping, size_t __grouping_size, _CharT __sep, ios_base&, _CharT* __new, _CharT* __cs, int& __len) const { _CharT* __p = std::__add_grouping(__new, __sep, __grouping, __grouping_size, __cs, __cs + __len); __len = __p - __new; } template template _OutIter num_put<_CharT, _OutIter>:: _M_insert_int(_OutIter __s, ios_base& __io, _CharT __fill, _ValueT __v) const { using __gnu_cxx::__add_unsigned; typedef typename __add_unsigned<_ValueT>::__type __unsigned_type; typedef __numpunct_cache<_CharT> __cache_type; __use_cache<__cache_type> __uc; const locale& __loc = __io._M_getloc(); const __cache_type* __lc = __uc(__loc); const _CharT* __lit = __lc->_M_atoms_out; const ios_base::fmtflags __flags = __io.flags(); const int __ilen = 5 * sizeof(_ValueT); _CharT* __cs = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * __ilen)); const ios_base::fmtflags __basefield = __flags & ios_base::basefield; const bool __dec = (__basefield != ios_base::oct && __basefield != ios_base::hex); const __unsigned_type __u = ((__v > 0 || !__dec) ? __unsigned_type(__v) : -__unsigned_type(__v)); int __len = __int_to_char(__cs + __ilen, __u, __lit, __flags, __dec); __cs += __ilen - __len; if (__lc->_M_use_grouping) { _CharT* __cs2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * (__len + 1) * 2)); _M_group_int(__lc->_M_grouping, __lc->_M_grouping_size, __lc->_M_thousands_sep, __io, __cs2 + 2, __cs, __len); __cs = __cs2 + 2; } if (__builtin_expect(__dec, true)) { if (__v >= 0) { if (bool(__flags & ios_base::showpos) && __gnu_cxx::__numeric_traits<_ValueT>::__is_signed) *--__cs = __lit[__num_base::_S_oplus], ++__len; } else *--__cs = __lit[__num_base::_S_ominus], ++__len; } else if (bool(__flags & ios_base::showbase) && __v) { if (__basefield == ios_base::oct) *--__cs = __lit[__num_base::_S_odigits], ++__len; else { const bool __uppercase = __flags & ios_base::uppercase; *--__cs = __lit[__num_base::_S_ox + __uppercase]; *--__cs = __lit[__num_base::_S_odigits]; __len += 2; } } const streamsize __w = __io.width(); if (__w > static_cast(__len)) { _CharT* __cs3 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * __w)); _M_pad(__fill, __w, __io, __cs3, __cs, __len); __cs = __cs3; } __io.width(0); return std::__write(__s, __cs, __len); } template void num_put<_CharT, _OutIter>:: _M_group_float(const char* __grouping, size_t __grouping_size, _CharT __sep, const _CharT* __p, _CharT* __new, _CharT* __cs, int& __len) const { const int __declen = __p ? __p - __cs : __len; _CharT* __p2 = std::__add_grouping(__new, __sep, __grouping, __grouping_size, __cs, __cs + __declen); int __newlen = __p2 - __new; if (__p) { char_traits<_CharT>::copy(__p2, __p, __len - __declen); __newlen += __len - __declen; } __len = __newlen; } template template _OutIter num_put<_CharT, _OutIter>:: _M_insert_float(_OutIter __s, ios_base& __io, _CharT __fill, char __mod, _ValueT __v) const { typedef __numpunct_cache<_CharT> __cache_type; __use_cache<__cache_type> __uc; const locale& __loc = __io._M_getloc(); const __cache_type* __lc = __uc(__loc); const streamsize __prec = __io.precision() < 0 ? 6 : __io.precision(); const int __max_digits = __gnu_cxx::__numeric_traits<_ValueT>::__digits10; int __len; char __fbuf[16]; __num_base::_S_format_float(__io, __fbuf, __mod); int __cs_size = __max_digits * 3; char* __cs = static_cast(__builtin_alloca(__cs_size)); __len = std::__convert_from_v(_S_get_c_locale(), __cs, __cs_size, __fbuf, __prec, __v); if (__len >= __cs_size) { __cs_size = __len + 1; __cs = static_cast(__builtin_alloca(__cs_size)); __len = std::__convert_from_v(_S_get_c_locale(), __cs, __cs_size, __fbuf, __prec, __v); } const ctype<_CharT>& __ctype = use_facet >(__loc); _CharT* __ws = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * __len)); __ctype.widen(__cs, __cs + __len, __ws); _CharT* __wp = 0; const char* __p = char_traits::find(__cs, __len, '.'); if (__p) { __wp = __ws + (__p - __cs); *__wp = __lc->_M_decimal_point; } if (__lc->_M_use_grouping && (__wp || __len < 3 || (__cs[1] <= '9' && __cs[2] <= '9' && __cs[1] >= '0' && __cs[2] >= '0'))) { _CharT* __ws2 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * __len * 2)); streamsize __off = 0; if (__cs[0] == '-' || __cs[0] == '+') { __off = 1; __ws2[0] = __ws[0]; __len -= 1; } _M_group_float(__lc->_M_grouping, __lc->_M_grouping_size, __lc->_M_thousands_sep, __wp, __ws2 + __off, __ws + __off, __len); __len += __off; __ws = __ws2; } const streamsize __w = __io.width(); if (__w > static_cast(__len)) { _CharT* __ws3 = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * __w)); _M_pad(__fill, __w, __io, __ws3, __ws, __len); __ws = __ws3; } __io.width(0); return std::__write(__s, __ws, __len); } template _OutIter num_put<_CharT, _OutIter>:: do_put(iter_type __s, ios_base& __io, char_type __fill, bool __v) const { const ios_base::fmtflags __flags = __io.flags(); if ((__flags & ios_base::boolalpha) == 0) { const long __l = __v; __s = _M_insert_int(__s, __io, __fill, __l); } else { typedef __numpunct_cache<_CharT> __cache_type; __use_cache<__cache_type> __uc; const locale& __loc = __io._M_getloc(); const __cache_type* __lc = __uc(__loc); const _CharT* __name = __v ? __lc->_M_truename : __lc->_M_falsename; int __len = __v ? __lc->_M_truename_size : __lc->_M_falsename_size; const streamsize __w = __io.width(); if (__w > static_cast(__len)) { const streamsize __plen = __w - __len; _CharT* __ps = static_cast<_CharT*>(__builtin_alloca(sizeof(_CharT) * __plen)); char_traits<_CharT>::assign(__ps, __plen, __fill); __io.width(0); if ((__flags & ios_base::adjustfield) == ios_base::left) { __s = std::__write(__s, __name, __len); __s = std::__write(__s, __ps, __plen); } else { __s = std::__write(__s, __ps, __plen); __s = std::__write(__s, __name, __len); } return __s; } __io.width(0); __s = std::__write(__s, __name, __len); } return __s; } template _OutIter num_put<_CharT, _OutIter>:: do_put(iter_type __s, ios_base& __io, char_type __fill, double __v) const { return _M_insert_float(__s, __io, __fill, char(), __v); } template _OutIter num_put<_CharT, _OutIter>:: __do_put(iter_type __s, ios_base& __io, char_type __fill, double __v) const { return _M_insert_float(__s, __io, __fill, char(), __v); } template _OutIter num_put<_CharT, _OutIter>:: do_put(iter_type __s, ios_base& __io, char_type __fill, long double __v) const { return _M_insert_float(__s, __io, __fill, 'L', __v); } template _OutIter num_put<_CharT, _OutIter>:: do_put(iter_type __s, ios_base& __io, char_type __fill, const void* __v) const { const ios_base::fmtflags __flags = __io.flags(); const ios_base::fmtflags __fmt = ~(ios_base::basefield | ios_base::uppercase); __io.flags((__flags & __fmt) | (ios_base::hex | ios_base::showbase)); typedef __gnu_cxx::__conditional_type<(sizeof(const void*) <= sizeof(unsigned long)), unsigned long, unsigned long long>::__type _UIntPtrType; __s = _M_insert_int(__s, __io, __fill, reinterpret_cast<_UIntPtrType>(__v)); __io.flags(__flags); return __s; } } template void __pad<_CharT, _Traits>::_S_pad(ios_base& __io, _CharT __fill, _CharT* __news, const _CharT* __olds, streamsize __newlen, streamsize __oldlen) { const size_t __plen = static_cast(__newlen - __oldlen); const ios_base::fmtflags __adjust = __io.flags() & ios_base::adjustfield; if (__adjust == ios_base::left) { _Traits::copy(__news, __olds, __oldlen); _Traits::assign(__news + __oldlen, __plen, __fill); return; } size_t __mod = 0; if (__adjust == ios_base::internal) { const locale& __loc = __io._M_getloc(); const ctype<_CharT>& __ctype = use_facet >(__loc); if (__ctype.widen('-') == __olds[0] || __ctype.widen('+') == __olds[0]) { __news[0] = __olds[0]; __mod = 1; ++__news; } else if (__ctype.widen('0') == __olds[0] && __oldlen > 1 && (__ctype.widen('x') == __olds[1] || __ctype.widen('X') == __olds[1])) { __news[0] = __olds[0]; __news[1] = __olds[1]; __mod = 2; __news += 2; } } _Traits::assign(__news, __plen, __fill); _Traits::copy(__news + __plen, __olds + __mod, __oldlen - __mod); } template _CharT* __add_grouping(_CharT* __s, _CharT __sep, const char* __gbeg, size_t __gsize, const _CharT* __first, const _CharT* __last) { size_t __idx = 0; size_t __ctr = 0; while (__last - __first > __gbeg[__idx] && static_cast(__gbeg[__idx]) > 0 && __gbeg[__idx] != __gnu_cxx::__numeric_traits::__max) { __last -= __gbeg[__idx]; __idx < __gsize - 1 ? ++__idx : ++__ctr; } while (__first != __last) *__s++ = *__first++; while (__ctr--) { *__s++ = __sep; for (char __i = __gbeg[__idx]; __i > 0; --__i) *__s++ = *__first++; } while (__idx--) { *__s++ = __sep; for (char __i = __gbeg[__idx]; __i > 0; --__i) *__s++ = *__first++; } return __s; } extern template class numpunct; extern template class numpunct_byname; extern template class __gnu_cxx_ldbl128:: num_get; extern template class __gnu_cxx_ldbl128:: num_put; extern template class ctype_byname; extern template const ctype& use_facet >(const locale&); extern template const numpunct& use_facet >(const locale&); extern template const num_put& use_facet >(const locale&); extern template const num_get& use_facet >(const locale&); extern template bool has_facet >(const locale&); extern template bool has_facet >(const locale&); extern template bool has_facet >(const locale&); extern template bool has_facet >(const locale&); extern template class numpunct; extern template class numpunct_byname; extern template class __gnu_cxx_ldbl128:: num_get; extern template class __gnu_cxx_ldbl128:: num_put; extern template class ctype_byname; extern template const ctype& use_facet >(const locale&); extern template const numpunct& use_facet >(const locale&); extern template const num_put& use_facet >(const locale&); extern template const num_get& use_facet >(const locale&); extern template bool has_facet >(const locale&); extern template bool has_facet >(const locale&); extern template bool has_facet >(const locale&); extern template bool has_facet >(const locale&); } namespace std __attribute__ ((__visibility__ ("default"))) { template inline const _Facet& __check_facet(const _Facet* __f) { if (!__f) __throw_bad_cast(); return *__f; } template class basic_ios : public ios_base { public: typedef _CharT char_type; typedef typename _Traits::int_type int_type; typedef typename _Traits::pos_type pos_type; typedef typename _Traits::off_type off_type; typedef _Traits traits_type; typedef ctype<_CharT> __ctype_type; typedef num_put<_CharT, ostreambuf_iterator<_CharT, _Traits> > __num_put_type; typedef num_get<_CharT, istreambuf_iterator<_CharT, _Traits> > __num_get_type; protected: basic_ostream<_CharT, _Traits>* _M_tie; mutable char_type _M_fill; mutable bool _M_fill_init; basic_streambuf<_CharT, _Traits>* _M_streambuf; const __ctype_type* _M_ctype; const __num_put_type* _M_num_put; const __num_get_type* _M_num_get; public: operator void*() const { return this->fail() ? 0 : const_cast(this); } bool operator!() const { return this->fail(); } iostate rdstate() const { return _M_streambuf_state; } void clear(iostate __state = goodbit); void setstate(iostate __state) { this->clear(this->rdstate() | __state); } void _M_setstate(iostate __state) { _M_streambuf_state |= __state; if (this->exceptions() & __state) throw; } bool good() const { return this->rdstate() == 0; } bool eof() const { return (this->rdstate() & eofbit) != 0; } bool fail() const { return (this->rdstate() & (badbit | failbit)) != 0; } bool bad() const { return (this->rdstate() & badbit) != 0; } iostate exceptions() const { return _M_exception; } void exceptions(iostate __except) { _M_exception = __except; this->clear(_M_streambuf_state); } explicit basic_ios(basic_streambuf<_CharT, _Traits>* __sb) : ios_base(), _M_tie(0), _M_fill(), _M_fill_init(false), _M_streambuf(0), _M_ctype(0), _M_num_put(0), _M_num_get(0) { this->init(__sb); } virtual ~basic_ios() { } basic_ostream<_CharT, _Traits>* tie() const { return _M_tie; } basic_ostream<_CharT, _Traits>* tie(basic_ostream<_CharT, _Traits>* __tiestr) { basic_ostream<_CharT, _Traits>* __old = _M_tie; _M_tie = __tiestr; return __old; } basic_streambuf<_CharT, _Traits>* rdbuf() const { return _M_streambuf; } basic_streambuf<_CharT, _Traits>* rdbuf(basic_streambuf<_CharT, _Traits>* __sb); basic_ios& copyfmt(const basic_ios& __rhs); char_type fill() const { if (!_M_fill_init) { _M_fill = this->widen(' '); _M_fill_init = true; } return _M_fill; } char_type fill(char_type __ch) { char_type __old = this->fill(); _M_fill = __ch; return __old; } locale imbue(const locale& __loc); char narrow(char_type __c, char __dfault) const { return __check_facet(_M_ctype).narrow(__c, __dfault); } char_type widen(char __c) const { return __check_facet(_M_ctype).widen(__c); } protected: basic_ios() : ios_base(), _M_tie(0), _M_fill(char_type()), _M_fill_init(false), _M_streambuf(0), _M_ctype(0), _M_num_put(0), _M_num_get(0) { } void init(basic_streambuf<_CharT, _Traits>* __sb); void _M_cache_locale(const locale& __loc); }; } namespace std __attribute__ ((__visibility__ ("default"))) { template void basic_ios<_CharT, _Traits>::clear(iostate __state) { if (this->rdbuf()) _M_streambuf_state = __state; else _M_streambuf_state = __state | badbit; if (this->exceptions() & this->rdstate()) __throw_ios_failure(("basic_ios::clear")); } template basic_streambuf<_CharT, _Traits>* basic_ios<_CharT, _Traits>::rdbuf(basic_streambuf<_CharT, _Traits>* __sb) { basic_streambuf<_CharT, _Traits>* __old = _M_streambuf; _M_streambuf = __sb; this->clear(); return __old; } template basic_ios<_CharT, _Traits>& basic_ios<_CharT, _Traits>::copyfmt(const basic_ios& __rhs) { if (this != &__rhs) { _Words* __words = (__rhs._M_word_size <= _S_local_word_size) ? _M_local_word : new _Words[__rhs._M_word_size]; _Callback_list* __cb = __rhs._M_callbacks; if (__cb) __cb->_M_add_reference(); _M_call_callbacks(erase_event); if (_M_word != _M_local_word) { delete [] _M_word; _M_word = 0; } _M_dispose_callbacks(); _M_callbacks = __cb; for (int __i = 0; __i < __rhs._M_word_size; ++__i) __words[__i] = __rhs._M_word[__i]; _M_word = __words; _M_word_size = __rhs._M_word_size; this->flags(__rhs.flags()); this->width(__rhs.width()); this->precision(__rhs.precision()); this->tie(__rhs.tie()); this->fill(__rhs.fill()); _M_ios_locale = __rhs.getloc(); _M_cache_locale(_M_ios_locale); _M_call_callbacks(copyfmt_event); this->exceptions(__rhs.exceptions()); } return *this; } template locale basic_ios<_CharT, _Traits>::imbue(const locale& __loc) { locale __old(this->getloc()); ios_base::imbue(__loc); _M_cache_locale(__loc); if (this->rdbuf() != 0) this->rdbuf()->pubimbue(__loc); return __old; } template void basic_ios<_CharT, _Traits>::init(basic_streambuf<_CharT, _Traits>* __sb) { ios_base::_M_init(); _M_cache_locale(_M_ios_locale); _M_fill = _CharT(); _M_fill_init = false; _M_tie = 0; _M_exception = goodbit; _M_streambuf = __sb; _M_streambuf_state = __sb ? goodbit : badbit; } template void basic_ios<_CharT, _Traits>::_M_cache_locale(const locale& __loc) { if (__builtin_expect(has_facet<__ctype_type>(__loc), true)) _M_ctype = &use_facet<__ctype_type>(__loc); else _M_ctype = 0; if (__builtin_expect(has_facet<__num_put_type>(__loc), true)) _M_num_put = &use_facet<__num_put_type>(__loc); else _M_num_put = 0; if (__builtin_expect(has_facet<__num_get_type>(__loc), true)) _M_num_get = &use_facet<__num_get_type>(__loc); else _M_num_get = 0; } extern template class basic_ios; extern template class basic_ios; } namespace std __attribute__ ((__visibility__ ("default"))) { template class basic_ostream : virtual public basic_ios<_CharT, _Traits> { public: typedef _CharT char_type; typedef typename _Traits::int_type int_type; typedef typename _Traits::pos_type pos_type; typedef typename _Traits::off_type off_type; typedef _Traits traits_type; typedef basic_streambuf<_CharT, _Traits> __streambuf_type; typedef basic_ios<_CharT, _Traits> __ios_type; typedef basic_ostream<_CharT, _Traits> __ostream_type; typedef num_put<_CharT, ostreambuf_iterator<_CharT, _Traits> > __num_put_type; typedef ctype<_CharT> __ctype_type; explicit basic_ostream(__streambuf_type* __sb) { this->init(__sb); } virtual ~basic_ostream() { } class sentry; friend class sentry; __ostream_type& operator<<(__ostream_type& (*__pf)(__ostream_type&)) { return __pf(*this); } __ostream_type& operator<<(__ios_type& (*__pf)(__ios_type&)) { __pf(*this); return *this; } __ostream_type& operator<<(ios_base& (*__pf) (ios_base&)) { __pf(*this); return *this; } __ostream_type& operator<<(long __n) { return _M_insert(__n); } __ostream_type& operator<<(unsigned long __n) { return _M_insert(__n); } __ostream_type& operator<<(bool __n) { return _M_insert(__n); } __ostream_type& operator<<(short __n); __ostream_type& operator<<(unsigned short __n) { return _M_insert(static_cast(__n)); } __ostream_type& operator<<(int __n); __ostream_type& operator<<(unsigned int __n) { return _M_insert(static_cast(__n)); } __ostream_type& operator<<(long long __n) { return _M_insert(__n); } __ostream_type& operator<<(unsigned long long __n) { return _M_insert(__n); } __ostream_type& operator<<(double __f) { return _M_insert(__f); } __ostream_type& operator<<(float __f) { return _M_insert(static_cast(__f)); } __ostream_type& operator<<(long double __f) { return _M_insert(__f); } __ostream_type& operator<<(const void* __p) { return _M_insert(__p); } __ostream_type& operator<<(__streambuf_type* __sb); __ostream_type& put(char_type __c); void _M_write(const char_type* __s, streamsize __n) { const streamsize __put = this->rdbuf()->sputn(__s, __n); if (__put != __n) this->setstate(ios_base::badbit); } __ostream_type& write(const char_type* __s, streamsize __n); __ostream_type& flush(); pos_type tellp(); __ostream_type& seekp(pos_type); __ostream_type& seekp(off_type, ios_base::seekdir); protected: basic_ostream() { this->init(0); } template __ostream_type& _M_insert(_ValueT __v); }; template class basic_ostream<_CharT, _Traits>::sentry { bool _M_ok; basic_ostream<_CharT, _Traits>& _M_os; public: explicit sentry(basic_ostream<_CharT, _Traits>& __os); ~sentry() { if (bool(_M_os.flags() & ios_base::unitbuf) && !uncaught_exception()) { if (_M_os.rdbuf() && _M_os.rdbuf()->pubsync() == -1) _M_os.setstate(ios_base::badbit); } } operator bool() const { return _M_ok; } }; template inline basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __out, _CharT __c) { return __ostream_insert(__out, &__c, 1); } template inline basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __out, char __c) { return (__out << __out.widen(__c)); } template inline basic_ostream& operator<<(basic_ostream& __out, char __c) { return __ostream_insert(__out, &__c, 1); } template inline basic_ostream& operator<<(basic_ostream& __out, signed char __c) { return (__out << static_cast(__c)); } template inline basic_ostream& operator<<(basic_ostream& __out, unsigned char __c) { return (__out << static_cast(__c)); } template inline basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __out, const _CharT* __s) { if (!__s) __out.setstate(ios_base::badbit); else __ostream_insert(__out, __s, static_cast(_Traits::length(__s))); return __out; } template basic_ostream<_CharT, _Traits> & operator<<(basic_ostream<_CharT, _Traits>& __out, const char* __s); template inline basic_ostream& operator<<(basic_ostream& __out, const char* __s) { if (!__s) __out.setstate(ios_base::badbit); else __ostream_insert(__out, __s, static_cast(_Traits::length(__s))); return __out; } template inline basic_ostream& operator<<(basic_ostream& __out, const signed char* __s) { return (__out << reinterpret_cast(__s)); } template inline basic_ostream & operator<<(basic_ostream& __out, const unsigned char* __s) { return (__out << reinterpret_cast(__s)); } template inline basic_ostream<_CharT, _Traits>& endl(basic_ostream<_CharT, _Traits>& __os) { return flush(__os.put(__os.widen('\n'))); } template inline basic_ostream<_CharT, _Traits>& ends(basic_ostream<_CharT, _Traits>& __os) { return __os.put(_CharT()); } template inline basic_ostream<_CharT, _Traits>& flush(basic_ostream<_CharT, _Traits>& __os) { return __os.flush(); } } namespace std __attribute__ ((__visibility__ ("default"))) { template basic_ostream<_CharT, _Traits>::sentry:: sentry(basic_ostream<_CharT, _Traits>& __os) : _M_ok(false), _M_os(__os) { if (__os.tie() && __os.good()) __os.tie()->flush(); if (__os.good()) _M_ok = true; else __os.setstate(ios_base::failbit); } template template basic_ostream<_CharT, _Traits>& basic_ostream<_CharT, _Traits>:: _M_insert(_ValueT __v) { sentry __cerb(*this); if (__cerb) { ios_base::iostate __err = ios_base::goodbit; try { const __num_put_type& __np = __check_facet(this->_M_num_put); if (__np.put(*this, *this, this->fill(), __v).failed()) __err |= ios_base::badbit; } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } if (__err) this->setstate(__err); } return *this; } template basic_ostream<_CharT, _Traits>& basic_ostream<_CharT, _Traits>:: operator<<(short __n) { const ios_base::fmtflags __fmt = this->flags() & ios_base::basefield; if (__fmt == ios_base::oct || __fmt == ios_base::hex) return _M_insert(static_cast(static_cast(__n))); else return _M_insert(static_cast(__n)); } template basic_ostream<_CharT, _Traits>& basic_ostream<_CharT, _Traits>:: operator<<(int __n) { const ios_base::fmtflags __fmt = this->flags() & ios_base::basefield; if (__fmt == ios_base::oct || __fmt == ios_base::hex) return _M_insert(static_cast(static_cast(__n))); else return _M_insert(static_cast(__n)); } template basic_ostream<_CharT, _Traits>& basic_ostream<_CharT, _Traits>:: operator<<(__streambuf_type* __sbin) { ios_base::iostate __err = ios_base::goodbit; sentry __cerb(*this); if (__cerb && __sbin) { try { if (!__copy_streambufs(__sbin, this->rdbuf())) __err |= ios_base::failbit; } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::failbit); } } else if (!__sbin) __err |= ios_base::badbit; if (__err) this->setstate(__err); return *this; } template basic_ostream<_CharT, _Traits>& basic_ostream<_CharT, _Traits>:: put(char_type __c) { sentry __cerb(*this); if (__cerb) { ios_base::iostate __err = ios_base::goodbit; try { const int_type __put = this->rdbuf()->sputc(__c); if (traits_type::eq_int_type(__put, traits_type::eof())) __err |= ios_base::badbit; } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } if (__err) this->setstate(__err); } return *this; } template basic_ostream<_CharT, _Traits>& basic_ostream<_CharT, _Traits>:: write(const _CharT* __s, streamsize __n) { sentry __cerb(*this); if (__cerb) { try { _M_write(__s, __n); } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } } return *this; } template basic_ostream<_CharT, _Traits>& basic_ostream<_CharT, _Traits>:: flush() { ios_base::iostate __err = ios_base::goodbit; try { if (this->rdbuf() && this->rdbuf()->pubsync() == -1) __err |= ios_base::badbit; } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } if (__err) this->setstate(__err); return *this; } template typename basic_ostream<_CharT, _Traits>::pos_type basic_ostream<_CharT, _Traits>:: tellp() { pos_type __ret = pos_type(-1); try { if (!this->fail()) __ret = this->rdbuf()->pubseekoff(0, ios_base::cur, ios_base::out); } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } return __ret; } template basic_ostream<_CharT, _Traits>& basic_ostream<_CharT, _Traits>:: seekp(pos_type __pos) { ios_base::iostate __err = ios_base::goodbit; try { if (!this->fail()) { const pos_type __p = this->rdbuf()->pubseekpos(__pos, ios_base::out); if (__p == pos_type(off_type(-1))) __err |= ios_base::failbit; } } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } if (__err) this->setstate(__err); return *this; } template basic_ostream<_CharT, _Traits>& basic_ostream<_CharT, _Traits>:: seekp(off_type __off, ios_base::seekdir __dir) { ios_base::iostate __err = ios_base::goodbit; try { if (!this->fail()) { const pos_type __p = this->rdbuf()->pubseekoff(__off, __dir, ios_base::out); if (__p == pos_type(off_type(-1))) __err |= ios_base::failbit; } } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } if (__err) this->setstate(__err); return *this; } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __out, const char* __s) { if (!__s) __out.setstate(ios_base::badbit); else { const size_t __clen = char_traits::length(__s); try { struct __ptr_guard { _CharT *__p; __ptr_guard (_CharT *__ip): __p(__ip) { } ~__ptr_guard() { delete[] __p; } _CharT* __get() { return __p; } } __pg (new _CharT[__clen]); _CharT *__ws = __pg.__get(); for (size_t __i = 0; __i < __clen; ++__i) __ws[__i] = __out.widen(__s[__i]); __ostream_insert(__out, __ws, __clen); } catch(__cxxabiv1::__forced_unwind&) { __out._M_setstate(ios_base::badbit); throw; } catch(...) { __out._M_setstate(ios_base::badbit); } } return __out; } extern template class basic_ostream; extern template ostream& endl(ostream&); extern template ostream& ends(ostream&); extern template ostream& flush(ostream&); extern template ostream& operator<<(ostream&, char); extern template ostream& operator<<(ostream&, unsigned char); extern template ostream& operator<<(ostream&, signed char); extern template ostream& operator<<(ostream&, const char*); extern template ostream& operator<<(ostream&, const unsigned char*); extern template ostream& operator<<(ostream&, const signed char*); extern template ostream& ostream::_M_insert(long); extern template ostream& ostream::_M_insert(unsigned long); extern template ostream& ostream::_M_insert(bool); extern template ostream& ostream::_M_insert(long long); extern template ostream& ostream::_M_insert(unsigned long long); extern template ostream& ostream::_M_insert(double); extern template ostream& ostream::_M_insert(long double); extern template ostream& ostream::_M_insert(const void*); extern template class basic_ostream; extern template wostream& endl(wostream&); extern template wostream& ends(wostream&); extern template wostream& flush(wostream&); extern template wostream& operator<<(wostream&, wchar_t); extern template wostream& operator<<(wostream&, char); extern template wostream& operator<<(wostream&, const wchar_t*); extern template wostream& operator<<(wostream&, const char*); extern template wostream& wostream::_M_insert(long); extern template wostream& wostream::_M_insert(unsigned long); extern template wostream& wostream::_M_insert(bool); extern template wostream& wostream::_M_insert(long long); extern template wostream& wostream::_M_insert(unsigned long long); extern template wostream& wostream::_M_insert(double); extern template wostream& wostream::_M_insert(long double); extern template wostream& wostream::_M_insert(const void*); } namespace std __attribute__ ((__visibility__ ("default"))) { template class basic_istream : virtual public basic_ios<_CharT, _Traits> { public: typedef _CharT char_type; typedef typename _Traits::int_type int_type; typedef typename _Traits::pos_type pos_type; typedef typename _Traits::off_type off_type; typedef _Traits traits_type; typedef basic_streambuf<_CharT, _Traits> __streambuf_type; typedef basic_ios<_CharT, _Traits> __ios_type; typedef basic_istream<_CharT, _Traits> __istream_type; typedef num_get<_CharT, istreambuf_iterator<_CharT, _Traits> > __num_get_type; typedef ctype<_CharT> __ctype_type; protected: streamsize _M_gcount; public: explicit basic_istream(__streambuf_type* __sb) : _M_gcount(streamsize(0)) { this->init(__sb); } virtual ~basic_istream() { _M_gcount = streamsize(0); } class sentry; friend class sentry; __istream_type& operator>>(__istream_type& (*__pf)(__istream_type&)) { return __pf(*this); } __istream_type& operator>>(__ios_type& (*__pf)(__ios_type&)) { __pf(*this); return *this; } __istream_type& operator>>(ios_base& (*__pf)(ios_base&)) { __pf(*this); return *this; } __istream_type& operator>>(bool& __n) { return _M_extract(__n); } __istream_type& operator>>(short& __n); __istream_type& operator>>(unsigned short& __n) { return _M_extract(__n); } __istream_type& operator>>(int& __n); __istream_type& operator>>(unsigned int& __n) { return _M_extract(__n); } __istream_type& operator>>(long& __n) { return _M_extract(__n); } __istream_type& operator>>(unsigned long& __n) { return _M_extract(__n); } __istream_type& operator>>(long long& __n) { return _M_extract(__n); } __istream_type& operator>>(unsigned long long& __n) { return _M_extract(__n); } __istream_type& operator>>(float& __f) { return _M_extract(__f); } __istream_type& operator>>(double& __f) { return _M_extract(__f); } __istream_type& operator>>(long double& __f) { return _M_extract(__f); } __istream_type& operator>>(void*& __p) { return _M_extract(__p); } __istream_type& operator>>(__streambuf_type* __sb); streamsize gcount() const { return _M_gcount; } int_type get(); __istream_type& get(char_type& __c); __istream_type& get(char_type* __s, streamsize __n, char_type __delim); __istream_type& get(char_type* __s, streamsize __n) { return this->get(__s, __n, this->widen('\n')); } __istream_type& get(__streambuf_type& __sb, char_type __delim); __istream_type& get(__streambuf_type& __sb) { return this->get(__sb, this->widen('\n')); } __istream_type& getline(char_type* __s, streamsize __n, char_type __delim); __istream_type& getline(char_type* __s, streamsize __n) { return this->getline(__s, __n, this->widen('\n')); } __istream_type& ignore(); __istream_type& ignore(streamsize __n); __istream_type& ignore(streamsize __n, int_type __delim); int_type peek(); __istream_type& read(char_type* __s, streamsize __n); streamsize readsome(char_type* __s, streamsize __n); __istream_type& putback(char_type __c); __istream_type& unget(); int sync(); pos_type tellg(); __istream_type& seekg(pos_type); __istream_type& seekg(off_type, ios_base::seekdir); protected: basic_istream() : _M_gcount(streamsize(0)) { this->init(0); } template __istream_type& _M_extract(_ValueT& __v); }; template<> basic_istream& basic_istream:: getline(char_type* __s, streamsize __n, char_type __delim); template<> basic_istream& basic_istream:: ignore(streamsize __n); template<> basic_istream& basic_istream:: ignore(streamsize __n, int_type __delim); template<> basic_istream& basic_istream:: getline(char_type* __s, streamsize __n, char_type __delim); template<> basic_istream& basic_istream:: ignore(streamsize __n); template<> basic_istream& basic_istream:: ignore(streamsize __n, int_type __delim); template class basic_istream<_CharT, _Traits>::sentry { bool _M_ok; public: typedef _Traits traits_type; typedef basic_streambuf<_CharT, _Traits> __streambuf_type; typedef basic_istream<_CharT, _Traits> __istream_type; typedef typename __istream_type::__ctype_type __ctype_type; typedef typename _Traits::int_type __int_type; explicit sentry(basic_istream<_CharT, _Traits>& __is, bool __noskipws = false); operator bool() const { return _M_ok; } }; template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __in, _CharT& __c); template inline basic_istream& operator>>(basic_istream& __in, unsigned char& __c) { return (__in >> reinterpret_cast(__c)); } template inline basic_istream& operator>>(basic_istream& __in, signed char& __c) { return (__in >> reinterpret_cast(__c)); } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __in, _CharT* __s); template<> basic_istream& operator>>(basic_istream& __in, char* __s); template inline basic_istream& operator>>(basic_istream& __in, unsigned char* __s) { return (__in >> reinterpret_cast(__s)); } template inline basic_istream& operator>>(basic_istream& __in, signed char* __s) { return (__in >> reinterpret_cast(__s)); } template class basic_iostream : public basic_istream<_CharT, _Traits>, public basic_ostream<_CharT, _Traits> { public: typedef _CharT char_type; typedef typename _Traits::int_type int_type; typedef typename _Traits::pos_type pos_type; typedef typename _Traits::off_type off_type; typedef _Traits traits_type; typedef basic_istream<_CharT, _Traits> __istream_type; typedef basic_ostream<_CharT, _Traits> __ostream_type; explicit basic_iostream(basic_streambuf<_CharT, _Traits>* __sb) : __istream_type(__sb), __ostream_type(__sb) { } virtual ~basic_iostream() { } protected: basic_iostream() : __istream_type(), __ostream_type() { } }; template basic_istream<_CharT, _Traits>& ws(basic_istream<_CharT, _Traits>& __is); } namespace std __attribute__ ((__visibility__ ("default"))) { template basic_istream<_CharT, _Traits>::sentry:: sentry(basic_istream<_CharT, _Traits>& __in, bool __noskip) : _M_ok(false) { ios_base::iostate __err = ios_base::goodbit; if (__in.good()) { if (__in.tie()) __in.tie()->flush(); if (!__noskip && bool(__in.flags() & ios_base::skipws)) { const __int_type __eof = traits_type::eof(); __streambuf_type* __sb = __in.rdbuf(); __int_type __c = __sb->sgetc(); const __ctype_type& __ct = __check_facet(__in._M_ctype); while (!traits_type::eq_int_type(__c, __eof) && __ct.is(ctype_base::space, traits_type::to_char_type(__c))) __c = __sb->snextc(); if (traits_type::eq_int_type(__c, __eof)) __err |= ios_base::eofbit; } } if (__in.good() && __err == ios_base::goodbit) _M_ok = true; else { __err |= ios_base::failbit; __in.setstate(__err); } } template template basic_istream<_CharT, _Traits>& basic_istream<_CharT, _Traits>:: _M_extract(_ValueT& __v) { sentry __cerb(*this, false); if (__cerb) { ios_base::iostate __err = ios_base::goodbit; try { const __num_get_type& __ng = __check_facet(this->_M_num_get); __ng.get(*this, 0, *this, __err, __v); } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } if (__err) this->setstate(__err); } return *this; } template basic_istream<_CharT, _Traits>& basic_istream<_CharT, _Traits>:: operator>>(short& __n) { sentry __cerb(*this, false); if (__cerb) { ios_base::iostate __err = ios_base::goodbit; try { long __l; const __num_get_type& __ng = __check_facet(this->_M_num_get); __ng.get(*this, 0, *this, __err, __l); if (__l < __gnu_cxx::__numeric_traits::__min) { __err |= ios_base::failbit; __n = __gnu_cxx::__numeric_traits::__min; } else if (__l > __gnu_cxx::__numeric_traits::__max) { __err |= ios_base::failbit; __n = __gnu_cxx::__numeric_traits::__max; } else __n = short(__l); } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } if (__err) this->setstate(__err); } return *this; } template basic_istream<_CharT, _Traits>& basic_istream<_CharT, _Traits>:: operator>>(int& __n) { sentry __cerb(*this, false); if (__cerb) { ios_base::iostate __err = ios_base::goodbit; try { long __l; const __num_get_type& __ng = __check_facet(this->_M_num_get); __ng.get(*this, 0, *this, __err, __l); if (__l < __gnu_cxx::__numeric_traits::__min) { __err |= ios_base::failbit; __n = __gnu_cxx::__numeric_traits::__min; } else if (__l > __gnu_cxx::__numeric_traits::__max) { __err |= ios_base::failbit; __n = __gnu_cxx::__numeric_traits::__max; } else __n = int(__l); } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } if (__err) this->setstate(__err); } return *this; } template basic_istream<_CharT, _Traits>& basic_istream<_CharT, _Traits>:: operator>>(__streambuf_type* __sbout) { ios_base::iostate __err = ios_base::goodbit; sentry __cerb(*this, false); if (__cerb && __sbout) { try { bool __ineof; if (!__copy_streambufs_eof(this->rdbuf(), __sbout, __ineof)) __err |= ios_base::failbit; if (__ineof) __err |= ios_base::eofbit; } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::failbit); throw; } catch(...) { this->_M_setstate(ios_base::failbit); } } else if (!__sbout) __err |= ios_base::failbit; if (__err) this->setstate(__err); return *this; } template typename basic_istream<_CharT, _Traits>::int_type basic_istream<_CharT, _Traits>:: get(void) { const int_type __eof = traits_type::eof(); int_type __c = __eof; _M_gcount = 0; ios_base::iostate __err = ios_base::goodbit; sentry __cerb(*this, true); if (__cerb) { try { __c = this->rdbuf()->sbumpc(); if (!traits_type::eq_int_type(__c, __eof)) _M_gcount = 1; else __err |= ios_base::eofbit; } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } } if (!_M_gcount) __err |= ios_base::failbit; if (__err) this->setstate(__err); return __c; } template basic_istream<_CharT, _Traits>& basic_istream<_CharT, _Traits>:: get(char_type& __c) { _M_gcount = 0; ios_base::iostate __err = ios_base::goodbit; sentry __cerb(*this, true); if (__cerb) { try { const int_type __cb = this->rdbuf()->sbumpc(); if (!traits_type::eq_int_type(__cb, traits_type::eof())) { _M_gcount = 1; __c = traits_type::to_char_type(__cb); } else __err |= ios_base::eofbit; } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } } if (!_M_gcount) __err |= ios_base::failbit; if (__err) this->setstate(__err); return *this; } template basic_istream<_CharT, _Traits>& basic_istream<_CharT, _Traits>:: get(char_type* __s, streamsize __n, char_type __delim) { _M_gcount = 0; ios_base::iostate __err = ios_base::goodbit; sentry __cerb(*this, true); if (__cerb) { try { const int_type __idelim = traits_type::to_int_type(__delim); const int_type __eof = traits_type::eof(); __streambuf_type* __sb = this->rdbuf(); int_type __c = __sb->sgetc(); while (_M_gcount + 1 < __n && !traits_type::eq_int_type(__c, __eof) && !traits_type::eq_int_type(__c, __idelim)) { *__s++ = traits_type::to_char_type(__c); ++_M_gcount; __c = __sb->snextc(); } if (traits_type::eq_int_type(__c, __eof)) __err |= ios_base::eofbit; } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } } if (__n > 0) *__s = char_type(); if (!_M_gcount) __err |= ios_base::failbit; if (__err) this->setstate(__err); return *this; } template basic_istream<_CharT, _Traits>& basic_istream<_CharT, _Traits>:: get(__streambuf_type& __sb, char_type __delim) { _M_gcount = 0; ios_base::iostate __err = ios_base::goodbit; sentry __cerb(*this, true); if (__cerb) { try { const int_type __idelim = traits_type::to_int_type(__delim); const int_type __eof = traits_type::eof(); __streambuf_type* __this_sb = this->rdbuf(); int_type __c = __this_sb->sgetc(); char_type __c2 = traits_type::to_char_type(__c); while (!traits_type::eq_int_type(__c, __eof) && !traits_type::eq_int_type(__c, __idelim) && !traits_type::eq_int_type(__sb.sputc(__c2), __eof)) { ++_M_gcount; __c = __this_sb->snextc(); __c2 = traits_type::to_char_type(__c); } if (traits_type::eq_int_type(__c, __eof)) __err |= ios_base::eofbit; } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } } if (!_M_gcount) __err |= ios_base::failbit; if (__err) this->setstate(__err); return *this; } template basic_istream<_CharT, _Traits>& basic_istream<_CharT, _Traits>:: getline(char_type* __s, streamsize __n, char_type __delim) { _M_gcount = 0; ios_base::iostate __err = ios_base::goodbit; sentry __cerb(*this, true); if (__cerb) { try { const int_type __idelim = traits_type::to_int_type(__delim); const int_type __eof = traits_type::eof(); __streambuf_type* __sb = this->rdbuf(); int_type __c = __sb->sgetc(); while (_M_gcount + 1 < __n && !traits_type::eq_int_type(__c, __eof) && !traits_type::eq_int_type(__c, __idelim)) { *__s++ = traits_type::to_char_type(__c); __c = __sb->snextc(); ++_M_gcount; } if (traits_type::eq_int_type(__c, __eof)) __err |= ios_base::eofbit; else { if (traits_type::eq_int_type(__c, __idelim)) { __sb->sbumpc(); ++_M_gcount; } else __err |= ios_base::failbit; } } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } } if (__n > 0) *__s = char_type(); if (!_M_gcount) __err |= ios_base::failbit; if (__err) this->setstate(__err); return *this; } template basic_istream<_CharT, _Traits>& basic_istream<_CharT, _Traits>:: ignore(void) { _M_gcount = 0; sentry __cerb(*this, true); if (__cerb) { ios_base::iostate __err = ios_base::goodbit; try { const int_type __eof = traits_type::eof(); __streambuf_type* __sb = this->rdbuf(); if (traits_type::eq_int_type(__sb->sbumpc(), __eof)) __err |= ios_base::eofbit; else _M_gcount = 1; } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } if (__err) this->setstate(__err); } return *this; } template basic_istream<_CharT, _Traits>& basic_istream<_CharT, _Traits>:: ignore(streamsize __n) { _M_gcount = 0; sentry __cerb(*this, true); if (__cerb && __n > 0) { ios_base::iostate __err = ios_base::goodbit; try { const int_type __eof = traits_type::eof(); __streambuf_type* __sb = this->rdbuf(); int_type __c = __sb->sgetc(); bool __large_ignore = false; while (true) { while (_M_gcount < __n && !traits_type::eq_int_type(__c, __eof)) { ++_M_gcount; __c = __sb->snextc(); } if (__n == __gnu_cxx::__numeric_traits::__max && !traits_type::eq_int_type(__c, __eof)) { _M_gcount = __gnu_cxx::__numeric_traits::__min; __large_ignore = true; } else break; } if (__large_ignore) _M_gcount = __gnu_cxx::__numeric_traits::__max; if (traits_type::eq_int_type(__c, __eof)) __err |= ios_base::eofbit; } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } if (__err) this->setstate(__err); } return *this; } template basic_istream<_CharT, _Traits>& basic_istream<_CharT, _Traits>:: ignore(streamsize __n, int_type __delim) { _M_gcount = 0; sentry __cerb(*this, true); if (__cerb && __n > 0) { ios_base::iostate __err = ios_base::goodbit; try { const int_type __eof = traits_type::eof(); __streambuf_type* __sb = this->rdbuf(); int_type __c = __sb->sgetc(); bool __large_ignore = false; while (true) { while (_M_gcount < __n && !traits_type::eq_int_type(__c, __eof) && !traits_type::eq_int_type(__c, __delim)) { ++_M_gcount; __c = __sb->snextc(); } if (__n == __gnu_cxx::__numeric_traits::__max && !traits_type::eq_int_type(__c, __eof) && !traits_type::eq_int_type(__c, __delim)) { _M_gcount = __gnu_cxx::__numeric_traits::__min; __large_ignore = true; } else break; } if (__large_ignore) _M_gcount = __gnu_cxx::__numeric_traits::__max; if (traits_type::eq_int_type(__c, __eof)) __err |= ios_base::eofbit; else if (traits_type::eq_int_type(__c, __delim)) { if (_M_gcount < __gnu_cxx::__numeric_traits::__max) ++_M_gcount; __sb->sbumpc(); } } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } if (__err) this->setstate(__err); } return *this; } template typename basic_istream<_CharT, _Traits>::int_type basic_istream<_CharT, _Traits>:: peek(void) { int_type __c = traits_type::eof(); _M_gcount = 0; sentry __cerb(*this, true); if (__cerb) { ios_base::iostate __err = ios_base::goodbit; try { __c = this->rdbuf()->sgetc(); if (traits_type::eq_int_type(__c, traits_type::eof())) __err |= ios_base::eofbit; } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } if (__err) this->setstate(__err); } return __c; } template basic_istream<_CharT, _Traits>& basic_istream<_CharT, _Traits>:: read(char_type* __s, streamsize __n) { _M_gcount = 0; sentry __cerb(*this, true); if (__cerb) { ios_base::iostate __err = ios_base::goodbit; try { _M_gcount = this->rdbuf()->sgetn(__s, __n); if (_M_gcount != __n) __err |= (ios_base::eofbit | ios_base::failbit); } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } if (__err) this->setstate(__err); } return *this; } template streamsize basic_istream<_CharT, _Traits>:: readsome(char_type* __s, streamsize __n) { _M_gcount = 0; sentry __cerb(*this, true); if (__cerb) { ios_base::iostate __err = ios_base::goodbit; try { const streamsize __num = this->rdbuf()->in_avail(); if (__num > 0) _M_gcount = this->rdbuf()->sgetn(__s, std::min(__num, __n)); else if (__num == -1) __err |= ios_base::eofbit; } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } if (__err) this->setstate(__err); } return _M_gcount; } template basic_istream<_CharT, _Traits>& basic_istream<_CharT, _Traits>:: putback(char_type __c) { _M_gcount = 0; this->clear(this->rdstate() & ~ios_base::eofbit); sentry __cerb(*this, true); if (__cerb) { ios_base::iostate __err = ios_base::goodbit; try { const int_type __eof = traits_type::eof(); __streambuf_type* __sb = this->rdbuf(); if (!__sb || traits_type::eq_int_type(__sb->sputbackc(__c), __eof)) __err |= ios_base::badbit; } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } if (__err) this->setstate(__err); } return *this; } template basic_istream<_CharT, _Traits>& basic_istream<_CharT, _Traits>:: unget(void) { _M_gcount = 0; this->clear(this->rdstate() & ~ios_base::eofbit); sentry __cerb(*this, true); if (__cerb) { ios_base::iostate __err = ios_base::goodbit; try { const int_type __eof = traits_type::eof(); __streambuf_type* __sb = this->rdbuf(); if (!__sb || traits_type::eq_int_type(__sb->sungetc(), __eof)) __err |= ios_base::badbit; } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } if (__err) this->setstate(__err); } return *this; } template int basic_istream<_CharT, _Traits>:: sync(void) { int __ret = -1; sentry __cerb(*this, true); if (__cerb) { ios_base::iostate __err = ios_base::goodbit; try { __streambuf_type* __sb = this->rdbuf(); if (__sb) { if (__sb->pubsync() == -1) __err |= ios_base::badbit; else __ret = 0; } } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } if (__err) this->setstate(__err); } return __ret; } template typename basic_istream<_CharT, _Traits>::pos_type basic_istream<_CharT, _Traits>:: tellg(void) { pos_type __ret = pos_type(-1); sentry __cerb(*this, true); if (__cerb) { try { if (!this->fail()) __ret = this->rdbuf()->pubseekoff(0, ios_base::cur, ios_base::in); } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } } return __ret; } template basic_istream<_CharT, _Traits>& basic_istream<_CharT, _Traits>:: seekg(pos_type __pos) { this->clear(this->rdstate() & ~ios_base::eofbit); sentry __cerb(*this, true); if (__cerb) { ios_base::iostate __err = ios_base::goodbit; try { if (!this->fail()) { const pos_type __p = this->rdbuf()->pubseekpos(__pos, ios_base::in); if (__p == pos_type(off_type(-1))) __err |= ios_base::failbit; } } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } if (__err) this->setstate(__err); } return *this; } template basic_istream<_CharT, _Traits>& basic_istream<_CharT, _Traits>:: seekg(off_type __off, ios_base::seekdir __dir) { this->clear(this->rdstate() & ~ios_base::eofbit); sentry __cerb(*this, true); if (__cerb) { ios_base::iostate __err = ios_base::goodbit; try { if (!this->fail()) { const pos_type __p = this->rdbuf()->pubseekoff(__off, __dir, ios_base::in); if (__p == pos_type(off_type(-1))) __err |= ios_base::failbit; } } catch(__cxxabiv1::__forced_unwind&) { this->_M_setstate(ios_base::badbit); throw; } catch(...) { this->_M_setstate(ios_base::badbit); } if (__err) this->setstate(__err); } return *this; } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __in, _CharT& __c) { typedef basic_istream<_CharT, _Traits> __istream_type; typedef typename __istream_type::int_type __int_type; typename __istream_type::sentry __cerb(__in, false); if (__cerb) { ios_base::iostate __err = ios_base::goodbit; try { const __int_type __cb = __in.rdbuf()->sbumpc(); if (!_Traits::eq_int_type(__cb, _Traits::eof())) __c = _Traits::to_char_type(__cb); else __err |= (ios_base::eofbit | ios_base::failbit); } catch(__cxxabiv1::__forced_unwind&) { __in._M_setstate(ios_base::badbit); throw; } catch(...) { __in._M_setstate(ios_base::badbit); } if (__err) __in.setstate(__err); } return __in; } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __in, _CharT* __s) { typedef basic_istream<_CharT, _Traits> __istream_type; typedef basic_streambuf<_CharT, _Traits> __streambuf_type; typedef typename _Traits::int_type int_type; typedef _CharT char_type; typedef ctype<_CharT> __ctype_type; streamsize __extracted = 0; ios_base::iostate __err = ios_base::goodbit; typename __istream_type::sentry __cerb(__in, false); if (__cerb) { try { streamsize __num = __in.width(); if (__num <= 0) __num = __gnu_cxx::__numeric_traits::__max; const __ctype_type& __ct = use_facet<__ctype_type>(__in.getloc()); const int_type __eof = _Traits::eof(); __streambuf_type* __sb = __in.rdbuf(); int_type __c = __sb->sgetc(); while (__extracted < __num - 1 && !_Traits::eq_int_type(__c, __eof) && !__ct.is(ctype_base::space, _Traits::to_char_type(__c))) { *__s++ = _Traits::to_char_type(__c); ++__extracted; __c = __sb->snextc(); } if (_Traits::eq_int_type(__c, __eof)) __err |= ios_base::eofbit; *__s = char_type(); __in.width(0); } catch(__cxxabiv1::__forced_unwind&) { __in._M_setstate(ios_base::badbit); throw; } catch(...) { __in._M_setstate(ios_base::badbit); } } if (!__extracted) __err |= ios_base::failbit; if (__err) __in.setstate(__err); return __in; } template basic_istream<_CharT, _Traits>& ws(basic_istream<_CharT, _Traits>& __in) { typedef basic_istream<_CharT, _Traits> __istream_type; typedef basic_streambuf<_CharT, _Traits> __streambuf_type; typedef typename __istream_type::int_type __int_type; typedef ctype<_CharT> __ctype_type; const __ctype_type& __ct = use_facet<__ctype_type>(__in.getloc()); const __int_type __eof = _Traits::eof(); __streambuf_type* __sb = __in.rdbuf(); __int_type __c = __sb->sgetc(); while (!_Traits::eq_int_type(__c, __eof) && __ct.is(ctype_base::space, _Traits::to_char_type(__c))) __c = __sb->snextc(); if (_Traits::eq_int_type(__c, __eof)) __in.setstate(ios_base::eofbit); return __in; } extern template class basic_istream; extern template istream& ws(istream&); extern template istream& operator>>(istream&, char&); extern template istream& operator>>(istream&, char*); extern template istream& operator>>(istream&, unsigned char&); extern template istream& operator>>(istream&, signed char&); extern template istream& operator>>(istream&, unsigned char*); extern template istream& operator>>(istream&, signed char*); extern template istream& istream::_M_extract(unsigned short&); extern template istream& istream::_M_extract(unsigned int&); extern template istream& istream::_M_extract(long&); extern template istream& istream::_M_extract(unsigned long&); extern template istream& istream::_M_extract(bool&); extern template istream& istream::_M_extract(long long&); extern template istream& istream::_M_extract(unsigned long long&); extern template istream& istream::_M_extract(float&); extern template istream& istream::_M_extract(double&); extern template istream& istream::_M_extract(long double&); extern template istream& istream::_M_extract(void*&); extern template class basic_iostream; extern template class basic_istream; extern template wistream& ws(wistream&); extern template wistream& operator>>(wistream&, wchar_t&); extern template wistream& operator>>(wistream&, wchar_t*); extern template wistream& wistream::_M_extract(unsigned short&); extern template wistream& wistream::_M_extract(unsigned int&); extern template wistream& wistream::_M_extract(long&); extern template wistream& wistream::_M_extract(unsigned long&); extern template wistream& wistream::_M_extract(bool&); extern template wistream& wistream::_M_extract(long long&); extern template wistream& wistream::_M_extract(unsigned long long&); extern template wistream& wistream::_M_extract(float&); extern template wistream& wistream::_M_extract(double&); extern template wistream& wistream::_M_extract(long double&); extern template wistream& wistream::_M_extract(void*&); extern template class basic_iostream; } namespace std __attribute__ ((__visibility__ ("default"))) { template, typename _Dist = ptrdiff_t> class istream_iterator : public iterator { public: typedef _CharT char_type; typedef _Traits traits_type; typedef basic_istream<_CharT, _Traits> istream_type; private: istream_type* _M_stream; _Tp _M_value; bool _M_ok; public: istream_iterator() : _M_stream(0), _M_value(), _M_ok(false) {} istream_iterator(istream_type& __s) : _M_stream(&__s) { _M_read(); } istream_iterator(const istream_iterator& __obj) : _M_stream(__obj._M_stream), _M_value(__obj._M_value), _M_ok(__obj._M_ok) { } const _Tp& operator*() const { ; return _M_value; } const _Tp* operator->() const { return &(operator*()); } istream_iterator& operator++() { ; _M_read(); return *this; } istream_iterator operator++(int) { ; istream_iterator __tmp = *this; _M_read(); return __tmp; } bool _M_equal(const istream_iterator& __x) const { return (_M_ok == __x._M_ok) && (!_M_ok || _M_stream == __x._M_stream); } private: void _M_read() { _M_ok = (_M_stream && *_M_stream) ? true : false; if (_M_ok) { *_M_stream >> _M_value; _M_ok = *_M_stream ? true : false; } } }; template inline bool operator==(const istream_iterator<_Tp, _CharT, _Traits, _Dist>& __x, const istream_iterator<_Tp, _CharT, _Traits, _Dist>& __y) { return __x._M_equal(__y); } template inline bool operator!=(const istream_iterator<_Tp, _CharT, _Traits, _Dist>& __x, const istream_iterator<_Tp, _CharT, _Traits, _Dist>& __y) { return !__x._M_equal(__y); } template > class ostream_iterator : public iterator { public: typedef _CharT char_type; typedef _Traits traits_type; typedef basic_ostream<_CharT, _Traits> ostream_type; private: ostream_type* _M_stream; const _CharT* _M_string; public: ostream_iterator(ostream_type& __s) : _M_stream(&__s), _M_string(0) {} ostream_iterator(ostream_type& __s, const _CharT* __c) : _M_stream(&__s), _M_string(__c) { } ostream_iterator(const ostream_iterator& __obj) : _M_stream(__obj._M_stream), _M_string(__obj._M_string) { } ostream_iterator& operator=(const _Tp& __value) { ; *_M_stream << __value; if (_M_string) *_M_stream << _M_string; return *this; } ostream_iterator& operator*() { return *this; } ostream_iterator& operator++() { return *this; } ostream_iterator& operator++(int) { return *this; } }; } namespace std __attribute__ ((__visibility__ ("default"))) { namespace __detail { struct _List_node_base { _List_node_base* _M_next; _List_node_base* _M_prev; static void swap(_List_node_base& __x, _List_node_base& __y) throw (); void _M_transfer(_List_node_base* const __first, _List_node_base* const __last) throw (); void _M_reverse() throw (); void _M_hook(_List_node_base* const __position) throw (); void _M_unhook() throw (); }; } template struct _List_node : public __detail::_List_node_base { _Tp _M_data; }; template struct _List_iterator { typedef _List_iterator<_Tp> _Self; typedef _List_node<_Tp> _Node; typedef ptrdiff_t difference_type; typedef std::bidirectional_iterator_tag iterator_category; typedef _Tp value_type; typedef _Tp* pointer; typedef _Tp& reference; _List_iterator() : _M_node() { } explicit _List_iterator(__detail::_List_node_base* __x) : _M_node(__x) { } reference operator*() const { return static_cast<_Node*>(_M_node)->_M_data; } pointer operator->() const { return std::__addressof(static_cast<_Node*>(_M_node)->_M_data); } _Self& operator++() { _M_node = _M_node->_M_next; return *this; } _Self operator++(int) { _Self __tmp = *this; _M_node = _M_node->_M_next; return __tmp; } _Self& operator--() { _M_node = _M_node->_M_prev; return *this; } _Self operator--(int) { _Self __tmp = *this; _M_node = _M_node->_M_prev; return __tmp; } bool operator==(const _Self& __x) const { return _M_node == __x._M_node; } bool operator!=(const _Self& __x) const { return _M_node != __x._M_node; } __detail::_List_node_base* _M_node; }; template struct _List_const_iterator { typedef _List_const_iterator<_Tp> _Self; typedef const _List_node<_Tp> _Node; typedef _List_iterator<_Tp> iterator; typedef ptrdiff_t difference_type; typedef std::bidirectional_iterator_tag iterator_category; typedef _Tp value_type; typedef const _Tp* pointer; typedef const _Tp& reference; _List_const_iterator() : _M_node() { } explicit _List_const_iterator(const __detail::_List_node_base* __x) : _M_node(__x) { } _List_const_iterator(const iterator& __x) : _M_node(__x._M_node) { } reference operator*() const { return static_cast<_Node*>(_M_node)->_M_data; } pointer operator->() const { return std::__addressof(static_cast<_Node*>(_M_node)->_M_data); } _Self& operator++() { _M_node = _M_node->_M_next; return *this; } _Self operator++(int) { _Self __tmp = *this; _M_node = _M_node->_M_next; return __tmp; } _Self& operator--() { _M_node = _M_node->_M_prev; return *this; } _Self operator--(int) { _Self __tmp = *this; _M_node = _M_node->_M_prev; return __tmp; } bool operator==(const _Self& __x) const { return _M_node == __x._M_node; } bool operator!=(const _Self& __x) const { return _M_node != __x._M_node; } const __detail::_List_node_base* _M_node; }; template inline bool operator==(const _List_iterator<_Val>& __x, const _List_const_iterator<_Val>& __y) { return __x._M_node == __y._M_node; } template inline bool operator!=(const _List_iterator<_Val>& __x, const _List_const_iterator<_Val>& __y) { return __x._M_node != __y._M_node; } template class _List_base { protected: typedef typename _Alloc::template rebind<_List_node<_Tp> >::other _Node_alloc_type; typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type; struct _List_impl : public _Node_alloc_type { __detail::_List_node_base _M_node; _List_impl() : _Node_alloc_type(), _M_node() { } _List_impl(const _Node_alloc_type& __a) : _Node_alloc_type(__a), _M_node() { } }; _List_impl _M_impl; _List_node<_Tp>* _M_get_node() { return _M_impl._Node_alloc_type::allocate(1); } void _M_put_node(_List_node<_Tp>* __p) { _M_impl._Node_alloc_type::deallocate(__p, 1); } public: typedef _Alloc allocator_type; _Node_alloc_type& _M_get_Node_allocator() { return *static_cast<_Node_alloc_type*>(&this->_M_impl); } const _Node_alloc_type& _M_get_Node_allocator() const { return *static_cast(&this->_M_impl); } _Tp_alloc_type _M_get_Tp_allocator() const { return _Tp_alloc_type(_M_get_Node_allocator()); } allocator_type get_allocator() const { return allocator_type(_M_get_Node_allocator()); } _List_base() : _M_impl() { _M_init(); } _List_base(const allocator_type& __a) : _M_impl(__a) { _M_init(); } ~_List_base() { _M_clear(); } void _M_clear(); void _M_init() { this->_M_impl._M_node._M_next = &this->_M_impl._M_node; this->_M_impl._M_node._M_prev = &this->_M_impl._M_node; } }; template > class list : protected _List_base<_Tp, _Alloc> { typedef typename _Alloc::value_type _Alloc_value_type; typedef _List_base<_Tp, _Alloc> _Base; typedef typename _Base::_Tp_alloc_type _Tp_alloc_type; public: typedef _Tp value_type; typedef typename _Tp_alloc_type::pointer pointer; typedef typename _Tp_alloc_type::const_pointer const_pointer; typedef typename _Tp_alloc_type::reference reference; typedef typename _Tp_alloc_type::const_reference const_reference; typedef _List_iterator<_Tp> iterator; typedef _List_const_iterator<_Tp> const_iterator; typedef std::reverse_iterator const_reverse_iterator; typedef std::reverse_iterator reverse_iterator; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Alloc allocator_type; protected: typedef _List_node<_Tp> _Node; using _Base::_M_impl; using _Base::_M_put_node; using _Base::_M_get_node; using _Base::_M_get_Tp_allocator; using _Base::_M_get_Node_allocator; _Node* _M_create_node(const value_type& __x) { _Node* __p = this->_M_get_node(); try { _M_get_Tp_allocator().construct (std::__addressof(__p->_M_data), __x); } catch(...) { _M_put_node(__p); throw; } return __p; } public: list() : _Base() { } explicit list(const allocator_type& __a) : _Base(__a) { } explicit list(size_type __n, const value_type& __value = value_type(), const allocator_type& __a = allocator_type()) : _Base(__a) { _M_fill_initialize(__n, __value); } list(const list& __x) : _Base(__x._M_get_Node_allocator()) { _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); } template list(_InputIterator __first, _InputIterator __last, const allocator_type& __a = allocator_type()) : _Base(__a) { typedef typename std::__is_integer<_InputIterator>::__type _Integral; _M_initialize_dispatch(__first, __last, _Integral()); } list& operator=(const list& __x); void assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); } template void assign(_InputIterator __first, _InputIterator __last) { typedef typename std::__is_integer<_InputIterator>::__type _Integral; _M_assign_dispatch(__first, __last, _Integral()); } allocator_type get_allocator() const { return _Base::get_allocator(); } iterator begin() { return iterator(this->_M_impl._M_node._M_next); } const_iterator begin() const { return const_iterator(this->_M_impl._M_node._M_next); } iterator end() { return iterator(&this->_M_impl._M_node); } const_iterator end() const { return const_iterator(&this->_M_impl._M_node); } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } bool empty() const { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; } size_type size() const { return std::distance(begin(), end()); } size_type max_size() const { return _M_get_Node_allocator().max_size(); } void resize(size_type __new_size, value_type __x = value_type()); reference front() { return *begin(); } const_reference front() const { return *begin(); } reference back() { iterator __tmp = end(); --__tmp; return *__tmp; } const_reference back() const { const_iterator __tmp = end(); --__tmp; return *__tmp; } void push_front(const value_type& __x) { this->_M_insert(begin(), __x); } void pop_front() { this->_M_erase(begin()); } void push_back(const value_type& __x) { this->_M_insert(end(), __x); } void pop_back() { this->_M_erase(iterator(this->_M_impl._M_node._M_prev)); } iterator insert(iterator __position, const value_type& __x); void insert(iterator __position, size_type __n, const value_type& __x) { list __tmp(__n, __x, _M_get_Node_allocator()); splice(__position, __tmp); } template void insert(iterator __position, _InputIterator __first, _InputIterator __last) { list __tmp(__first, __last, _M_get_Node_allocator()); splice(__position, __tmp); } iterator erase(iterator __position); iterator erase(iterator __first, iterator __last) { while (__first != __last) __first = erase(__first); return __last; } void swap(list& __x) { __detail::_List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node); std::__alloc_swap:: _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator()); } void clear() { _Base::_M_clear(); _Base::_M_init(); } void splice(iterator __position, list& __x) { if (!__x.empty()) { _M_check_equal_allocators(__x); this->_M_transfer(__position, __x.begin(), __x.end()); } } void splice(iterator __position, list& __x, iterator __i) { iterator __j = __i; ++__j; if (__position == __i || __position == __j) return; if (this != &__x) _M_check_equal_allocators(__x); this->_M_transfer(__position, __i, __j); } void splice(iterator __position, list& __x, iterator __first, iterator __last) { if (__first != __last) { if (this != &__x) _M_check_equal_allocators(__x); this->_M_transfer(__position, __first, __last); } } void remove(const _Tp& __value); template void remove_if(_Predicate); void unique(); template void unique(_BinaryPredicate); void merge(list& __x); template void merge(list&, _StrictWeakOrdering); void reverse() { this->_M_impl._M_node._M_reverse(); } void sort(); template void sort(_StrictWeakOrdering); protected: template void _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) { _M_fill_initialize(static_cast(__n), __x); } template void _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, __false_type) { for (; __first != __last; ++__first) push_back(*__first); } void _M_fill_initialize(size_type __n, const value_type& __x) { for (; __n; --__n) push_back(__x); } template void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) { _M_fill_assign(__n, __val); } template void _M_assign_dispatch(_InputIterator __first, _InputIterator __last, __false_type); void _M_fill_assign(size_type __n, const value_type& __val); void _M_transfer(iterator __position, iterator __first, iterator __last) { __position._M_node->_M_transfer(__first._M_node, __last._M_node); } void _M_insert(iterator __position, const value_type& __x) { _Node* __tmp = _M_create_node(__x); __tmp->_M_hook(__position._M_node); } void _M_erase(iterator __position) { __position._M_node->_M_unhook(); _Node* __n = static_cast<_Node*>(__position._M_node); _M_get_Tp_allocator().destroy(std::__addressof(__n->_M_data)); _M_put_node(__n); } void _M_check_equal_allocators(list& __x) { if (std::__alloc_neq:: _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator())) __throw_runtime_error(("list::_M_check_equal_allocators")); } }; template inline bool operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) { typedef typename list<_Tp, _Alloc>::const_iterator const_iterator; const_iterator __end1 = __x.end(); const_iterator __end2 = __y.end(); const_iterator __i1 = __x.begin(); const_iterator __i2 = __y.begin(); while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) { ++__i1; ++__i2; } return __i1 == __end1 && __i2 == __end2; } template inline bool operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) { return std::lexicographical_compare(__x.begin(), __x.end(), __y.begin(), __y.end()); } template inline bool operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) { return !(__x == __y); } template inline bool operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) { return __y < __x; } template inline bool operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) { return !(__y < __x); } template inline bool operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) { return !(__x < __y); } template inline void swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y) { __x.swap(__y); } } namespace std __attribute__ ((__visibility__ ("default"))) { template void _List_base<_Tp, _Alloc>:: _M_clear() { typedef _List_node<_Tp> _Node; _Node* __cur = static_cast<_Node*>(this->_M_impl._M_node._M_next); while (__cur != &this->_M_impl._M_node) { _Node* __tmp = __cur; __cur = static_cast<_Node*>(__cur->_M_next); _M_get_Tp_allocator().destroy(std::__addressof(__tmp->_M_data)); _M_put_node(__tmp); } } template typename list<_Tp, _Alloc>::iterator list<_Tp, _Alloc>:: insert(iterator __position, const value_type& __x) { _Node* __tmp = _M_create_node(__x); __tmp->_M_hook(__position._M_node); return iterator(__tmp); } template typename list<_Tp, _Alloc>::iterator list<_Tp, _Alloc>:: erase(iterator __position) { iterator __ret = iterator(__position._M_node->_M_next); _M_erase(__position); return __ret; } template void list<_Tp, _Alloc>:: resize(size_type __new_size, value_type __x) { iterator __i = begin(); size_type __len = 0; for (; __i != end() && __len < __new_size; ++__i, ++__len) ; if (__len == __new_size) erase(__i, end()); else insert(end(), __new_size - __len, __x); } template list<_Tp, _Alloc>& list<_Tp, _Alloc>:: operator=(const list& __x) { if (this != &__x) { iterator __first1 = begin(); iterator __last1 = end(); const_iterator __first2 = __x.begin(); const_iterator __last2 = __x.end(); for (; __first1 != __last1 && __first2 != __last2; ++__first1, ++__first2) *__first1 = *__first2; if (__first2 == __last2) erase(__first1, __last1); else insert(__last1, __first2, __last2); } return *this; } template void list<_Tp, _Alloc>:: _M_fill_assign(size_type __n, const value_type& __val) { iterator __i = begin(); for (; __i != end() && __n > 0; ++__i, --__n) *__i = __val; if (__n > 0) insert(end(), __n, __val); else erase(__i, end()); } template template void list<_Tp, _Alloc>:: _M_assign_dispatch(_InputIterator __first2, _InputIterator __last2, __false_type) { iterator __first1 = begin(); iterator __last1 = end(); for (; __first1 != __last1 && __first2 != __last2; ++__first1, ++__first2) *__first1 = *__first2; if (__first2 == __last2) erase(__first1, __last1); else insert(__last1, __first2, __last2); } template void list<_Tp, _Alloc>:: remove(const value_type& __value) { iterator __first = begin(); iterator __last = end(); iterator __extra = __last; while (__first != __last) { iterator __next = __first; ++__next; if (*__first == __value) { if (std::__addressof(*__first) != std::__addressof(__value)) _M_erase(__first); else __extra = __first; } __first = __next; } if (__extra != __last) _M_erase(__extra); } template void list<_Tp, _Alloc>:: unique() { iterator __first = begin(); iterator __last = end(); if (__first == __last) return; iterator __next = __first; while (++__next != __last) { if (*__first == *__next) _M_erase(__next); else __first = __next; __next = __first; } } template void list<_Tp, _Alloc>:: merge(list& __x) { if (this != &__x) { _M_check_equal_allocators(__x); iterator __first1 = begin(); iterator __last1 = end(); iterator __first2 = __x.begin(); iterator __last2 = __x.end(); while (__first1 != __last1 && __first2 != __last2) if (*__first2 < *__first1) { iterator __next = __first2; _M_transfer(__first1, __first2, ++__next); __first2 = __next; } else ++__first1; if (__first2 != __last2) _M_transfer(__last1, __first2, __last2); } } template template void list<_Tp, _Alloc>:: merge(list& __x, _StrictWeakOrdering __comp) { if (this != &__x) { _M_check_equal_allocators(__x); iterator __first1 = begin(); iterator __last1 = end(); iterator __first2 = __x.begin(); iterator __last2 = __x.end(); while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first2, *__first1)) { iterator __next = __first2; _M_transfer(__first1, __first2, ++__next); __first2 = __next; } else ++__first1; if (__first2 != __last2) _M_transfer(__last1, __first2, __last2); } } template void list<_Tp, _Alloc>:: sort() { if (this->_M_impl._M_node._M_next != &this->_M_impl._M_node && this->_M_impl._M_node._M_next->_M_next != &this->_M_impl._M_node) { list __carry; list __tmp[64]; list * __fill = &__tmp[0]; list * __counter; do { __carry.splice(__carry.begin(), *this, begin()); for(__counter = &__tmp[0]; __counter != __fill && !__counter->empty(); ++__counter) { __counter->merge(__carry); __carry.swap(*__counter); } __carry.swap(*__counter); if (__counter == __fill) ++__fill; } while ( !empty() ); for (__counter = &__tmp[1]; __counter != __fill; ++__counter) __counter->merge(*(__counter - 1)); swap( *(__fill - 1) ); } } template template void list<_Tp, _Alloc>:: remove_if(_Predicate __pred) { iterator __first = begin(); iterator __last = end(); while (__first != __last) { iterator __next = __first; ++__next; if (__pred(*__first)) _M_erase(__first); __first = __next; } } template template void list<_Tp, _Alloc>:: unique(_BinaryPredicate __binary_pred) { iterator __first = begin(); iterator __last = end(); if (__first == __last) return; iterator __next = __first; while (++__next != __last) { if (__binary_pred(*__first, *__next)) _M_erase(__next); else __first = __next; __next = __first; } } template template void list<_Tp, _Alloc>:: sort(_StrictWeakOrdering __comp) { if (this->_M_impl._M_node._M_next != &this->_M_impl._M_node && this->_M_impl._M_node._M_next->_M_next != &this->_M_impl._M_node) { list __carry; list __tmp[64]; list * __fill = &__tmp[0]; list * __counter; do { __carry.splice(__carry.begin(), *this, begin()); for(__counter = &__tmp[0]; __counter != __fill && !__counter->empty(); ++__counter) { __counter->merge(__carry, __comp); __carry.swap(*__counter); } __carry.swap(*__counter); if (__counter == __fill) ++__fill; } while ( !empty() ); for (__counter = &__tmp[1]; __counter != __fill; ++__counter) __counter->merge(*(__counter - 1), __comp); swap(*(__fill - 1)); } } } typedef QtValidLicenseForCoreModule QtCoreModule; template class QVector; template class QSet; struct QListData { struct Data { QBasicAtomicInt ref; int alloc, begin, end; uint sharable : 1; void *array[1]; }; enum { DataHeaderSize = sizeof(Data) - sizeof(void *) }; Data *detach(int alloc); Data *detach_grow(int *i, int n); Data *detach(); Data *detach2(); Data *detach3(); void realloc(int alloc); static Data shared_null; Data *d; void **erase(void **xi); void **append(int n); void **append(); void **append(const QListData &l); void **append2(const QListData &l); void **prepend(); void **insert(int i); void remove(int i); void remove(int i, int n); void move(int from, int to); inline int size() const { return d->end - d->begin; } inline bool isEmpty() const { return d->end == d->begin; } inline void **at(int i) const { return d->array + d->begin + i; } inline void **begin() const { return d->array + d->begin; } inline void **end() const { return d->array + d->end; } }; template class QList { struct Node { void *v; inline T &t() { return *reinterpret_cast(QTypeInfo::isLarge || QTypeInfo::isStatic ? v : this); } }; union { QListData p; QListData::Data *d; }; public: inline QList() : d(&QListData::shared_null) { d->ref.ref(); } inline QList(const QList &l) : d(l.d) { d->ref.ref(); if (!d->sharable) detach_helper(); } ~QList(); QList &operator=(const QList &l); inline void swap(QList &other) { qSwap(d, other.d); } bool operator==(const QList &l) const; inline bool operator!=(const QList &l) const { return !(*this == l); } inline int size() const { return p.size(); } inline void detach() { if (d->ref != 1) detach_helper(); } inline void detachShared() { if (d->ref != 1 && this->d != &QListData::shared_null) detach_helper(); } inline bool isDetached() const { return d->ref == 1; } inline void setSharable(bool sharable) { if (!sharable) detach(); d->sharable = sharable; } inline bool isSharedWith(const QList &other) const { return d == other.d; } inline bool isEmpty() const { return p.isEmpty(); } void clear(); const T &at(int i) const; const T &operator[](int i) const; T &operator[](int i); void reserve(int size); void append(const T &t); void append(const QList &t); void prepend(const T &t); void insert(int i, const T &t); void replace(int i, const T &t); void removeAt(int i); int removeAll(const T &t); bool removeOne(const T &t); T takeAt(int i); T takeFirst(); T takeLast(); void move(int from, int to); void swap(int i, int j); int indexOf(const T &t, int from = 0) const; int lastIndexOf(const T &t, int from = -1) const; QBool contains(const T &t) const; int count(const T &t) const; class const_iterator; class iterator { public: Node *i; typedef std::random_access_iterator_tag iterator_category; typedef qptrdiff difference_type; typedef T value_type; typedef T *pointer; typedef T &reference; inline iterator() : i(0) {} inline iterator(Node *n) : i(n) {} inline iterator(const iterator &o): i(o.i){} inline T &operator*() const { return i->t(); } inline T *operator->() const { return &i->t(); } inline T &operator[](int j) const { return i[j].t(); } inline bool operator==(const iterator &o) const { return i == o.i; } inline bool operator!=(const iterator &o) const { return i != o.i; } inline bool operator<(const iterator& other) const { return i < other.i; } inline bool operator<=(const iterator& other) const { return i <= other.i; } inline bool operator>(const iterator& other) const { return i > other.i; } inline bool operator>=(const iterator& other) const { return i >= other.i; } inline bool operator==(const const_iterator &o) const { return i == o.i; } inline bool operator!=(const const_iterator &o) const { return i != o.i; } inline bool operator<(const const_iterator& other) const { return i < other.i; } inline bool operator<=(const const_iterator& other) const { return i <= other.i; } inline bool operator>(const const_iterator& other) const { return i > other.i; } inline bool operator>=(const const_iterator& other) const { return i >= other.i; } inline iterator &operator++() { ++i; return *this; } inline iterator operator++(int) { Node *n = i; ++i; return n; } inline iterator &operator--() { i--; return *this; } inline iterator operator--(int) { Node *n = i; i--; return n; } inline iterator &operator+=(int j) { i+=j; return *this; } inline iterator &operator-=(int j) { i-=j; return *this; } inline iterator operator+(int j) const { return iterator(i+j); } inline iterator operator-(int j) const { return iterator(i-j); } inline int operator-(iterator j) const { return int(i - j.i); } }; friend class iterator; class const_iterator { public: Node *i; typedef std::random_access_iterator_tag iterator_category; typedef qptrdiff difference_type; typedef T value_type; typedef const T *pointer; typedef const T &reference; inline const_iterator() : i(0) {} inline const_iterator(Node *n) : i(n) {} inline const_iterator(const const_iterator &o): i(o.i) {} inline const_iterator(const iterator &o): i(o.i) {} inline const T &operator*() const { return i->t(); } inline const T *operator->() const { return &i->t(); } inline const T &operator[](int j) const { return i[j].t(); } inline bool operator==(const const_iterator &o) const { return i == o.i; } inline bool operator!=(const const_iterator &o) const { return i != o.i; } inline bool operator<(const const_iterator& other) const { return i < other.i; } inline bool operator<=(const const_iterator& other) const { return i <= other.i; } inline bool operator>(const const_iterator& other) const { return i > other.i; } inline bool operator>=(const const_iterator& other) const { return i >= other.i; } inline const_iterator &operator++() { ++i; return *this; } inline const_iterator operator++(int) { Node *n = i; ++i; return n; } inline const_iterator &operator--() { i--; return *this; } inline const_iterator operator--(int) { Node *n = i; i--; return n; } inline const_iterator &operator+=(int j) { i+=j; return *this; } inline const_iterator &operator-=(int j) { i-=j; return *this; } inline const_iterator operator+(int j) const { return const_iterator(i+j); } inline const_iterator operator-(int j) const { return const_iterator(i-j); } inline int operator-(const_iterator j) const { return i - j.i; } }; friend class const_iterator; inline iterator begin() { detach(); return reinterpret_cast(p.begin()); } inline const_iterator begin() const { return reinterpret_cast(p.begin()); } inline const_iterator constBegin() const { return reinterpret_cast(p.begin()); } inline iterator end() { detach(); return reinterpret_cast(p.end()); } inline const_iterator end() const { return reinterpret_cast(p.end()); } inline const_iterator constEnd() const { return reinterpret_cast(p.end()); } iterator insert(iterator before, const T &t); iterator erase(iterator pos); iterator erase(iterator first, iterator last); typedef iterator Iterator; typedef const_iterator ConstIterator; inline int count() const { return p.size(); } inline int length() const { return p.size(); } inline T& first() { qt_noop(); return *begin(); } inline const T& first() const { qt_noop(); return at(0); } T& last() { qt_noop(); return *(--end()); } const T& last() const { qt_noop(); return at(count() - 1); } inline void removeFirst() { qt_noop(); erase(begin()); } inline void removeLast() { qt_noop(); erase(--end()); } inline bool startsWith(const T &t) const { return !isEmpty() && first() == t; } inline bool endsWith(const T &t) const { return !isEmpty() && last() == t; } QList mid(int pos, int length = -1) const; T value(int i) const; T value(int i, const T &defaultValue) const; inline void push_back(const T &t) { append(t); } inline void push_front(const T &t) { prepend(t); } inline T& front() { return first(); } inline const T& front() const { return first(); } inline T& back() { return last(); } inline const T& back() const { return last(); } inline void pop_front() { removeFirst(); } inline void pop_back() { removeLast(); } inline bool empty() const { return isEmpty(); } typedef int size_type; typedef T value_type; typedef value_type *pointer; typedef const value_type *const_pointer; typedef value_type &reference; typedef const value_type &const_reference; typedef qptrdiff difference_type; QList &operator+=(const QList &l); inline QList operator+(const QList &l) const { QList n = *this; n += l; return n; } inline QList &operator+=(const T &t) { append(t); return *this; } inline QList &operator<< (const T &t) { append(t); return *this; } inline QList &operator<<(const QList &l) { *this += l; return *this; } QVector toVector() const; QSet toSet() const; static QList fromVector(const QVector &vector); static QList fromSet(const QSet &set); static inline QList fromStdList(const std::list &list) { QList tmp; qCopy(list.begin(), list.end(), std::back_inserter(tmp)); return tmp; } inline std::list toStdList() const { std::list tmp; qCopy(constBegin(), constEnd(), std::back_inserter(tmp)); return tmp; } private: Node *detach_helper_grow(int i, int n); void detach_helper(int alloc); void detach_helper(); void free(QListData::Data *d); void node_construct(Node *n, const T &t); void node_destruct(Node *n); void node_copy(Node *from, Node *to, Node *src); void node_destruct(Node *from, Node *to); }; template inline void QList::node_construct(Node *n, const T &t) { if (QTypeInfo::isLarge || QTypeInfo::isStatic) n->v = new T(t); else if (QTypeInfo::isComplex) new (n) T(t); else ::memcpy(n, &t, sizeof(T)); } template inline void QList::node_destruct(Node *n) { if (QTypeInfo::isLarge || QTypeInfo::isStatic) delete reinterpret_cast(n->v); else if (QTypeInfo::isComplex) reinterpret_cast(n)->~T(); } template inline void QList::node_copy(Node *from, Node *to, Node *src) { Node *current = from; if (QTypeInfo::isLarge || QTypeInfo::isStatic) { try { while(current != to) { current->v = new T(*reinterpret_cast(src->v)); ++current; ++src; } } catch (...) { while (current-- != from) delete reinterpret_cast(current->v); throw; } } else if (QTypeInfo::isComplex) { try { while(current != to) { new (current) T(*reinterpret_cast(src)); ++current; ++src; } } catch (...) { while (current-- != from) (reinterpret_cast(current))->~T(); throw; } } else { if (src != from && to - from > 0) memcpy(from, src, (to - from) * sizeof(Node *)); } } template inline void QList::node_destruct(Node *from, Node *to) { if (QTypeInfo::isLarge || QTypeInfo::isStatic) while(from != to) --to, delete reinterpret_cast(to->v); else if (QTypeInfo::isComplex) while (from != to) --to, reinterpret_cast(to)->~T(); } template inline QList &QList::operator=(const QList &l) { if (d != l.d) { QListData::Data *o = l.d; o->ref.ref(); if (!d->ref.deref()) free(d); d = o; if (!d->sharable) detach_helper(); } return *this; } template inline typename QList::iterator QList::insert(iterator before, const T &t) { int iBefore = int(before.i - reinterpret_cast(p.begin())); Node *n = reinterpret_cast(p.insert(iBefore)); try { node_construct(n, t); } catch (...) { p.remove(iBefore); throw; } return n; } template inline typename QList::iterator QList::erase(iterator it) { node_destruct(it.i); return reinterpret_cast(p.erase(reinterpret_cast(it.i))); } template inline const T &QList::at(int i) const { qt_noop(); return reinterpret_cast(p.at(i))->t(); } template inline const T &QList::operator[](int i) const { qt_noop(); return reinterpret_cast(p.at(i))->t(); } template inline T &QList::operator[](int i) { qt_noop(); detach(); return reinterpret_cast(p.at(i))->t(); } template inline void QList::removeAt(int i) { if(i >= 0 && i < p.size()) { detach(); node_destruct(reinterpret_cast(p.at(i))); p.remove(i); } } template inline T QList::takeAt(int i) { qt_noop(); detach(); Node *n = reinterpret_cast(p.at(i)); T t = n->t(); node_destruct(n); p.remove(i); return t; } template inline T QList::takeFirst() { T t = first(); removeFirst(); return t; } template inline T QList::takeLast() { T t = last(); removeLast(); return t; } template void QList::reserve(int alloc) { if (d->alloc < alloc) { if (d->ref != 1) detach_helper(alloc); else p.realloc(alloc); } } template void QList::append(const T &t) { if (d->ref != 1) { Node *n = detach_helper_grow(2147483647, 1); try { node_construct(n, t); } catch (...) { --d->end; throw; } } else { if (QTypeInfo::isLarge || QTypeInfo::isStatic) { Node *n = reinterpret_cast(p.append()); try { node_construct(n, t); } catch (...) { --d->end; throw; } } else { Node *n, copy; node_construct(©, t); try { n = reinterpret_cast(p.append());; } catch (...) { node_destruct(©); throw; } *n = copy; } } } template inline void QList::prepend(const T &t) { if (d->ref != 1) { Node *n = detach_helper_grow(0, 1); try { node_construct(n, t); } catch (...) { ++d->begin; throw; } } else { if (QTypeInfo::isLarge || QTypeInfo::isStatic) { Node *n = reinterpret_cast(p.prepend()); try { node_construct(n, t); } catch (...) { ++d->begin; throw; } } else { Node *n, copy; node_construct(©, t); try { n = reinterpret_cast(p.prepend());; } catch (...) { node_destruct(©); throw; } *n = copy; } } } template inline void QList::insert(int i, const T &t) { if (d->ref != 1) { Node *n = detach_helper_grow(i, 1); try { node_construct(n, t); } catch (...) { p.remove(i); throw; } } else { if (QTypeInfo::isLarge || QTypeInfo::isStatic) { Node *n = reinterpret_cast(p.insert(i)); try { node_construct(n, t); } catch (...) { p.remove(i); throw; } } else { Node *n, copy; node_construct(©, t); try { n = reinterpret_cast(p.insert(i));; } catch (...) { node_destruct(©); throw; } *n = copy; } } } template inline void QList::replace(int i, const T &t) { qt_noop(); detach(); reinterpret_cast(p.at(i))->t() = t; } template inline void QList::swap(int i, int j) { qt_noop() ; detach(); void *t = d->array[d->begin + i]; d->array[d->begin + i] = d->array[d->begin + j]; d->array[d->begin + j] = t; } template inline void QList::move(int from, int to) { qt_noop() ; detach(); p.move(from, to); } template QList QList::mid(int pos, int alength) const { if (alength < 0 || pos + alength > size()) alength = size() - pos; if (pos == 0 && alength == size()) return *this; QList cpy; if (alength <= 0) return cpy; cpy.reserve(alength); cpy.d->end = alength; try { cpy.node_copy(reinterpret_cast(cpy.p.begin()), reinterpret_cast(cpy.p.end()), reinterpret_cast(p.begin() + pos)); } catch (...) { cpy.d->end = 0; throw; } return cpy; } template T QList::value(int i) const { if (i < 0 || i >= p.size()) { return T(); } return reinterpret_cast(p.at(i))->t(); } template T QList::value(int i, const T& defaultValue) const { return ((i < 0 || i >= p.size()) ? defaultValue : reinterpret_cast(p.at(i))->t()); } template typename QList::Node *QList::detach_helper_grow(int i, int c) { Node *n = reinterpret_cast(p.begin()); QListData::Data *x = p.detach_grow(&i, c); try { node_copy(reinterpret_cast(p.begin()), reinterpret_cast(p.begin() + i), n); } catch (...) { qFree(d); d = x; throw; } try { node_copy(reinterpret_cast(p.begin() + i + c), reinterpret_cast(p.end()), n + i); } catch (...) { node_destruct(reinterpret_cast(p.begin()), reinterpret_cast(p.begin() + i)); qFree(d); d = x; throw; } if (!x->ref.deref()) free(x); return reinterpret_cast(p.begin() + i); } template void QList::detach_helper(int alloc) { Node *n = reinterpret_cast(p.begin()); QListData::Data *x = p.detach(alloc); try { node_copy(reinterpret_cast(p.begin()), reinterpret_cast(p.end()), n); } catch (...) { qFree(d); d = x; throw; } if (!x->ref.deref()) free(x); } template void QList::detach_helper() { detach_helper(d->alloc); } template QList::~QList() { if (!d->ref.deref()) free(d); } template bool QList::operator==(const QList &l) const { if (p.size() != l.p.size()) return false; if (d == l.d) return true; Node *i = reinterpret_cast(p.end()); Node *b = reinterpret_cast(p.begin()); Node *li = reinterpret_cast(l.p.end()); while (i != b) { --i; --li; if (!(i->t() == li->t())) return false; } return true; } template void QList::free(QListData::Data *data) { node_destruct(reinterpret_cast(data->array + data->begin), reinterpret_cast(data->array + data->end)); qFree(data); } template void QList::clear() { *this = QList(); } template int QList::removeAll(const T &_t) { int index = indexOf(_t); if (index == -1) return 0; const T t = _t; detach(); Node *i = reinterpret_cast(p.at(index)); Node *e = reinterpret_cast(p.end()); Node *n = i; node_destruct(i); while (++i != e) { if (i->t() == t) node_destruct(i); else *n++ = *i; } int removedCount = e - n; d->end -= removedCount; return removedCount; } template bool QList::removeOne(const T &_t) { int index = indexOf(_t); if (index != -1) { removeAt(index); return true; } return false; } template typename QList::iterator QList::erase(typename QList::iterator afirst, typename QList::iterator alast) { for (Node *n = afirst.i; n < alast.i; ++n) node_destruct(n); int idx = afirst - begin(); p.remove(idx, alast - afirst); return begin() + idx; } template QList &QList::operator+=(const QList &l) { if (!l.isEmpty()) { if (isEmpty()) { *this = l; } else { Node *n = (d->ref != 1) ? detach_helper_grow(2147483647, l.size()) : reinterpret_cast(p.append2(l.p)); try { node_copy(n, reinterpret_cast(p.end()), reinterpret_cast(l.p.begin())); } catch (...) { d->end -= int(reinterpret_cast(p.end()) - n); throw; } } } return *this; } template inline void QList::append(const QList &t) { *this += t; } template int QList::indexOf(const T &t, int from) const { if (from < 0) from = qMax(from + p.size(), 0); if (from < p.size()) { Node *n = reinterpret_cast(p.at(from -1)); Node *e = reinterpret_cast(p.end()); while (++n != e) if (n->t() == t) return int(n - reinterpret_cast(p.begin())); } return -1; } template int QList::lastIndexOf(const T &t, int from) const { if (from < 0) from += p.size(); else if (from >= p.size()) from = p.size()-1; if (from >= 0) { Node *b = reinterpret_cast(p.begin()); Node *n = reinterpret_cast(p.at(from + 1)); while (n-- != b) { if (n->t() == t) return n - b; } } return -1; } template QBool QList::contains(const T &t) const { Node *b = reinterpret_cast(p.begin()); Node *i = reinterpret_cast(p.end()); while (i-- != b) if (i->t() == t) return QBool(true); return QBool(false); } template int QList::count(const T &t) const { int c = 0; Node *b = reinterpret_cast(p.begin()); Node *i = reinterpret_cast(p.end()); while (i-- != b) if (i->t() == t) ++c; return c; } template class QListIterator { typedef typename QList::const_iterator const_iterator; QList c; const_iterator i; public: inline QListIterator(const QList &container) : c(container), i(c.constBegin()) {} inline QListIterator &operator=(const QList &container) { c = container; i = c.constBegin(); return *this; } inline void toFront() { i = c.constBegin(); } inline void toBack() { i = c.constEnd(); } inline bool hasNext() const { return i != c.constEnd(); } inline const T &next() { return *i++; } inline const T &peekNext() const { return *i; } inline bool hasPrevious() const { return i != c.constBegin(); } inline const T &previous() { return *--i; } inline const T &peekPrevious() const { const_iterator p = i; return *--p; } inline bool findNext(const T &t) { while (i != c.constEnd()) if (*i++ == t) return true; return false; } inline bool findPrevious(const T &t) { while (i != c.constBegin()) if (*(--i) == t) return true; return false; } }; template class QMutableListIterator { typedef typename QList::iterator iterator; typedef typename QList::const_iterator const_iterator; QList *c; iterator i, n; inline bool item_exists() const { return const_iterator(n) != c->constEnd(); } public: inline QMutableListIterator(QList &container) : c(&container) { c->setSharable(false); i = c->begin(); n = c->end(); } inline ~QMutableListIterator() { c->setSharable(true); } inline QMutableListIterator &operator=(QList &container) { c->setSharable(true); c = &container; c->setSharable(false); i = c->begin(); n = c->end(); return *this; } inline void toFront() { i = c->begin(); n = c->end(); } inline void toBack() { i = c->end(); n = i; } inline bool hasNext() const { return c->constEnd() != const_iterator(i); } inline T &next() { n = i++; return *n; } inline T &peekNext() const { return *i; } inline bool hasPrevious() const { return c->constBegin() != const_iterator(i); } inline T &previous() { n = --i; return *n; } inline T &peekPrevious() const { iterator p = i; return *--p; } inline void remove() { if (c->constEnd() != const_iterator(n)) { i = c->erase(n); n = c->end(); } } inline void setValue(const T &t) const { if (c->constEnd() != const_iterator(n)) *n = t; } inline T &value() { qt_noop(); return *n; } inline const T &value() const { qt_noop(); return *n; } inline void insert(const T &t) { n = i = c->insert(i, t); ++i; } inline bool findNext(const T &t) { while (c->constEnd() != const_iterator(n = i)) if (*i++ == t) return true; return false; } inline bool findPrevious(const T &t) { while (c->constBegin() != const_iterator(i)) if (*(n = --i) == t) return true; n = c->end(); return false; } }; typedef QtValidLicenseForCoreModule QtCoreModule; class QEvent; class QTimerEvent; class QChildEvent; struct QMetaObject; class QVariant; class QObjectPrivate; class QObject; class QThread; class QWidget; class QRegExp; class QObjectUserData; typedef QList QObjectList; void qt_qFindChildren_helper(const QObject *parent, const QString &name, const QRegExp *re, const QMetaObject &mo, QList *list); QObject *qt_qFindChild_helper(const QObject *parent, const QString &name, const QMetaObject &mo); class QObjectData { public: virtual ~QObjectData() = 0; QObject *q_ptr; QObject *parent; QObjectList children; uint isWidget : 1; uint pendTimer : 1; uint blockSig : 1; uint wasDeleted : 1; uint ownObjectName : 1; uint sendChildEvents : 1; uint receiveChildEvents : 1; uint inEventHandler : 1; uint inThreadChangeEvent : 1; uint hasGuards : 1; uint unused : 22; int postedEvents; QMetaObject *metaObject; }; class QObject { public: template inline void qt_check_for_QOBJECT_macro(const T &_q_argument) const { int i = qYouForgotTheQ_OBJECT_Macro(this, &_q_argument); i = i; } static const QMetaObject staticMetaObject; virtual const QMetaObject *metaObject() const; virtual void *qt_metacast(const char *); static inline QString tr(const char *s, const char *c = 0) { return staticMetaObject.tr(s, c); } static inline QString trUtf8(const char *s, const char *c = 0) { return staticMetaObject.trUtf8(s, c); } static inline QString tr(const char *s, const char *c, int n) { return staticMetaObject.tr(s, c, n); } static inline QString trUtf8(const char *s, const char *c, int n) { return staticMetaObject.trUtf8(s, c, n); } virtual int qt_metacall(QMetaObject::Call, int, void **); private: __attribute__((visibility("hidden"))) static const QMetaObjectExtraData staticMetaObjectExtraData; __attribute__((visibility("hidden"))) static void qt_static_metacall(QObject *, QMetaObject::Call, int, void **); inline QObjectPrivate* d_func() { return reinterpret_cast(qGetPtrHelper(d_ptr)); } inline const QObjectPrivate* d_func() const { return reinterpret_cast(qGetPtrHelper(d_ptr)); } friend class QObjectPrivate; public: explicit QObject(QObject *parent=0); virtual ~QObject(); virtual bool event(QEvent *); virtual bool eventFilter(QObject *, QEvent *); QString objectName() const; void setObjectName(const QString &name); inline bool isWidgetType() const { return d_ptr->isWidget; } inline bool signalsBlocked() const { return d_ptr->blockSig; } bool blockSignals(bool b); QThread *thread() const; void moveToThread(QThread *thread); int startTimer(int interval); void killTimer(int id); template inline T findChild(const QString &aName = QString()) const { return static_cast(qt_qFindChild_helper(this, aName, reinterpret_cast(0)->staticMetaObject)); } template inline QList findChildren(const QString &aName = QString()) const { QList list; union { QList *typedList; QList *voidList; } u; u.typedList = &list; qt_qFindChildren_helper(this, aName, 0, reinterpret_cast(0)->staticMetaObject, u.voidList); return list; } template inline QList findChildren(const QRegExp &re) const { QList list; union { QList *typedList; QList *voidList; } u; u.typedList = &list; qt_qFindChildren_helper(this, QString(), &re, reinterpret_cast(0)->staticMetaObject, u.voidList); return list; } inline const QObjectList &children() const { return d_ptr->children; } void setParent(QObject *); void installEventFilter(QObject *); void removeEventFilter(QObject *); static bool connect(const QObject *sender, const char *signal, const QObject *receiver, const char *member, Qt::ConnectionType = Qt::AutoConnection ); static bool connect(const QObject *sender, const QMetaMethod &signal, const QObject *receiver, const QMetaMethod &method, Qt::ConnectionType type = Qt::AutoConnection ); inline bool connect(const QObject *sender, const char *signal, const char *member, Qt::ConnectionType type = Qt::AutoConnection ) const; static bool disconnect(const QObject *sender, const char *signal, const QObject *receiver, const char *member); static bool disconnect(const QObject *sender, const QMetaMethod &signal, const QObject *receiver, const QMetaMethod &member); inline bool disconnect(const char *signal = 0, const QObject *receiver = 0, const char *member = 0) { return disconnect(this, signal, receiver, member); } inline bool disconnect(const QObject *receiver, const char *member = 0) { return disconnect(this, 0, receiver, member); } void dumpObjectTree(); void dumpObjectInfo(); bool setProperty(const char *name, const QVariant &value); QVariant property(const char *name) const; QList dynamicPropertyNames() const; static uint registerUserData(); void setUserData(uint id, QObjectUserData* data); QObjectUserData* userData(uint id) const; protected: void destroyed(QObject * = 0); public: inline QObject *parent() const { return d_ptr->parent; } inline bool inherits(const char *classname) const { return const_cast(this)->qt_metacast(classname) != 0; } public : void deleteLater(); protected: QObject *sender() const; int senderSignalIndex() const; int receivers(const char* signal) const; virtual void timerEvent(QTimerEvent *); virtual void childEvent(QChildEvent *); virtual void customEvent(QEvent *); virtual void connectNotify(const char *signal); virtual void disconnectNotify(const char *signal); protected: QObject(QObjectPrivate &dd, QObject *parent = 0); protected: QScopedPointer d_ptr; static const QMetaObject staticQtMetaObject; friend struct QMetaObject; friend class QApplication; friend class QApplicationPrivate; friend class QCoreApplication; friend class QCoreApplicationPrivate; friend class QWidget; friend class QThreadData; private: QObject(const QObject &); QObject &operator=(const QObject &); }; inline bool QObject::connect(const QObject *asender, const char *asignal, const char *amember, Qt::ConnectionType atype) const { return connect(asender, asignal, this, amember, atype); } class QObjectUserData { public: virtual ~QObjectUserData(); }; template inline T qFindChild(const QObject *o, const QString &name = QString()) { return o->findChild(name); } template inline QList qFindChildren(const QObject *o, const QString &name = QString()) { return o->findChildren(name); } template inline QList qFindChildren(const QObject *o, const QRegExp &re) { return o->findChildren(re); } template inline T qobject_cast(QObject *object) { reinterpret_cast(object)->qt_check_for_QOBJECT_macro(*reinterpret_cast(object)); return static_cast(reinterpret_cast(object)->staticMetaObject.cast(object)); } template inline T qobject_cast(const QObject *object) { reinterpret_cast(object)->qt_check_for_QOBJECT_macro(*reinterpret_cast(const_cast(object))); return static_cast(reinterpret_cast(object)->staticMetaObject.cast(object)); } template inline const char * qobject_interface_iid() { return 0; } QDebug operator<<(QDebug, const QObject *); typedef QtValidLicenseForCoreModule QtCoreModule; class QByteArray; class QIODevicePrivate; class QIODevice : public QObject { public: template inline void qt_check_for_QOBJECT_macro(const T &_q_argument) const { int i = qYouForgotTheQ_OBJECT_Macro(this, &_q_argument); i = i; } static const QMetaObject staticMetaObject; virtual const QMetaObject *metaObject() const; virtual void *qt_metacast(const char *); static inline QString tr(const char *s, const char *c = 0) { return staticMetaObject.tr(s, c); } static inline QString trUtf8(const char *s, const char *c = 0) { return staticMetaObject.trUtf8(s, c); } static inline QString tr(const char *s, const char *c, int n) { return staticMetaObject.tr(s, c, n); } static inline QString trUtf8(const char *s, const char *c, int n) { return staticMetaObject.trUtf8(s, c, n); } virtual int qt_metacall(QMetaObject::Call, int, void **); private: __attribute__((visibility("hidden"))) static const QMetaObjectExtraData staticMetaObjectExtraData; __attribute__((visibility("hidden"))) static void qt_static_metacall(QObject *, QMetaObject::Call, int, void **); public: enum OpenModeFlag { NotOpen = 0x0000, ReadOnly = 0x0001, WriteOnly = 0x0002, ReadWrite = ReadOnly | WriteOnly, Append = 0x0004, Truncate = 0x0008, Text = 0x0010, Unbuffered = 0x0020 }; typedef QFlags OpenMode; QIODevice(); explicit QIODevice(QObject *parent); virtual ~QIODevice(); OpenMode openMode() const; void setTextModeEnabled(bool enabled); bool isTextModeEnabled() const; bool isOpen() const; bool isReadable() const; bool isWritable() const; virtual bool isSequential() const; virtual bool open(OpenMode mode); virtual void close(); virtual qint64 pos() const; virtual qint64 size() const; virtual bool seek(qint64 pos); virtual bool atEnd() const; virtual bool reset(); virtual qint64 bytesAvailable() const; virtual qint64 bytesToWrite() const; qint64 read(char *data, qint64 maxlen); QByteArray read(qint64 maxlen); QByteArray readAll(); qint64 readLine(char *data, qint64 maxlen); QByteArray readLine(qint64 maxlen = 0); virtual bool canReadLine() const; qint64 write(const char *data, qint64 len); qint64 write(const char *data); inline qint64 write(const QByteArray &data) { return write(data.constData(), data.size()); } qint64 peek(char *data, qint64 maxlen); QByteArray peek(qint64 maxlen); virtual bool waitForReadyRead(int msecs); virtual bool waitForBytesWritten(int msecs); void ungetChar(char c); bool putChar(char c); bool getChar(char *c); QString errorString() const; protected: void readyRead(); void bytesWritten(qint64 bytes); void aboutToClose(); void readChannelFinished(); protected: QIODevice(QIODevicePrivate &dd, QObject *parent = 0); virtual qint64 readData(char *data, qint64 maxlen) = 0; virtual qint64 readLineData(char *data, qint64 maxlen); virtual qint64 writeData(const char *data, qint64 len) = 0; void setOpenMode(OpenMode openMode); void setErrorString(const QString &errorString); private: inline QIODevicePrivate* d_func() { return reinterpret_cast(qGetPtrHelper(d_ptr)); } inline const QIODevicePrivate* d_func() const { return reinterpret_cast(qGetPtrHelper(d_ptr)); } friend class QIODevicePrivate; QIODevice(const QIODevice &); QIODevice &operator=(const QIODevice &); }; inline QFlags operator|(QIODevice::OpenMode::enum_type f1, QIODevice::OpenMode::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(QIODevice::OpenMode::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(QIODevice::OpenMode::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } class QDebug; QDebug operator<<(QDebug debug, QIODevice::OpenMode modes); typedef QtValidLicenseForCoreModule QtCoreModule; class QByteArray; class QIODevice; template class QList; template class QLinkedList; template class QVector; template class QSet; template class QHash; template class QMap; class QDataStreamPrivate; class QDataStream { public: enum Version { Qt_1_0 = 1, Qt_2_0 = 2, Qt_2_1 = 3, Qt_3_0 = 4, Qt_3_1 = 5, Qt_3_3 = 6, Qt_4_0 = 7, Qt_4_1 = Qt_4_0, Qt_4_2 = 8, Qt_4_3 = 9, Qt_4_4 = 10, Qt_4_5 = 11, Qt_4_6 = 12, Qt_4_7 = Qt_4_6, Qt_4_8 = Qt_4_7 }; enum ByteOrder { BigEndian = QSysInfo::BigEndian, LittleEndian = QSysInfo::LittleEndian }; enum Status { Ok, ReadPastEnd, ReadCorruptData, WriteFailed }; enum FloatingPointPrecision { SinglePrecision, DoublePrecision }; QDataStream(); explicit QDataStream(QIODevice *); QDataStream(QByteArray *, QIODevice::OpenMode flags); QDataStream(const QByteArray &); virtual ~QDataStream(); QIODevice *device() const; void setDevice(QIODevice *); void unsetDevice(); bool atEnd() const; Status status() const; void setStatus(Status status); void resetStatus(); FloatingPointPrecision floatingPointPrecision() const; void setFloatingPointPrecision(FloatingPointPrecision precision); ByteOrder byteOrder() const; void setByteOrder(ByteOrder); int version() const; void setVersion(int); QDataStream &operator>>(qint8 &i); QDataStream &operator>>(quint8 &i); QDataStream &operator>>(qint16 &i); QDataStream &operator>>(quint16 &i); QDataStream &operator>>(qint32 &i); QDataStream &operator>>(quint32 &i); QDataStream &operator>>(qint64 &i); QDataStream &operator>>(quint64 &i); QDataStream &operator>>(bool &i); QDataStream &operator>>(float &f); QDataStream &operator>>(double &f); QDataStream &operator>>(char *&str); QDataStream &operator<<(qint8 i); QDataStream &operator<<(quint8 i); QDataStream &operator<<(qint16 i); QDataStream &operator<<(quint16 i); QDataStream &operator<<(qint32 i); QDataStream &operator<<(quint32 i); QDataStream &operator<<(qint64 i); QDataStream &operator<<(quint64 i); QDataStream &operator<<(bool i); QDataStream &operator<<(float f); QDataStream &operator<<(double f); QDataStream &operator<<(const char *str); QDataStream &readBytes(char *&, uint &len); int readRawData(char *, int len); QDataStream &writeBytes(const char *, uint len); int writeRawData(const char *, int len); int skipRawData(int len); private: QDataStream(const QDataStream &); QDataStream &operator=(const QDataStream &); QScopedPointer d; QIODevice *dev; bool owndev; bool noswap; ByteOrder byteorder; int ver; Status q_status; }; inline QIODevice *QDataStream::device() const { return dev; } inline QDataStream::ByteOrder QDataStream::byteOrder() const { return byteorder; } inline int QDataStream::version() const { return ver; } inline void QDataStream::setVersion(int v) { ver = v; } inline QDataStream &QDataStream::operator>>(quint8 &i) { return *this >> reinterpret_cast(i); } inline QDataStream &QDataStream::operator>>(quint16 &i) { return *this >> reinterpret_cast(i); } inline QDataStream &QDataStream::operator>>(quint32 &i) { return *this >> reinterpret_cast(i); } inline QDataStream &QDataStream::operator>>(quint64 &i) { return *this >> reinterpret_cast(i); } inline QDataStream &QDataStream::operator<<(quint8 i) { return *this << qint8(i); } inline QDataStream &QDataStream::operator<<(quint16 i) { return *this << qint16(i); } inline QDataStream &QDataStream::operator<<(quint32 i) { return *this << qint32(i); } inline QDataStream &QDataStream::operator<<(quint64 i) { return *this << qint64(i); } template QDataStream& operator>>(QDataStream& s, QList& l) { l.clear(); quint32 c; s >> c; l.reserve(c); for(quint32 i = 0; i < c; ++i) { T t; s >> t; l.append(t); if (s.atEnd()) break; } return s; } template QDataStream& operator<<(QDataStream& s, const QList& l) { s << quint32(l.size()); for (int i = 0; i < l.size(); ++i) s << l.at(i); return s; } template QDataStream& operator>>(QDataStream& s, QLinkedList& l) { l.clear(); quint32 c; s >> c; for(quint32 i = 0; i < c; ++i) { T t; s >> t; l.append(t); if (s.atEnd()) break; } return s; } template QDataStream& operator<<(QDataStream& s, const QLinkedList& l) { s << quint32(l.size()); typename QLinkedList::ConstIterator it = l.constBegin(); for(; it != l.constEnd(); ++it) s << *it; return s; } template QDataStream& operator>>(QDataStream& s, QVector& v) { v.clear(); quint32 c; s >> c; v.resize(c); for(quint32 i = 0; i < c; ++i) { T t; s >> t; v[i] = t; } return s; } template QDataStream& operator<<(QDataStream& s, const QVector& v) { s << quint32(v.size()); for (typename QVector::const_iterator it = v.begin(); it != v.end(); ++it) s << *it; return s; } template QDataStream &operator>>(QDataStream &in, QSet &set) { set.clear(); quint32 c; in >> c; for (quint32 i = 0; i < c; ++i) { T t; in >> t; set << t; if (in.atEnd()) break; } return in; } template QDataStream& operator<<(QDataStream &out, const QSet &set) { out << quint32(set.size()); typename QSet::const_iterator i = set.constBegin(); while (i != set.constEnd()) { out << *i; ++i; } return out; } template QDataStream &operator>>(QDataStream &in, QHash &hash) { QDataStream::Status oldStatus = in.status(); in.resetStatus(); hash.clear(); quint32 n; in >> n; for (quint32 i = 0; i < n; ++i) { if (in.status() != QDataStream::Ok) break; Key k; T t; in >> k >> t; hash.insertMulti(k, t); } if (in.status() != QDataStream::Ok) hash.clear(); if (oldStatus != QDataStream::Ok) in.setStatus(oldStatus); return in; } template QDataStream &operator<<(QDataStream &out, const QHash& hash) { out << quint32(hash.size()); typename QHash::ConstIterator it = hash.end(); typename QHash::ConstIterator begin = hash.begin(); while (it != begin) { --it; out << it.key() << it.value(); } return out; } template QDataStream &operator>>(QDataStream &in, QMap &map) { QDataStream::Status oldStatus = in.status(); in.resetStatus(); map.clear(); quint32 n; in >> n; map.detach(); map.setInsertInOrder(true); for (quint32 i = 0; i < n; ++i) { if (in.status() != QDataStream::Ok) break; aKey key; aT value; in >> key >> value; map.insertMulti(key, value); } map.setInsertInOrder(false); if (in.status() != QDataStream::Ok) map.clear(); if (oldStatus != QDataStream::Ok) in.setStatus(oldStatus); return in; } template QDataStream &operator<<(QDataStream &out, const QMap &map) { out << quint32(map.size()); typename QMap::ConstIterator it = map.end(); typename QMap::ConstIterator begin = map.begin(); while (it != begin) { --it; out << it.key() << it.value(); } return out; } typedef QtValidLicenseForCoreModule QtCoreModule; struct QRegExpPrivate; class QStringList; class QRegExp { public: enum PatternSyntax { RegExp, Wildcard, FixedString, RegExp2, WildcardUnix, W3CXmlSchema11 }; enum CaretMode { CaretAtZero, CaretAtOffset, CaretWontMatch }; QRegExp(); explicit QRegExp(const QString &pattern, Qt::CaseSensitivity cs = Qt::CaseSensitive, PatternSyntax syntax = RegExp); QRegExp(const QRegExp &rx); ~QRegExp(); QRegExp &operator=(const QRegExp &rx); inline void swap(QRegExp &other) { qSwap(priv, other.priv); } bool operator==(const QRegExp &rx) const; inline bool operator!=(const QRegExp &rx) const { return !operator==(rx); } bool isEmpty() const; bool isValid() const; QString pattern() const; void setPattern(const QString &pattern); Qt::CaseSensitivity caseSensitivity() const; void setCaseSensitivity(Qt::CaseSensitivity cs); PatternSyntax patternSyntax() const; void setPatternSyntax(PatternSyntax syntax); bool isMinimal() const; void setMinimal(bool minimal); bool exactMatch(const QString &str) const; int indexIn(const QString &str, int offset = 0, CaretMode caretMode = CaretAtZero) const; int lastIndexIn(const QString &str, int offset = -1, CaretMode caretMode = CaretAtZero) const; int matchedLength() const; int numCaptures() const; int captureCount() const; QStringList capturedTexts() const; QStringList capturedTexts(); QString cap(int nth = 0) const; QString cap(int nth = 0); int pos(int nth = 0) const; int pos(int nth = 0); QString errorString() const; QString errorString(); static QString escape(const QString &str); private: QRegExpPrivate *priv; }; template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QRegExp)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QRegExp"; } }; QDataStream &operator<<(QDataStream &out, const QRegExp ®Exp); QDataStream &operator>>(QDataStream &in, QRegExp ®Exp); typedef QtValidLicenseForCoreModule QtCoreModule; class QStringMatcherPrivate; class QStringMatcher { public: QStringMatcher(); QStringMatcher(const QString &pattern, Qt::CaseSensitivity cs = Qt::CaseSensitive); QStringMatcher(const QChar *uc, int len, Qt::CaseSensitivity cs = Qt::CaseSensitive); QStringMatcher(const QStringMatcher &other); ~QStringMatcher(); QStringMatcher &operator=(const QStringMatcher &other); void setPattern(const QString &pattern); void setCaseSensitivity(Qt::CaseSensitivity cs); int indexIn(const QString &str, int from = 0) const; int indexIn(const QChar *str, int length, int from = 0) const; QString pattern() const; inline Qt::CaseSensitivity caseSensitivity() const { return q_cs; } private: QStringMatcherPrivate *d_ptr; QString q_pattern; Qt::CaseSensitivity q_cs; struct Data { uchar q_skiptable[256]; const QChar *uc; int len; }; union { uint q_data[256]; Data p; }; }; typedef QtValidLicenseForCoreModule QtCoreModule; class QRegExp; typedef QListIterator QStringListIterator; typedef QMutableListIterator QMutableStringListIterator; class QStringList : public QList { public: inline QStringList() { } inline explicit QStringList(const QString &i) { append(i); } inline QStringList(const QStringList &l) : QList(l) { } inline QStringList(const QList &l) : QList(l) { } inline void sort(); inline int removeDuplicates(); inline QString join(const QString &sep) const; inline QStringList filter(const QString &str, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; inline QBool contains(const QString &str, Qt::CaseSensitivity cs = Qt::CaseSensitive) const; inline QStringList &replaceInStrings(const QString &before, const QString &after, Qt::CaseSensitivity cs = Qt::CaseSensitive); inline QStringList operator+(const QStringList &other) const { QStringList n = *this; n += other; return n; } inline QStringList &operator<<(const QString &str) { append(str); return *this; } inline QStringList &operator<<(const QStringList &l) { *this += l; return *this; } inline QStringList filter(const QRegExp &rx) const; inline QStringList &replaceInStrings(const QRegExp &rx, const QString &after); inline int indexOf(const QRegExp &rx, int from = 0) const; inline int lastIndexOf(const QRegExp &rx, int from = -1) const; inline int indexOf(QRegExp &rx, int from = 0) const; inline int lastIndexOf(QRegExp &rx, int from = -1) const; using QList::indexOf; using QList::lastIndexOf; }; namespace QtPrivate { void QStringList_sort(QStringList *that); int QStringList_removeDuplicates(QStringList *that); QString QStringList_join(const QStringList *that, const QString &sep); QStringList QStringList_filter(const QStringList *that, const QString &str, Qt::CaseSensitivity cs); QBool QStringList_contains(const QStringList *that, const QString &str, Qt::CaseSensitivity cs); void QStringList_replaceInStrings(QStringList *that, const QString &before, const QString &after, Qt::CaseSensitivity cs); void QStringList_replaceInStrings(QStringList *that, const QRegExp &rx, const QString &after); QStringList QStringList_filter(const QStringList *that, const QRegExp &re); int QStringList_indexOf(const QStringList *that, const QRegExp &rx, int from); int QStringList_lastIndexOf(const QStringList *that, const QRegExp &rx, int from); int QStringList_indexOf(const QStringList *that, QRegExp &rx, int from); int QStringList_lastIndexOf(const QStringList *that, QRegExp &rx, int from); } inline void QStringList::sort() { QtPrivate::QStringList_sort(this); } inline int QStringList::removeDuplicates() { return QtPrivate::QStringList_removeDuplicates(this); } inline QString QStringList::join(const QString &sep) const { return QtPrivate::QStringList_join(this, sep); } inline QStringList QStringList::filter(const QString &str, Qt::CaseSensitivity cs) const { return QtPrivate::QStringList_filter(this, str, cs); } inline QBool QStringList::contains(const QString &str, Qt::CaseSensitivity cs) const { return QtPrivate::QStringList_contains(this, str, cs); } inline QStringList &QStringList::replaceInStrings(const QString &before, const QString &after, Qt::CaseSensitivity cs) { QtPrivate::QStringList_replaceInStrings(this, before, after, cs); return *this; } inline QStringList &QStringList::replaceInStrings(const QRegExp &rx, const QString &after) { QtPrivate::QStringList_replaceInStrings(this, rx, after); return *this; } inline QStringList QStringList::filter(const QRegExp &rx) const { return QtPrivate::QStringList_filter(this, rx); } inline int QStringList::indexOf(const QRegExp &rx, int from) const { return QtPrivate::QStringList_indexOf(this, rx, from); } inline int QStringList::lastIndexOf(const QRegExp &rx, int from) const { return QtPrivate::QStringList_lastIndexOf(this, rx, from); } inline int QStringList::indexOf(QRegExp &rx, int from) const { return QtPrivate::QStringList_indexOf(this, rx, from); } inline int QStringList::lastIndexOf(QRegExp &rx, int from) const { return QtPrivate::QStringList_lastIndexOf(this, rx, from); } inline QDataStream &operator>>(QDataStream &in, QStringList &list) { return operator>>(in, static_cast &>(list)); } inline QDataStream &operator<<(QDataStream &out, const QStringList &list) { return operator<<(out, static_cast &>(list)); } typedef QtValidLicenseForCoreModule QtCoreModule; class QBitRef; class QBitArray { friend QDataStream &operator<<(QDataStream &, const QBitArray &); friend QDataStream &operator>>(QDataStream &, QBitArray &); friend uint qHash(const QBitArray &key); QByteArray d; public: inline QBitArray() {} explicit QBitArray(int size, bool val = false); QBitArray(const QBitArray &other) : d(other.d) {} inline QBitArray &operator=(const QBitArray &other) { d = other.d; return *this; } inline void swap(QBitArray &other) { qSwap(d, other.d); } inline int size() const { return (d.size() << 3) - *d.constData(); } inline int count() const { return (d.size() << 3) - *d.constData(); } int count(bool on) const; inline bool isEmpty() const { return d.isEmpty(); } inline bool isNull() const { return d.isNull(); } void resize(int size); inline void detach() { d.detach(); } inline bool isDetached() const { return d.isDetached(); } inline void clear() { d.clear(); } bool testBit(int i) const; void setBit(int i); void setBit(int i, bool val); void clearBit(int i); bool toggleBit(int i); bool at(int i) const; QBitRef operator[](int i); bool operator[](int i) const; QBitRef operator[](uint i); bool operator[](uint i) const; QBitArray& operator&=(const QBitArray &); QBitArray& operator|=(const QBitArray &); QBitArray& operator^=(const QBitArray &); QBitArray operator~() const; inline bool operator==(const QBitArray& a) const { return d == a.d; } inline bool operator!=(const QBitArray& a) const { return d != a.d; } inline bool fill(bool val, int size = -1); void fill(bool val, int first, int last); inline void truncate(int pos) { if (pos < size()) resize(pos); } public: typedef QByteArray::DataPtr DataPtr; inline DataPtr &data_ptr() { return d.data_ptr(); } }; inline bool QBitArray::fill(bool aval, int asize) { *this = QBitArray((asize < 0 ? this->size() : asize), aval); return true; } QBitArray operator&(const QBitArray &, const QBitArray &); QBitArray operator|(const QBitArray &, const QBitArray &); QBitArray operator^(const QBitArray &, const QBitArray &); inline bool QBitArray::testBit(int i) const { qt_noop(); return (*(reinterpret_cast(d.constData())+1+(i>>3)) & (1 << (i & 7))) != 0; } inline void QBitArray::setBit(int i) { qt_noop(); *(reinterpret_cast(d.data())+1+(i>>3)) |= uchar(1 << (i & 7)); } inline void QBitArray::clearBit(int i) { qt_noop(); *(reinterpret_cast(d.data())+1+(i>>3)) &= ~uchar(1 << (i & 7)); } inline void QBitArray::setBit(int i, bool val) { if (val) setBit(i); else clearBit(i); } inline bool QBitArray::toggleBit(int i) { qt_noop(); uchar b = uchar(1<<(i&7)); uchar* p = reinterpret_cast(d.data())+1+(i>>3); uchar c = uchar(*p&b); *p^=b; return c!=0; } inline bool QBitArray::operator[](int i) const { return testBit(i); } inline bool QBitArray::operator[](uint i) const { return testBit(i); } inline bool QBitArray::at(int i) const { return testBit(i); } class QBitRef { private: QBitArray& a; int i; inline QBitRef(QBitArray& array, int idx) : a(array), i(idx) {} friend class QBitArray; public: inline operator bool() const { return a.testBit(i); } inline bool operator!() const { return !a.testBit(i); } QBitRef& operator=(const QBitRef& val) { a.setBit(i, val); return *this; } QBitRef& operator=(bool val) { a.setBit(i, val); return *this; } }; inline QBitRef QBitArray::operator[](int i) { qt_noop(); return QBitRef(*this, i); } inline QBitRef QBitArray::operator[](uint i) { return QBitRef(*this, i); } QDataStream &operator<<(QDataStream &, const QBitArray &); QDataStream &operator>>(QDataStream &, QBitArray &); template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QBitArray)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QBitArray"; } }; template <> inline bool qIsDetached(QBitArray &t) { return t.isDetached(); } template <> inline void qSwap(QBitArray &value1, QBitArray &value2) { qSwap(value1.data_ptr(), value2.data_ptr()); } namespace std { template<> inline void swap< ::QBitArray>(::QBitArray &value1, ::QBitArray &value2) { swap(value1.data_ptr(), value2.data_ptr()); } } typedef QtValidLicenseForCoreModule QtCoreModule; class QByteArrayMatcherPrivate; class QByteArrayMatcher { public: QByteArrayMatcher(); explicit QByteArrayMatcher(const QByteArray &pattern); explicit QByteArrayMatcher(const char *pattern, int length); QByteArrayMatcher(const QByteArrayMatcher &other); ~QByteArrayMatcher(); QByteArrayMatcher &operator=(const QByteArrayMatcher &other); void setPattern(const QByteArray &pattern); int indexIn(const QByteArray &ba, int from = 0) const; int indexIn(const char *str, int len, int from = 0) const; inline QByteArray pattern() const { if (q_pattern.isNull()) return QByteArray(reinterpret_cast(p.p), p.l); return q_pattern; } private: QByteArrayMatcherPrivate *d; QByteArray q_pattern; struct Data { uchar q_skiptable[256]; const uchar *p; int l; }; union { uint dummy[256]; Data p; }; }; typedef QtValidLicenseForCoreModule QtCoreModule; template struct QPair { typedef T1 first_type; typedef T2 second_type; QPair() : first(T1()), second(T2()) {} QPair(const T1 &t1, const T2 &t2) : first(t1), second(t2) {} QPair &operator=(const QPair &other) { first = other.first; second = other.second; return *this; } T1 first; T2 second; }; template inline bool operator==(const QPair &p1, const QPair &p2) { return p1.first == p2.first && p1.second == p2.second; } template inline bool operator!=(const QPair &p1, const QPair &p2) { return !(p1 == p2); } template inline bool operator<(const QPair &p1, const QPair &p2) { return p1.first < p2.first || (!(p2.first < p1.first) && p1.second < p2.second); } template inline bool operator>(const QPair &p1, const QPair &p2) { return p2 < p1; } template inline bool operator<=(const QPair &p1, const QPair &p2) { return !(p2 < p1); } template inline bool operator>=(const QPair &p1, const QPair &p2) { return !(p1 < p2); } template QPair qMakePair(const T1 &x, const T2 &y) { return QPair(x, y); } template inline QDataStream& operator>>(QDataStream& s, QPair& p) { s >> p.first >> p.second; return s; } template inline QDataStream& operator<<(QDataStream& s, const QPair& p) { s << p.first << p.second; return s; } typedef QtValidLicenseForCoreModule QtCoreModule; class QBitArray; class QByteArray; class QString; class QStringRef; inline uint qHash(char key) { return uint(key); } inline uint qHash(uchar key) { return uint(key); } inline uint qHash(signed char key) { return uint(key); } inline uint qHash(ushort key) { return uint(key); } inline uint qHash(short key) { return uint(key); } inline uint qHash(uint key) { return key; } inline uint qHash(int key) { return uint(key); } inline uint qHash(ulong key) { if (sizeof(ulong) > sizeof(uint)) { return uint(((key >> (8 * sizeof(uint) - 1)) ^ key) & (~0U)); } else { return uint(key & (~0U)); } } inline uint qHash(long key) { return qHash(ulong(key)); } inline uint qHash(quint64 key) { if (sizeof(quint64) > sizeof(uint)) { return uint(((key >> (8 * sizeof(uint) - 1)) ^ key) & (~0U)); } else { return uint(key & (~0U)); } } inline uint qHash(qint64 key) { return qHash(quint64(key)); } inline uint qHash(QChar key) { return qHash(key.unicode()); } uint qHash(const QByteArray &key); uint qHash(const QString &key); uint qHash(const QStringRef &key); uint qHash(const QBitArray &key); template inline uint qHash(const T *key) { return qHash(reinterpret_cast(key)); } template inline uint qHash(const QPair &key) { uint h1 = qHash(key.first); uint h2 = qHash(key.second); return ((h1 << 16) | (h1 >> 16)) ^ h2; } struct QHashData { struct Node { Node *next; uint h; }; Node *fakeNext; Node **buckets; QBasicAtomicInt ref; int size; int nodeSize; short userNumBits; short numBits; int numBuckets; uint sharable : 1; uint strictAlignment : 1; uint reserved : 30; void *allocateNode(); void *allocateNode(int nodeAlign); void freeNode(void *node); QHashData *detach_helper(void (*node_duplicate)(Node *, void *), int nodeSize); QHashData *detach_helper2(void (*node_duplicate)(Node *, void *), void (*node_delete)(Node *), int nodeSize, int nodeAlign); void mightGrow(); bool willGrow(); void hasShrunk(); void rehash(int hint); void free_helper(void (*node_delete)(Node *)); void destroyAndFree(); Node *firstNode(); static Node *nextNode(Node *node); static Node *previousNode(Node *node); static QHashData shared_null; }; inline void QHashData::mightGrow() { if (size >= numBuckets) rehash(numBits + 1); } inline bool QHashData::willGrow() { if (size >= numBuckets) { rehash(numBits + 1); return true; } else { return false; } } inline void QHashData::hasShrunk() { if (size <= (numBuckets >> 3) && numBits > userNumBits) { try { rehash(qMax(int(numBits) - 2, int(userNumBits))); } catch (const std::bad_alloc &) { } } } inline QHashData::Node *QHashData::firstNode() { Node *e = reinterpret_cast(this); Node **bucket = buckets; int n = numBuckets; while (n--) { if (*bucket != e) return *bucket; ++bucket; } return e; } struct QHashDummyValue { }; inline bool operator==(const QHashDummyValue & , const QHashDummyValue & ) { return true; } template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE | Q_DUMMY_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE | Q_DUMMY_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QHashDummyValue)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE | Q_DUMMY_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QHashDummyValue"; } }; template struct QHashDummyNode { QHashDummyNode *next; uint h; Key key; inline QHashDummyNode(const Key &key0) : key(key0) {} }; template struct QHashNode { QHashNode *next; uint h; Key key; T value; inline QHashNode(const Key &key0) : key(key0) {} inline QHashNode(const Key &key0, const T &value0) : key(key0), value(value0) {} inline bool same_key(uint h0, const Key &key0) { return h0 == h && key0 == key; } }; template struct QHashDummyNode { QHashDummyNode *next; union { uint h; int key; }; inline QHashDummyNode(int ) {} }; template struct QHashNode { QHashNode *next; union { uint h; int key; }; T value; inline QHashNode(int ) {} inline QHashNode(int , const T &value0) : value(value0) {} inline bool same_key(uint h0, int) { return h0 == h; } }; template struct QHashDummyNode { QHashDummyNode *next; union { uint h; uint key; }; inline QHashDummyNode(uint ) {} }; template struct QHashNode { QHashNode *next; union { uint h; uint key; }; T value; inline QHashNode(uint ) {} inline QHashNode(uint , const T &value0) : value(value0) {} inline bool same_key(uint h0, uint) { return h0 == h; } }; template class QHash { typedef QHashDummyNode DummyNode; typedef QHashNode Node; union { QHashData *d; QHashNode *e; }; static inline Node *concrete(QHashData::Node *node) { return reinterpret_cast(node); } static inline int alignOfNode() { return qMax(sizeof(void*), __alignof__(Node)); } static inline int alignOfDummyNode() { return qMax(sizeof(void*), __alignof__(DummyNode)); } public: inline QHash() : d(&QHashData::shared_null) { d->ref.ref(); } inline QHash(const QHash &other) : d(other.d) { d->ref.ref(); if (!d->sharable) detach(); } inline ~QHash() { if (!d->ref.deref()) freeData(d); } QHash &operator=(const QHash &other); inline void swap(QHash &other) { qSwap(d, other.d); } bool operator==(const QHash &other) const; inline bool operator!=(const QHash &other) const { return !(*this == other); } inline int size() const { return d->size; } inline bool isEmpty() const { return d->size == 0; } inline int capacity() const { return d->numBuckets; } void reserve(int size); inline void squeeze() { reserve(1); } inline void detach() { if (d->ref != 1) detach_helper(); } inline bool isDetached() const { return d->ref == 1; } inline void setSharable(bool sharable) { if (!sharable) detach(); d->sharable = sharable; } inline bool isSharedWith(const QHash &other) const { return d == other.d; } void clear(); int remove(const Key &key); T take(const Key &key); bool contains(const Key &key) const; const Key key(const T &value) const; const Key key(const T &value, const Key &defaultKey) const; const T value(const Key &key) const; const T value(const Key &key, const T &defaultValue) const; T &operator[](const Key &key); const T operator[](const Key &key) const; QList uniqueKeys() const; QList keys() const; QList keys(const T &value) const; QList values() const; QList values(const Key &key) const; int count(const Key &key) const; class const_iterator; class iterator { friend class const_iterator; QHashData::Node *i; public: typedef std::bidirectional_iterator_tag iterator_category; typedef qptrdiff difference_type; typedef T value_type; typedef T *pointer; typedef T &reference; inline operator Node *() const { return concrete(i); } inline iterator() : i(0) { } explicit inline iterator(void *node) : i(reinterpret_cast(node)) { } inline const Key &key() const { return concrete(i)->key; } inline T &value() const { return concrete(i)->value; } inline T &operator*() const { return concrete(i)->value; } inline T *operator->() const { return &concrete(i)->value; } inline bool operator==(const iterator &o) const { return i == o.i; } inline bool operator!=(const iterator &o) const { return i != o.i; } inline iterator &operator++() { i = QHashData::nextNode(i); return *this; } inline iterator operator++(int) { iterator r = *this; i = QHashData::nextNode(i); return r; } inline iterator &operator--() { i = QHashData::previousNode(i); return *this; } inline iterator operator--(int) { iterator r = *this; i = QHashData::previousNode(i); return r; } inline iterator operator+(int j) const { iterator r = *this; if (j > 0) while (j--) ++r; else while (j++) --r; return r; } inline iterator operator-(int j) const { return operator+(-j); } inline iterator &operator+=(int j) { return *this = *this + j; } inline iterator &operator-=(int j) { return *this = *this - j; } public: inline bool operator==(const const_iterator &o) const { return i == o.i; } inline bool operator!=(const const_iterator &o) const { return i != o.i; } private: inline operator bool() const { return false; } }; friend class iterator; class const_iterator { friend class iterator; QHashData::Node *i; public: typedef std::bidirectional_iterator_tag iterator_category; typedef qptrdiff difference_type; typedef T value_type; typedef const T *pointer; typedef const T &reference; inline operator Node *() const { return concrete(i); } inline const_iterator() : i(0) { } explicit inline const_iterator(void *node) : i(reinterpret_cast(node)) { } inline const_iterator(const iterator &o) { i = o.i; } inline const Key &key() const { return concrete(i)->key; } inline const T &value() const { return concrete(i)->value; } inline const T &operator*() const { return concrete(i)->value; } inline const T *operator->() const { return &concrete(i)->value; } inline bool operator==(const const_iterator &o) const { return i == o.i; } inline bool operator!=(const const_iterator &o) const { return i != o.i; } inline const_iterator &operator++() { i = QHashData::nextNode(i); return *this; } inline const_iterator operator++(int) { const_iterator r = *this; i = QHashData::nextNode(i); return r; } inline const_iterator &operator--() { i = QHashData::previousNode(i); return *this; } inline const_iterator operator--(int) { const_iterator r = *this; i = QHashData::previousNode(i); return r; } inline const_iterator operator+(int j) const { const_iterator r = *this; if (j > 0) while (j--) ++r; else while (j++) --r; return r; } inline const_iterator operator-(int j) const { return operator+(-j); } inline const_iterator &operator+=(int j) { return *this = *this + j; } inline const_iterator &operator-=(int j) { return *this = *this - j; } private: inline operator bool() const { return false; } }; friend class const_iterator; inline iterator begin() { detach(); return iterator(d->firstNode()); } inline const_iterator begin() const { return const_iterator(d->firstNode()); } inline const_iterator constBegin() const { return const_iterator(d->firstNode()); } inline iterator end() { detach(); return iterator(e); } inline const_iterator end() const { return const_iterator(e); } inline const_iterator constEnd() const { return const_iterator(e); } iterator erase(iterator it); typedef iterator Iterator; typedef const_iterator ConstIterator; inline int count() const { return d->size; } iterator find(const Key &key); const_iterator find(const Key &key) const; const_iterator constFind(const Key &key) const; iterator insert(const Key &key, const T &value); iterator insertMulti(const Key &key, const T &value); QHash &unite(const QHash &other); typedef T mapped_type; typedef Key key_type; typedef qptrdiff difference_type; typedef int size_type; inline bool empty() const { return isEmpty(); } private: void detach_helper(); void freeData(QHashData *d); Node **findNode(const Key &key, uint *hp = 0) const; Node *createNode(uint h, const Key &key, const T &value, Node **nextNode); void deleteNode(Node *node); static void deleteNode2(QHashData::Node *node); static void duplicateNode(QHashData::Node *originalNode, void *newNode); }; template inline void QHash::deleteNode(Node *node) { deleteNode2(reinterpret_cast(node)); d->freeNode(node); } template inline void QHash::deleteNode2(QHashData::Node *node) { concrete(node)->~Node(); } template inline void QHash::duplicateNode(QHashData::Node *node, void *newNode) { Node *concreteNode = concrete(node); if (QTypeInfo::isDummy) { (void) new (newNode) DummyNode(concreteNode->key); } else { (void) new (newNode) Node(concreteNode->key, concreteNode->value); } } template inline typename QHash::Node * QHash::createNode(uint ah, const Key &akey, const T &avalue, Node **anextNode) { Node *node; if (QTypeInfo::isDummy) { node = reinterpret_cast(new (d->allocateNode(alignOfDummyNode())) DummyNode(akey)); } else { node = new (d->allocateNode(alignOfNode())) Node(akey, avalue); } node->h = ah; node->next = *anextNode; *anextNode = node; ++d->size; return node; } template inline QHash &QHash::unite(const QHash &other) { QHash copy(other); const_iterator it = copy.constEnd(); while (it != copy.constBegin()) { --it; insertMulti(it.key(), it.value()); } return *this; } template void QHash::freeData(QHashData *x) { x->free_helper(deleteNode2); } template inline void QHash::clear() { *this = QHash(); } template void QHash::detach_helper() { QHashData *x = d->detach_helper2(duplicateNode, deleteNode2, QTypeInfo::isDummy ? sizeof(DummyNode) : sizeof(Node), QTypeInfo::isDummy ? alignOfDummyNode() : alignOfNode()); if (!d->ref.deref()) freeData(d); d = x; } template inline QHash &QHash::operator=(const QHash &other) { if (d != other.d) { QHashData *o = other.d; o->ref.ref(); if (!d->ref.deref()) freeData(d); d = o; if (!d->sharable) detach_helper(); } return *this; } template inline const T QHash::value(const Key &akey) const { Node *node; if (d->size == 0 || (node = *findNode(akey)) == e) { return T(); } else { return node->value; } } template inline const T QHash::value(const Key &akey, const T &adefaultValue) const { Node *node; if (d->size == 0 || (node = *findNode(akey)) == e) { return adefaultValue; } else { return node->value; } } template QList QHash::uniqueKeys() const { QList res; res.reserve(size()); const_iterator i = begin(); if (i != end()) { for (;;) { const Key &aKey = i.key(); res.append(aKey); do { if (++i == end()) goto break_out_of_outer_loop; } while (aKey == i.key()); } } break_out_of_outer_loop: return res; } template QList QHash::keys() const { QList res; res.reserve(size()); const_iterator i = begin(); while (i != end()) { res.append(i.key()); ++i; } return res; } template QList QHash::keys(const T &avalue) const { QList res; const_iterator i = begin(); while (i != end()) { if (i.value() == avalue) res.append(i.key()); ++i; } return res; } template const Key QHash::key(const T &avalue) const { return key(avalue, Key()); } template const Key QHash::key(const T &avalue, const Key &defaultValue) const { const_iterator i = begin(); while (i != end()) { if (i.value() == avalue) return i.key(); ++i; } return defaultValue; } template QList QHash::values() const { QList res; res.reserve(size()); const_iterator i = begin(); while (i != end()) { res.append(i.value()); ++i; } return res; } template QList QHash::values(const Key &akey) const { QList res; Node *node = *findNode(akey); if (node != e) { do { res.append(node->value); } while ((node = node->next) != e && node->key == akey); } return res; } template int QHash::count(const Key &akey) const { int cnt = 0; Node *node = *findNode(akey); if (node != e) { do { ++cnt; } while ((node = node->next) != e && node->key == akey); } return cnt; } template inline const T QHash::operator[](const Key &akey) const { return value(akey); } template inline T &QHash::operator[](const Key &akey) { detach(); uint h; Node **node = findNode(akey, &h); if (*node == e) { if (d->willGrow()) node = findNode(akey, &h); return createNode(h, akey, T(), node)->value; } return (*node)->value; } template inline typename QHash::iterator QHash::insert(const Key &akey, const T &avalue) { detach(); uint h; Node **node = findNode(akey, &h); if (*node == e) { if (d->willGrow()) node = findNode(akey, &h); return iterator(createNode(h, akey, avalue, node)); } if (!QTypeInfo::isDummy) (*node)->value = avalue; return iterator(*node); } template inline typename QHash::iterator QHash::insertMulti(const Key &akey, const T &avalue) { detach(); d->willGrow(); uint h; Node **nextNode = findNode(akey, &h); return iterator(createNode(h, akey, avalue, nextNode)); } template int QHash::remove(const Key &akey) { if (isEmpty()) return 0; detach(); int oldSize = d->size; Node **node = findNode(akey); if (*node != e) { bool deleteNext = true; do { Node *next = (*node)->next; deleteNext = (next != e && next->key == (*node)->key); deleteNode(*node); *node = next; --d->size; } while (deleteNext); d->hasShrunk(); } return oldSize - d->size; } template T QHash::take(const Key &akey) { if (isEmpty()) return T(); detach(); Node **node = findNode(akey); if (*node != e) { T t = (*node)->value; Node *next = (*node)->next; deleteNode(*node); *node = next; --d->size; d->hasShrunk(); return t; } return T(); } template typename QHash::iterator QHash::erase(iterator it) { if (it == iterator(e)) return it; iterator ret = it; ++ret; Node *node = it; Node **node_ptr = reinterpret_cast(&d->buckets[node->h % d->numBuckets]); while (*node_ptr != node) node_ptr = &(*node_ptr)->next; *node_ptr = node->next; deleteNode(node); --d->size; return ret; } template inline void QHash::reserve(int asize) { detach(); d->rehash(-qMax(asize, 1)); } template inline typename QHash::const_iterator QHash::find(const Key &akey) const { return const_iterator(*findNode(akey)); } template inline typename QHash::const_iterator QHash::constFind(const Key &akey) const { return const_iterator(*findNode(akey)); } template inline typename QHash::iterator QHash::find(const Key &akey) { detach(); return iterator(*findNode(akey)); } template inline bool QHash::contains(const Key &akey) const { return *findNode(akey) != e; } template typename QHash::Node **QHash::findNode(const Key &akey, uint *ahp) const { Node **node; uint h = qHash(akey); if (d->numBuckets) { node = reinterpret_cast(&d->buckets[h % d->numBuckets]); qt_noop(); while (*node != e && !(*node)->same_key(h, akey)) node = &(*node)->next; } else { node = const_cast(reinterpret_cast(&e)); } if (ahp) *ahp = h; return node; } template bool QHash::operator==(const QHash &other) const { if (size() != other.size()) return false; if (d == other.d) return true; const_iterator it = begin(); while (it != end()) { const Key &akey = it.key(); const_iterator it2 = other.find(akey); do { if (it2 == other.end() || !(it2.key() == akey)) return false; if (!QTypeInfo::isDummy && !(it.value() == it2.value())) return false; ++it; ++it2; } while (it != end() && it.key() == akey); } return true; } template class QMultiHash : public QHash { public: QMultiHash() {} QMultiHash(const QHash &other) : QHash(other) {} inline void swap(QMultiHash &other) { QHash::swap(other); } inline typename QHash::iterator replace(const Key &key, const T &value) { return QHash::insert(key, value); } inline typename QHash::iterator insert(const Key &key, const T &value) { return QHash::insertMulti(key, value); } inline QMultiHash &operator+=(const QMultiHash &other) { this->unite(other); return *this; } inline QMultiHash operator+(const QMultiHash &other) const { QMultiHash result = *this; result += other; return result; } using QHash::contains; using QHash::remove; using QHash::count; using QHash::find; using QHash::constFind; bool contains(const Key &key, const T &value) const; int remove(const Key &key, const T &value); int count(const Key &key, const T &value) const; typename QHash::iterator find(const Key &key, const T &value) { typename QHash::iterator i(find(key)); typename QHash::iterator end(this->end()); while (i != end && i.key() == key) { if (i.value() == value) return i; ++i; } return end; } typename QHash::const_iterator find(const Key &key, const T &value) const { typename QHash::const_iterator i(constFind(key)); typename QHash::const_iterator end(QHash::constEnd()); while (i != end && i.key() == key) { if (i.value() == value) return i; ++i; } return end; } typename QHash::const_iterator constFind(const Key &key, const T &value) const { return find(key, value); } private: T &operator[](const Key &key); const T operator[](const Key &key) const; }; template inline bool QMultiHash::contains(const Key &key, const T &value) const { return constFind(key, value) != QHash::constEnd(); } template inline int QMultiHash::remove(const Key &key, const T &value) { int n = 0; typename QHash::iterator i(find(key)); typename QHash::iterator end(QHash::end()); while (i != end && i.key() == key) { if (i.value() == value) { i = this->erase(i); ++n; } else { ++i; } } return n; } template inline int QMultiHash::count(const Key &key, const T &value) const { int n = 0; typename QHash::const_iterator i(constFind(key)); typename QHash::const_iterator end(QHash::constEnd()); while (i != end && i.key() == key) { if (i.value() == value) ++n; ++i; } return n; } template class QHashIterator { typedef typename QHash::const_iterator const_iterator; typedef const_iterator Item; QHash c; const_iterator i, n; inline bool item_exists() const { return n != c.constEnd(); } public: inline QHashIterator(const QHash &container) : c(container), i(c.constBegin()), n(c.constEnd()) {} inline QHashIterator &operator=(const QHash &container) { c = container; i = c.constBegin(); n = c.constEnd(); return *this; } inline void toFront() { i = c.constBegin(); n = c.constEnd(); } inline void toBack() { i = c.constEnd(); n = c.constEnd(); } inline bool hasNext() const { return i != c.constEnd(); } inline Item next() { n = i++; return n; } inline Item peekNext() const { return i; } inline bool hasPrevious() const { return i != c.constBegin(); } inline Item previous() { n = --i; return n; } inline Item peekPrevious() const { const_iterator p = i; return --p; } inline const T &value() const { qt_noop(); return *n; } inline const Key &key() const { qt_noop(); return n.key(); } inline bool findNext(const T &t) { while ((n = i) != c.constEnd()) if (*i++ == t) return true; return false; } inline bool findPrevious(const T &t) { while (i != c.constBegin()) if (*(n = --i) == t) return true; n = c.constEnd(); return false; } }; template class QMutableHashIterator { typedef typename QHash::iterator iterator; typedef typename QHash::const_iterator const_iterator; typedef iterator Item; QHash *c; iterator i, n; inline bool item_exists() const { return const_iterator(n) != c->constEnd(); } public: inline QMutableHashIterator(QHash &container) : c(&container) { c->setSharable(false); i = c->begin(); n = c->end(); } inline ~QMutableHashIterator() { c->setSharable(true); } inline QMutableHashIterator &operator=(QHash &container) { c->setSharable(true); c = &container; c->setSharable(false); i = c->begin(); n = c->end(); return *this; } inline void toFront() { i = c->begin(); n = c->end(); } inline void toBack() { i = c->end(); n = c->end(); } inline bool hasNext() const { return const_iterator(i) != c->constEnd(); } inline Item next() { n = i++; return n; } inline Item peekNext() const { return i; } inline bool hasPrevious() const { return const_iterator(i) != c->constBegin(); } inline Item previous() { n = --i; return n; } inline Item peekPrevious() const { iterator p = i; return --p; } inline void remove() { if (const_iterator(n) != c->constEnd()) { i = c->erase(n); n = c->end(); } } inline void setValue(const T &t) { if (const_iterator(n) != c->constEnd()) *n = t; } inline T &value() { qt_noop(); return *n; } inline const T &value() const { qt_noop(); return *n; } inline const Key &key() const { qt_noop(); return n.key(); } inline bool findNext(const T &t) { while (const_iterator(n = i) != c->constEnd()) if (*i++ == t) return true; return false; } inline bool findPrevious(const T &t) { while (const_iterator(i) != c->constBegin()) if (*(n = --i) == t) return true; n = c->end(); return false; } }; typedef QtValidLicenseForCoreModule QtCoreModule; template class QCache { struct Node { inline Node() : keyPtr(0) {} inline Node(T *data, int cost) : keyPtr(0), t(data), c(cost), p(0), n(0) {} const Key *keyPtr; T *t; int c; Node *p,*n; }; Node *f, *l; QHash hash; void *unused; int mx, total; inline void unlink(Node &n) { if (n.p) n.p->n = n.n; if (n.n) n.n->p = n.p; if (l == &n) l = n.p; if (f == &n) f = n.n; total -= n.c; T *obj = n.t; hash.remove(*n.keyPtr); delete obj; } inline T *relink(const Key &key) { typename QHash::iterator i = hash.find(key); if (typename QHash::const_iterator(i) == hash.constEnd()) return 0; Node &n = *i; if (f != &n) { if (n.p) n.p->n = n.n; if (n.n) n.n->p = n.p; if (l == &n) l = n.p; n.p = 0; n.n = f; f->p = &n; f = &n; } return n.t; } QCache(const QCache &); QCache &operator=(const QCache &); public: inline explicit QCache(int maxCost = 100); inline ~QCache() { clear(); } inline int maxCost() const { return mx; } void setMaxCost(int m); inline int totalCost() const { return total; } inline int size() const { return hash.size(); } inline int count() const { return hash.size(); } inline bool isEmpty() const { return hash.isEmpty(); } inline QList keys() const { return hash.keys(); } void clear(); bool insert(const Key &key, T *object, int cost = 1); T *object(const Key &key) const; inline bool contains(const Key &key) const { return hash.contains(key); } T *operator[](const Key &key) const; bool remove(const Key &key); T *take(const Key &key); private: void trim(int m); }; template inline QCache::QCache(int amaxCost) : f(0), l(0), unused(0), mx(amaxCost), total(0) {} template inline void QCache::clear() { while (f) { delete f->t; f = f->n; } hash.clear(); l = 0; total = 0; } template inline void QCache::setMaxCost(int m) { mx = m; trim(mx); } template inline T *QCache::object(const Key &key) const { return const_cast*>(this)->relink(key); } template inline T *QCache::operator[](const Key &key) const { return object(key); } template inline bool QCache::remove(const Key &key) { typename QHash::iterator i = hash.find(key); if (typename QHash::const_iterator(i) == hash.constEnd()) { return false; } else { unlink(*i); return true; } } template inline T *QCache::take(const Key &key) { typename QHash::iterator i = hash.find(key); if (i == hash.end()) return 0; Node &n = *i; T *t = n.t; n.t = 0; unlink(n); return t; } template bool QCache::insert(const Key &akey, T *aobject, int acost) { remove(akey); if (acost > mx) { delete aobject; return false; } trim(mx - acost); Node sn(aobject, acost); typename QHash::iterator i = hash.insert(akey, sn); total += acost; Node *n = &i.value(); n->keyPtr = &i.key(); if (f) f->p = n; n->n = f; f = n; if (!l) l = f; return true; } template void QCache::trim(int m) { Node *n = l; while (n && total > m) { Node *u = n; n = n->p; unlink(*u); } } typedef QtValidLicenseForCoreModule QtCoreModule; template class QCache; template class QHash; template class QLinkedList; template class QList; template class QMap; template class QMultiHash; template class QMultiMap; template struct QPair; template class QQueue; template class QSet; template class QStack; template class QVarLengthArray; template class QVector; typedef QtValidLicenseForCoreModule QtCoreModule; struct QContiguousCacheData { QBasicAtomicInt ref; int alloc; int count; int start; int offset; uint sharable : 1; uint reserved : 31; static QContiguousCacheData *allocate(int size, int alignment); static void free(QContiguousCacheData *data); }; template struct QContiguousCacheTypedData: private QContiguousCacheData { T array[1]; static inline void free(QContiguousCacheTypedData *data) { QContiguousCacheData::free(data); } }; template class QContiguousCache { typedef QContiguousCacheTypedData Data; union { QContiguousCacheData *d; QContiguousCacheTypedData *p; }; public: typedef T value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef qptrdiff difference_type; typedef int size_type; explicit QContiguousCache(int capacity = 0); QContiguousCache(const QContiguousCache &v) : d(v.d) { d->ref.ref(); if (!d->sharable) detach_helper(); } inline ~QContiguousCache() { if (!d) return; if (!d->ref.deref()) free(p); } inline void detach() { if (d->ref != 1) detach_helper(); } inline bool isDetached() const { return d->ref == 1; } inline void setSharable(bool sharable) { if (!sharable) detach(); d->sharable = sharable; } QContiguousCache &operator=(const QContiguousCache &other); inline void swap(QContiguousCache &other) { qSwap(d, other.d); } bool operator==(const QContiguousCache &other) const; inline bool operator!=(const QContiguousCache &other) const { return !(*this == other); } inline int capacity() const {return d->alloc; } inline int count() const { return d->count; } inline int size() const { return d->count; } inline bool isEmpty() const { return d->count == 0; } inline bool isFull() const { return d->count == d->alloc; } inline int available() const { return d->alloc - d->count; } void clear(); void setCapacity(int size); const T &at(int pos) const; T &operator[](int i); const T &operator[](int i) const; void append(const T &value); void prepend(const T &value); void insert(int pos, const T &value); inline bool containsIndex(int pos) const { return pos >= d->offset && pos - d->offset < d->count; } inline int firstIndex() const { return d->offset; } inline int lastIndex() const { return d->offset + d->count - 1; } inline const T &first() const { qt_noop(); return p->array[d->start]; } inline const T &last() const { qt_noop(); return p->array[(d->start + d->count -1) % d->alloc]; } inline T &first() { qt_noop(); detach(); return p->array[d->start]; } inline T &last() { qt_noop(); detach(); return p->array[(d->start + d->count -1) % d->alloc]; } void removeFirst(); T takeFirst(); void removeLast(); T takeLast(); inline bool areIndexesValid() const { return d->offset >= 0 && d->offset < 2147483647 - d->count && (d->offset % d->alloc) == d->start; } inline void normalizeIndexes() { d->offset = d->start; } private: void detach_helper(); QContiguousCacheData *malloc(int aalloc); void free(Data *x); int sizeOfTypedData() { return reinterpret_cast(&(reinterpret_cast(this))->array[1]) - reinterpret_cast(this); } int alignOfTypedData() const { return qMax(sizeof(void*), __alignof__(Data)); } }; template void QContiguousCache::detach_helper() { union { QContiguousCacheData *d; QContiguousCacheTypedData *p; } x; x.d = malloc(d->alloc); x.d->ref = 1; x.d->count = d->count; x.d->start = d->start; x.d->offset = d->offset; x.d->alloc = d->alloc; x.d->sharable = true; x.d->reserved = 0; T *dest = x.p->array + x.d->start; T *src = p->array + d->start; int oldcount = x.d->count; while (oldcount--) { if (QTypeInfo::isComplex) { new (dest) T(*src); } else { *dest = *src; } dest++; if (dest == x.p->array + x.d->alloc) dest = x.p->array; src++; if (src == p->array + d->alloc) src = p->array; } if (!d->ref.deref()) free(p); d = x.d; } template void QContiguousCache::setCapacity(int asize) { if (asize == d->alloc) return; detach(); union { QContiguousCacheData *d; QContiguousCacheTypedData *p; } x; x.d = malloc(asize); x.d->alloc = asize; x.d->count = qMin(d->count, asize); x.d->offset = d->offset + d->count - x.d->count; if(asize) x.d->start = x.d->offset % x.d->alloc; else x.d->start = 0; int oldcount = x.d->count; if(oldcount) { T *dest = x.p->array + (x.d->start + x.d->count-1) % x.d->alloc; T *src = p->array + (d->start + d->count-1) % d->alloc; while (oldcount--) { if (QTypeInfo::isComplex) { new (dest) T(*src); } else { *dest = *src; } if (dest == x.p->array) dest = x.p->array + x.d->alloc; dest--; if (src == p->array) src = p->array + d->alloc; src--; } } free(p); d = x.d; } template void QContiguousCache::clear() { if (d->ref == 1) { if (QTypeInfo::isComplex) { int oldcount = d->count; T * i = p->array + d->start; T * e = p->array + d->alloc; while (oldcount--) { i->~T(); i++; if (i == e) i = p->array; } } d->count = d->start = d->offset = 0; } else { union { QContiguousCacheData *d; QContiguousCacheTypedData *p; } x; x.d = malloc(d->alloc); x.d->ref = 1; x.d->alloc = d->alloc; x.d->count = x.d->start = x.d->offset = 0; x.d->sharable = true; if (!d->ref.deref()) free(p); d = x.d; } } template inline QContiguousCacheData *QContiguousCache::malloc(int aalloc) { return QContiguousCacheData::allocate(sizeOfTypedData() + (aalloc - 1) * sizeof(T), alignOfTypedData()); } template QContiguousCache::QContiguousCache(int cap) { d = malloc(cap); d->ref = 1; d->alloc = cap; d->count = d->start = d->offset = 0; d->sharable = true; } template QContiguousCache &QContiguousCache::operator=(const QContiguousCache &other) { other.d->ref.ref(); if (!d->ref.deref()) free(d); d = other.d; if (!d->sharable) detach_helper(); return *this; } template bool QContiguousCache::operator==(const QContiguousCache &other) const { if (other.d == d) return true; if (other.d->start != d->start || other.d->count != d->count || other.d->offset != d->offset || other.d->alloc != d->alloc) return false; for (int i = firstIndex(); i <= lastIndex(); ++i) if (!(at(i) == other.at(i))) return false; return true; } template void QContiguousCache::free(Data *x) { if (QTypeInfo::isComplex) { int oldcount = d->count; T * i = p->array + d->start; T * e = p->array + d->alloc; while (oldcount--) { i->~T(); i++; if (i == e) i = p->array; } } x->free(x); } template void QContiguousCache::append(const T &value) { detach(); if (QTypeInfo::isComplex) { if (d->count == d->alloc) (p->array + (d->start+d->count) % d->alloc)->~T(); new (p->array + (d->start+d->count) % d->alloc) T(value); } else { p->array[(d->start+d->count) % d->alloc] = value; } if (d->count == d->alloc) { d->start++; d->start %= d->alloc; d->offset++; } else { d->count++; } } template void QContiguousCache::prepend(const T &value) { detach(); if (d->start) d->start--; else d->start = d->alloc-1; d->offset--; if (d->count != d->alloc) d->count++; else if (d->count == d->alloc) (p->array + d->start)->~T(); if (QTypeInfo::isComplex) new (p->array + d->start) T(value); else p->array[d->start] = value; } template void QContiguousCache::insert(int pos, const T &value) { qt_noop(); detach(); if (containsIndex(pos)) { if (QTypeInfo::isComplex) { (p->array + pos % d->alloc)->~T(); new (p->array + pos % d->alloc) T(value); } else { p->array[pos % d->alloc] = value; } } else if (pos == d->offset-1) prepend(value); else if (pos == d->offset+d->count) append(value); else { clear(); d->offset = pos; d->start = pos % d->alloc; d->count = 1; if (QTypeInfo::isComplex) new (p->array + d->start) T(value); else p->array[d->start] = value; } } template inline const T &QContiguousCache::at(int pos) const { qt_noop(); return p->array[pos % d->alloc]; } template inline const T &QContiguousCache::operator[](int pos) const { qt_noop(); return p->array[pos % d->alloc]; } template inline T &QContiguousCache::operator[](int pos) { detach(); if (!containsIndex(pos)) insert(pos, T()); return p->array[pos % d->alloc]; } template inline void QContiguousCache::removeFirst() { qt_noop(); detach(); d->count--; if (QTypeInfo::isComplex) (p->array + d->start)->~T(); d->start = (d->start + 1) % d->alloc; d->offset++; } template inline void QContiguousCache::removeLast() { qt_noop(); detach(); d->count--; if (QTypeInfo::isComplex) (p->array + (d->start + d->count) % d->alloc)->~T(); } template inline T QContiguousCache::takeFirst() { T t = first(); removeFirst(); return t; } template inline T QContiguousCache::takeLast() { T t = last(); removeLast(); return t; } typedef QtValidLicenseForCoreModule QtCoreModule; class QCryptographicHashPrivate; class QCryptographicHash { public: enum Algorithm { Md4, Md5, Sha1 }; QCryptographicHash(Algorithm method); ~QCryptographicHash(); void reset(); void addData(const char *data, int length); void addData(const QByteArray &data); QByteArray result() const; static QByteArray hash(const QByteArray &data, Algorithm method); private: QCryptographicHash(const QCryptographicHash &); QCryptographicHash &operator=(const QCryptographicHash &); QCryptographicHashPrivate *d; }; typedef QtValidLicenseForCoreModule QtCoreModule; template class QSharedDataPointer; class QSharedData { public: mutable QAtomicInt ref; inline QSharedData() : ref(0) { } inline QSharedData(const QSharedData &) : ref(0) { } private: QSharedData &operator=(const QSharedData &); }; template class QSharedDataPointer { public: typedef T Type; typedef T *pointer; inline void detach() { if (d && d->ref != 1) detach_helper(); } inline T &operator*() { detach(); return *d; } inline const T &operator*() const { return *d; } inline T *operator->() { detach(); return d; } inline const T *operator->() const { return d; } inline operator T *() { detach(); return d; } inline operator const T *() const { return d; } inline T *data() { detach(); return d; } inline const T *data() const { return d; } inline const T *constData() const { return d; } inline bool operator==(const QSharedDataPointer &other) const { return d == other.d; } inline bool operator!=(const QSharedDataPointer &other) const { return d != other.d; } inline QSharedDataPointer() { d = 0; } inline ~QSharedDataPointer() { if (d && !d->ref.deref()) delete d; } explicit QSharedDataPointer(T *data); inline QSharedDataPointer(const QSharedDataPointer &o) : d(o.d) { if (d) d->ref.ref(); } inline QSharedDataPointer & operator=(const QSharedDataPointer &o) { if (o.d != d) { if (o.d) o.d->ref.ref(); T *old = d; d = o.d; if (old && !old->ref.deref()) delete old; } return *this; } inline QSharedDataPointer &operator=(T *o) { if (o != d) { if (o) o->ref.ref(); T *old = d; d = o; if (old && !old->ref.deref()) delete old; } return *this; } inline bool operator!() const { return !d; } inline void swap(QSharedDataPointer &other) { qSwap(d, other.d); } protected: T *clone(); private: void detach_helper(); T *d; }; template class QExplicitlySharedDataPointer { public: typedef T Type; typedef T *pointer; inline T &operator*() const { return *d; } inline T *operator->() { return d; } inline T *operator->() const { return d; } inline T *data() const { return d; } inline const T *constData() const { return d; } inline void detach() { if (d && d->ref != 1) detach_helper(); } inline void reset() { if(d && !d->ref.deref()) delete d; d = 0; } inline operator bool () const { return d != 0; } inline bool operator==(const QExplicitlySharedDataPointer &other) const { return d == other.d; } inline bool operator!=(const QExplicitlySharedDataPointer &other) const { return d != other.d; } inline bool operator==(const T *ptr) const { return d == ptr; } inline bool operator!=(const T *ptr) const { return d != ptr; } inline QExplicitlySharedDataPointer() { d = 0; } inline ~QExplicitlySharedDataPointer() { if (d && !d->ref.deref()) delete d; } explicit QExplicitlySharedDataPointer(T *data); inline QExplicitlySharedDataPointer(const QExplicitlySharedDataPointer &o) : d(o.d) { if (d) d->ref.ref(); } template inline QExplicitlySharedDataPointer(const QExplicitlySharedDataPointer &o) : d(static_cast(o.data())) { if(d) d->ref.ref(); } inline QExplicitlySharedDataPointer & operator=(const QExplicitlySharedDataPointer &o) { if (o.d != d) { if (o.d) o.d->ref.ref(); T *old = d; d = o.d; if (old && !old->ref.deref()) delete old; } return *this; } inline QExplicitlySharedDataPointer &operator=(T *o) { if (o != d) { if (o) o->ref.ref(); T *old = d; d = o; if (old && !old->ref.deref()) delete old; } return *this; } inline bool operator!() const { return !d; } inline void swap(QExplicitlySharedDataPointer &other) { qSwap(d, other.d); } protected: T *clone(); private: void detach_helper(); T *d; }; template inline QSharedDataPointer::QSharedDataPointer(T *adata) : d(adata) { if (d) d->ref.ref(); } template inline T *QSharedDataPointer::clone() { return new T(*d); } template void QSharedDataPointer::detach_helper() { T *x = clone(); x->ref.ref(); if (!d->ref.deref()) delete d; d = x; } template inline T *QExplicitlySharedDataPointer::clone() { return new T(*d); } template void QExplicitlySharedDataPointer::detach_helper() { T *x = clone(); x->ref.ref(); if (!d->ref.deref()) delete d; d = x; } template inline QExplicitlySharedDataPointer::QExplicitlySharedDataPointer(T *adata) : d(adata) { if (d) d->ref.ref(); } template inline void qSwap(QSharedDataPointer &p1, QSharedDataPointer &p2) { p1.swap(p2); } template inline void qSwap(QExplicitlySharedDataPointer &p1, QExplicitlySharedDataPointer &p2) { p1.swap(p2); } namespace std { template inline void swap(::QSharedDataPointer &p1, ::QSharedDataPointer &p2) { p1.swap(p2); } template inline void swap(::QExplicitlySharedDataPointer &p1, ::QExplicitlySharedDataPointer &p2) { p1.swap(p2); } } typedef QtValidLicenseForCoreModule QtCoreModule; template class QWeakPointer; template class QSharedPointer; template QSharedPointer qSharedPointerCast(const QSharedPointer &ptr); template QSharedPointer qSharedPointerDynamicCast(const QSharedPointer &ptr); template QSharedPointer qSharedPointerConstCast(const QSharedPointer &ptr); template QSharedPointer qSharedPointerObjectCast(const QSharedPointer &ptr); namespace QtSharedPointer { template class InternalRefCount; template class ExternalRefCount; template QSharedPointer copyAndSetPointer(X * ptr, const QSharedPointer &src); void internalSafetyCheckAdd2(const void *, const volatile void *); void internalSafetyCheckRemove2(const void *); template inline void executeDeleter(T *t, RetVal (Klass:: *memberDeleter)()) { (t->*memberDeleter)(); } template inline void executeDeleter(T *t, Deleter d) { d(t); } template inline void normalDeleter(T *t) { delete t; } template struct RemovePointer; template struct RemovePointer { typedef T Type; }; template struct RemovePointer > { typedef T Type; }; template struct RemovePointer > { typedef T Type; }; template class Basic { typedef T *Basic:: *RestrictedBool; public: typedef T Type; typedef T element_type; typedef T value_type; typedef value_type *pointer; typedef const value_type *const_pointer; typedef value_type &reference; typedef const value_type &const_reference; typedef qptrdiff difference_type; inline T *data() const { return value; } inline bool isNull() const { return !data(); } inline operator RestrictedBool() const { return isNull() ? 0 : &Basic::value; } inline bool operator !() const { return isNull(); } inline T &operator*() const { return *data(); } inline T *operator->() const { return data(); } protected: inline Basic(T *ptr = 0) : value(ptr) { } inline Basic(Qt::Initialization) { } inline void internalConstruct(T *ptr) { value = ptr; } template friend class ::QWeakPointer; Type *value; }; struct ExternalRefCountData { QBasicAtomicInt weakref; QBasicAtomicInt strongref; inline ExternalRefCountData() { strongref = 1; weakref = 1; } inline ExternalRefCountData(Qt::Initialization) { } virtual inline ~ExternalRefCountData() { qt_noop(); qt_noop(); } virtual inline bool destroy() { return false; } static ExternalRefCountData *getAndRef(const QObject *); void setQObjectShared(const QObject *, bool enable); inline void setQObjectShared(...) { } }; struct ExternalRefCountWithDestroyFn: public ExternalRefCountData { typedef void (*DestroyerFn)(ExternalRefCountData *); DestroyerFn destroyer; inline ExternalRefCountWithDestroyFn(DestroyerFn d) : destroyer(d) { } inline bool destroy() { destroyer(this); return true; } inline void operator delete(void *ptr) { ::operator delete(ptr); } inline void operator delete(void *, void *) { } }; template struct ExternalRefCountWithCustomDeleter: public ExternalRefCountWithDestroyFn { typedef ExternalRefCountWithCustomDeleter Self; typedef ExternalRefCountWithDestroyFn BaseClass; struct CustomDeleter { Deleter deleter; T *ptr; inline CustomDeleter(T *p, Deleter d) : deleter(d), ptr(p) {} }; CustomDeleter extra; static inline void deleter(ExternalRefCountData *self) { Self *realself = static_cast(self); executeDeleter(realself->extra.ptr, realself->extra.deleter); realself->extra.~CustomDeleter(); } static void safetyCheckDeleter(ExternalRefCountData *self) { internalSafetyCheckRemove2(self); deleter(self); } static inline Self *create(T *ptr, Deleter userDeleter) { DestroyerFn destroy = &deleter; Self *d = static_cast(::operator new(sizeof(Self))); new (&d->extra) CustomDeleter(ptr, userDeleter); new (d) BaseClass(destroy); return d; } private: ExternalRefCountWithCustomDeleter(); ~ExternalRefCountWithCustomDeleter(); }; template struct ExternalRefCountWithContiguousData: public ExternalRefCountWithDestroyFn { typedef ExternalRefCountWithDestroyFn Parent; T data; static void deleter(ExternalRefCountData *self) { ExternalRefCountWithContiguousData *that = static_cast(self); that->data.~T(); } static void safetyCheckDeleter(ExternalRefCountData *self) { internalSafetyCheckRemove2(self); deleter(self); } static inline ExternalRefCountData *create(T **ptr) { DestroyerFn destroy = &deleter; ExternalRefCountWithContiguousData *d = static_cast(::operator new(sizeof(ExternalRefCountWithContiguousData))); new (d) Parent(destroy); *ptr = &d->data; return d; } private: ExternalRefCountWithContiguousData(); ~ExternalRefCountWithContiguousData(); }; template class ExternalRefCount: public Basic { protected: typedef ExternalRefCountData Data; inline void deref() { deref(d, this->value); } static inline void deref(Data *d, T *value) { if (!d) return; if (!d->strongref.deref()) { if (!d->destroy()) delete value; } if (!d->weakref.deref()) delete d; } inline void internalConstruct(T *ptr) { if (ptr) d = new Data; else d = 0; internalFinishConstruction(ptr); } template inline void internalConstruct(T *ptr, Deleter deleter) { if (ptr) d = ExternalRefCountWithCustomDeleter::create(ptr, deleter); else d = 0; internalFinishConstruction(ptr); } inline void internalCreate() { T *ptr; d = ExternalRefCountWithContiguousData::create(&ptr); Basic::internalConstruct(ptr); } inline void internalFinishConstruction(T *ptr) { Basic::internalConstruct(ptr); if (ptr) d->setQObjectShared(ptr, true); } inline ExternalRefCount() : d(0) { } inline ExternalRefCount(Qt::Initialization i) : Basic(i) { } inline ExternalRefCount(T *ptr) : Basic(Qt::Uninitialized) { internalConstruct(ptr); } template inline ExternalRefCount(T *ptr, Deleter deleter) : Basic(Qt::Uninitialized) { internalConstruct(ptr, deleter); } inline ExternalRefCount(const ExternalRefCount &other) : Basic(other), d(other.d) { if (d) ref(); } template inline ExternalRefCount(const ExternalRefCount &other) : Basic(other.value), d(other.d) { if (d) ref(); } inline ~ExternalRefCount() { deref(); } template inline void internalCopy(const ExternalRefCount &other) { Data *o = other.d; T *actual = other.value; if (o) other.ref(); qSwap(d, o); qSwap(this->value, actual); deref(o, actual); } inline void internalSwap(ExternalRefCount &other) { qSwap(d, other.d); qSwap(this->value, other.value); } template friend class ExternalRefCount; template friend class ::QWeakPointer; template friend QSharedPointer copyAndSetPointer(X * ptr, const QSharedPointer &src); inline void ref() const { d->weakref.ref(); d->strongref.ref(); } inline void internalSet(Data *o, T *actual) { if (o) { register int tmp = o->strongref; while (tmp > 0) { if (o->strongref.testAndSetRelaxed(tmp, tmp + 1)) break; tmp = o->strongref; } if (tmp > 0) o->weakref.ref(); else o = 0; } qSwap(d, o); qSwap(this->value, actual); if (!d || d->strongref == 0) this->value = 0; deref(o, actual); } Data *d; private: template ExternalRefCount(const InternalRefCount &); }; } template class QSharedPointer: public QtSharedPointer::ExternalRefCount { typedef typename QtSharedPointer::ExternalRefCount BaseClass; public: inline QSharedPointer() { } inline explicit QSharedPointer(T *ptr) : BaseClass(ptr) { } template inline QSharedPointer(T *ptr, Deleter d) : BaseClass(ptr, d) { } inline QSharedPointer(const QSharedPointer &other) : BaseClass(other) { } inline QSharedPointer &operator=(const QSharedPointer &other) { BaseClass::internalCopy(other); return *this; } template inline QSharedPointer(const QSharedPointer &other) : BaseClass(other) { } template inline QSharedPointer &operator=(const QSharedPointer &other) { qt_noop(); BaseClass::internalCopy(other); return *this; } template inline QSharedPointer(const QWeakPointer &other) : BaseClass(Qt::Uninitialized) { this->d = 0; *this = other; } template inline QSharedPointer &operator=(const QWeakPointer &other) { BaseClass::internalSet(other.d, other.value); return *this; } inline void swap(QSharedPointer &other) { QSharedPointer::internalSwap(other); } template QSharedPointer staticCast() const { return qSharedPointerCast(*this); } template QSharedPointer dynamicCast() const { return qSharedPointerDynamicCast(*this); } template QSharedPointer constCast() const { return qSharedPointerConstCast(*this); } template QSharedPointer objectCast() const { return qSharedPointerObjectCast(*this); } inline void clear() { *this = QSharedPointer(); } QWeakPointer toWeakRef() const; protected: inline explicit QSharedPointer(Qt::Initialization i) : BaseClass(i) {} public: static inline QSharedPointer create() { QSharedPointer result(Qt::Uninitialized); result.internalCreate(); new (result.data()) T(); result.internalFinishConstruction(result.data()); return result; } }; template class QWeakPointer { typedef T *QWeakPointer:: *RestrictedBool; typedef QtSharedPointer::ExternalRefCountData Data; public: typedef T element_type; typedef T value_type; typedef value_type *pointer; typedef const value_type *const_pointer; typedef value_type &reference; typedef const value_type &const_reference; typedef qptrdiff difference_type; inline bool isNull() const { return d == 0 || d->strongref == 0 || value == 0; } inline operator RestrictedBool() const { return isNull() ? 0 : &QWeakPointer::value; } inline bool operator !() const { return isNull(); } inline T *data() const { return d == 0 || d->strongref == 0 ? 0 : value; } inline QWeakPointer() : d(0), value(0) { } inline ~QWeakPointer() { if (d && !d->weakref.deref()) delete d; } template inline QWeakPointer(X *ptr) : d(ptr ? Data::getAndRef(ptr) : 0), value(ptr) { } template inline QWeakPointer &operator=(X *ptr) { return *this = QWeakPointer(ptr); } inline QWeakPointer(const QWeakPointer &o) : d(o.d), value(o.value) { if (d) d->weakref.ref(); } inline QWeakPointer &operator=(const QWeakPointer &o) { internalSet(o.d, o.value); return *this; } inline QWeakPointer(const QSharedPointer &o) : d(o.d), value(o.data()) { if (d) d->weakref.ref();} inline QWeakPointer &operator=(const QSharedPointer &o) { internalSet(o.d, o.value); return *this; } template inline QWeakPointer(const QWeakPointer &o) : d(0), value(0) { *this = o; } template inline QWeakPointer &operator=(const QWeakPointer &o) { *this = o.toStrongRef(); return *this; } template inline bool operator==(const QWeakPointer &o) const { return d == o.d && value == static_cast(o.value); } template inline bool operator!=(const QWeakPointer &o) const { return !(*this == o); } template inline QWeakPointer(const QSharedPointer &o) : d(0), value(0) { *this = o; } template inline QWeakPointer &operator=(const QSharedPointer &o) { qt_noop(); internalSet(o.d, o.data()); return *this; } template inline bool operator==(const QSharedPointer &o) const { return d == o.d; } template inline bool operator!=(const QSharedPointer &o) const { return !(*this == o); } inline void clear() { *this = QWeakPointer(); } inline QSharedPointer toStrongRef() const { return QSharedPointer(*this); } private: template friend class QSharedPointer; inline void internalSet(Data *o, T *actual) { if (d == o) return; if (o) o->weakref.ref(); if (d && !d->weakref.deref()) delete d; d = o; value = actual; } Data *d; T *value; }; template bool operator==(const QSharedPointer &ptr1, const QSharedPointer &ptr2) { return ptr1.data() == ptr2.data(); } template bool operator!=(const QSharedPointer &ptr1, const QSharedPointer &ptr2) { return ptr1.data() != ptr2.data(); } template bool operator==(const QSharedPointer &ptr1, const X *ptr2) { return ptr1.data() == ptr2; } template bool operator==(const T *ptr1, const QSharedPointer &ptr2) { return ptr1 == ptr2.data(); } template bool operator!=(const QSharedPointer &ptr1, const X *ptr2) { return !(ptr1 == ptr2); } template bool operator!=(const T *ptr1, const QSharedPointer &ptr2) { return !(ptr2 == ptr1); } template bool operator==(const QSharedPointer &ptr1, const QWeakPointer &ptr2) { return ptr2 == ptr1; } template bool operator!=(const QSharedPointer &ptr1, const QWeakPointer &ptr2) { return ptr2 != ptr1; } template inline typename QSharedPointer::difference_type operator-(const QSharedPointer &ptr1, const QSharedPointer &ptr2) { return ptr1.data() - ptr2.data(); } template inline typename QSharedPointer::difference_type operator-(const QSharedPointer &ptr1, X *ptr2) { return ptr1.data() - ptr2; } template inline typename QSharedPointer::difference_type operator-(T *ptr1, const QSharedPointer &ptr2) { return ptr1 - ptr2.data(); } template inline bool operator<(const QSharedPointer &ptr1, const QSharedPointer &ptr2) { return ptr1.data() < ptr2.data(); } template inline bool operator<(const QSharedPointer &ptr1, X *ptr2) { return ptr1.data() < ptr2; } template inline bool operator<(T *ptr1, const QSharedPointer &ptr2) { return ptr1 < ptr2.data(); } template inline uint qHash(const T *key); template inline uint qHash(const QSharedPointer &ptr) { return ::qHash(ptr.data()); } template inline QWeakPointer QSharedPointer::toWeakRef() const { return QWeakPointer(*this); } template inline void qSwap(QSharedPointer &p1, QSharedPointer &p2) { p1.swap(p2); } namespace std { template inline void swap(::QSharedPointer &p1, ::QSharedPointer &p2) { p1.swap(p2); } } namespace QtSharedPointer { template inline QSharedPointer copyAndSetPointer(X *ptr, const QSharedPointer &src) { QSharedPointer result; result.internalSet(src.d, ptr); return result; } } template inline QSharedPointer qSharedPointerCast(const QSharedPointer &src) { register X *ptr = static_cast(src.data()); return QtSharedPointer::copyAndSetPointer(ptr, src); } template inline QSharedPointer qSharedPointerCast(const QWeakPointer &src) { return qSharedPointerCast(src.toStrongRef()); } template inline QSharedPointer qSharedPointerDynamicCast(const QSharedPointer &src) { register X *ptr = dynamic_cast(src.data()); return QtSharedPointer::copyAndSetPointer(ptr, src); } template inline QSharedPointer qSharedPointerDynamicCast(const QWeakPointer &src) { return qSharedPointerDynamicCast(src.toStrongRef()); } template inline QSharedPointer qSharedPointerConstCast(const QSharedPointer &src) { register X *ptr = const_cast(src.data()); return QtSharedPointer::copyAndSetPointer(ptr, src); } template inline QSharedPointer qSharedPointerConstCast(const QWeakPointer &src) { return qSharedPointerConstCast(src.toStrongRef()); } template inline QWeakPointer qWeakPointerCast(const QSharedPointer &src) { return qSharedPointerCast(src).toWeakRef(); } template inline QSharedPointer qSharedPointerObjectCast(const QSharedPointer &src) { register X *ptr = qobject_cast(src.data()); return QtSharedPointer::copyAndSetPointer(ptr, src); } template inline QSharedPointer qSharedPointerObjectCast(const QWeakPointer &src) { return qSharedPointerObjectCast(src.toStrongRef()); } template inline QSharedPointer::Type> qobject_cast(const QSharedPointer &src) { return qSharedPointerObjectCast::Type, T>(src); } template inline QSharedPointer::Type> qobject_cast(const QWeakPointer &src) { return qSharedPointerObjectCast::Type, T>(src); } template class QTypeInfo > { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QWeakPointer)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QWeakPointer"; } }; template class QTypeInfo > { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QSharedPointer)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QSharedPointer"; } }; typedef QtValidLicenseForCoreModule QtCoreModule; class QDate { public: enum MonthNameType { DateFormat = 0, StandaloneFormat }; public: QDate() { jd = 0; } QDate(int y, int m, int d); bool isNull() const { return jd == 0; } bool isValid() const; int year() const; int month() const; int day() const; int dayOfWeek() const; int dayOfYear() const; int daysInMonth() const; int daysInYear() const; int weekNumber(int *yearNum = 0) const; static QString shortMonthName(int month); static QString shortMonthName(int month, MonthNameType type); static QString shortDayName(int weekday); static QString shortDayName(int weekday, MonthNameType type); static QString longMonthName(int month); static QString longMonthName(int month, MonthNameType type); static QString longDayName(int weekday); static QString longDayName(int weekday, MonthNameType type); QString toString(Qt::DateFormat f = Qt::TextDate) const; QString toString(const QString &format) const; bool setYMD(int y, int m, int d); bool setDate(int year, int month, int day); void getDate(int *year, int *month, int *day); QDate addDays(int days) const; QDate addMonths(int months) const; QDate addYears(int years) const; int daysTo(const QDate &) const; bool operator==(const QDate &other) const { return jd == other.jd; } bool operator!=(const QDate &other) const { return jd != other.jd; } bool operator<(const QDate &other) const { return jd < other.jd; } bool operator<=(const QDate &other) const { return jd <= other.jd; } bool operator>(const QDate &other) const { return jd > other.jd; } bool operator>=(const QDate &other) const { return jd >= other.jd; } static QDate currentDate(); static QDate fromString(const QString &s, Qt::DateFormat f = Qt::TextDate); static QDate fromString(const QString &s, const QString &format); static bool isValid(int y, int m, int d); static bool isLeapYear(int year); static uint gregorianToJulian(int y, int m, int d); static void julianToGregorian(uint jd, int &y, int &m, int &d); static inline QDate fromJulianDay(int jd) { QDate d; d.jd = jd; return d; } inline int toJulianDay() const { return jd; } private: uint jd; friend class QDateTime; friend class QDateTimePrivate; friend QDataStream &operator<<(QDataStream &, const QDate &); friend QDataStream &operator>>(QDataStream &, QDate &); }; template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QDate)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QDate"; } }; class QTime { public: QTime(): mds(NullTime) {} QTime(int h, int m, int s = 0, int ms = 0); bool isNull() const { return mds == NullTime; } bool isValid() const; int hour() const; int minute() const; int second() const; int msec() const; QString toString(Qt::DateFormat f = Qt::TextDate) const; QString toString(const QString &format) const; bool setHMS(int h, int m, int s, int ms = 0); QTime addSecs(int secs) const; int secsTo(const QTime &) const; QTime addMSecs(int ms) const; int msecsTo(const QTime &) const; bool operator==(const QTime &other) const { return mds == other.mds; } bool operator!=(const QTime &other) const { return mds != other.mds; } bool operator<(const QTime &other) const { return mds < other.mds; } bool operator<=(const QTime &other) const { return mds <= other.mds; } bool operator>(const QTime &other) const { return mds > other.mds; } bool operator>=(const QTime &other) const { return mds >= other.mds; } static QTime currentTime(); static QTime fromString(const QString &s, Qt::DateFormat f = Qt::TextDate); static QTime fromString(const QString &s, const QString &format); static bool isValid(int h, int m, int s, int ms = 0); void start(); int restart(); int elapsed() const; private: enum TimeFlag { NullTime = -1 }; inline int ds() const { return mds == -1 ? 0 : mds; } int mds; friend class QDateTime; friend class QDateTimePrivate; friend QDataStream &operator<<(QDataStream &, const QTime &); friend QDataStream &operator>>(QDataStream &, QTime &); }; template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QTime)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QTime"; } }; class QDateTimePrivate; class QDateTime { public: QDateTime(); explicit QDateTime(const QDate &); QDateTime(const QDate &, const QTime &, Qt::TimeSpec spec = Qt::LocalTime); QDateTime(const QDateTime &other); ~QDateTime(); QDateTime &operator=(const QDateTime &other); bool isNull() const; bool isValid() const; QDate date() const; QTime time() const; Qt::TimeSpec timeSpec() const; qint64 toMSecsSinceEpoch() const; uint toTime_t() const; void setDate(const QDate &date); void setTime(const QTime &time); void setTimeSpec(Qt::TimeSpec spec); void setMSecsSinceEpoch(qint64 msecs); void setTime_t(uint secsSince1Jan1970UTC); QString toString(Qt::DateFormat f = Qt::TextDate) const; QString toString(const QString &format) const; QDateTime addDays(int days) const; QDateTime addMonths(int months) const; QDateTime addYears(int years) const; QDateTime addSecs(int secs) const; QDateTime addMSecs(qint64 msecs) const; QDateTime toTimeSpec(Qt::TimeSpec spec) const; inline QDateTime toLocalTime() const { return toTimeSpec(Qt::LocalTime); } inline QDateTime toUTC() const { return toTimeSpec(Qt::UTC); } int daysTo(const QDateTime &) const; int secsTo(const QDateTime &) const; qint64 msecsTo(const QDateTime &) const; bool operator==(const QDateTime &other) const; inline bool operator!=(const QDateTime &other) const { return !(*this == other); } bool operator<(const QDateTime &other) const; inline bool operator<=(const QDateTime &other) const { return !(other < *this); } inline bool operator>(const QDateTime &other) const { return other < *this; } inline bool operator>=(const QDateTime &other) const { return !(*this < other); } void setUtcOffset(int seconds); int utcOffset() const; static QDateTime currentDateTime(); static QDateTime currentDateTimeUtc(); static QDateTime fromString(const QString &s, Qt::DateFormat f = Qt::TextDate); static QDateTime fromString(const QString &s, const QString &format); static QDateTime fromTime_t(uint secsSince1Jan1970UTC); static QDateTime fromMSecsSinceEpoch(qint64 msecs); static qint64 currentMSecsSinceEpoch(); private: friend class QDateTimePrivate; void detach(); QExplicitlySharedDataPointer d; friend QDataStream &operator<<(QDataStream &, const QDateTime &); friend QDataStream &operator>>(QDataStream &, QDateTime &); }; template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QDateTime)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QDateTime"; } }; QDataStream &operator<<(QDataStream &, const QDate &); QDataStream &operator>>(QDataStream &, QDate &); QDataStream &operator<<(QDataStream &, const QTime &); QDataStream &operator>>(QDataStream &, QTime &); QDataStream &operator<<(QDataStream &, const QDateTime &); QDataStream &operator>>(QDataStream &, QDateTime &); QDebug operator<<(QDebug, const QDate &); QDebug operator<<(QDebug, const QTime &); QDebug operator<<(QDebug, const QDateTime &); typedef QtValidLicenseForCoreModule QtCoreModule; class QEasingCurvePrivate; class QEasingCurve { public: static const QMetaObject staticMetaObject; private: public: enum Type { Linear, InQuad, OutQuad, InOutQuad, OutInQuad, InCubic, OutCubic, InOutCubic, OutInCubic, InQuart, OutQuart, InOutQuart, OutInQuart, InQuint, OutQuint, InOutQuint, OutInQuint, InSine, OutSine, InOutSine, OutInSine, InExpo, OutExpo, InOutExpo, OutInExpo, InCirc, OutCirc, InOutCirc, OutInCirc, InElastic, OutElastic, InOutElastic, OutInElastic, InBack, OutBack, InOutBack, OutInBack, InBounce, OutBounce, InOutBounce, OutInBounce, InCurve, OutCurve, SineCurve, CosineCurve, Custom, NCurveTypes }; QEasingCurve(Type type = Linear); QEasingCurve(const QEasingCurve &other); ~QEasingCurve(); QEasingCurve &operator=(const QEasingCurve &other); bool operator==(const QEasingCurve &other) const; inline bool operator!=(const QEasingCurve &other) const { return !(this->operator==(other)); } qreal amplitude() const; void setAmplitude(qreal amplitude); qreal period() const; void setPeriod(qreal period); qreal overshoot() const; void setOvershoot(qreal overshoot); Type type() const; void setType(Type type); typedef qreal (*EasingFunction)(qreal progress); void setCustomType(EasingFunction func); EasingFunction customType() const; qreal valueForProgress(qreal progress) const; private: QEasingCurvePrivate *d_ptr; friend QDebug operator<<(QDebug debug, const QEasingCurve &item); friend QDataStream &operator<<(QDataStream &, const QEasingCurve&); friend QDataStream &operator>>(QDataStream &, QEasingCurve &); }; QDebug operator<<(QDebug debug, const QEasingCurve &item); QDataStream &operator<<(QDataStream &, const QEasingCurve&); QDataStream &operator>>(QDataStream &, QEasingCurve &); typedef QtValidLicenseForCoreModule QtCoreModule; class QElapsedTimer { public: enum ClockType { SystemTime, MonotonicClock, TickCounter, MachAbsoluteTime, PerformanceCounter }; static ClockType clockType(); static bool isMonotonic(); void start(); qint64 restart(); void invalidate(); bool isValid() const; qint64 nsecsElapsed() const; qint64 elapsed() const; bool hasExpired(qint64 timeout) const; qint64 msecsSinceReference() const; qint64 msecsTo(const QElapsedTimer &other) const; qint64 secsTo(const QElapsedTimer &other) const; bool operator==(const QElapsedTimer &other) const { return t1 == other.t1 && t2 == other.t2; } bool operator!=(const QElapsedTimer &other) const { return !(*this == other); } friend bool operator<(const QElapsedTimer &v1, const QElapsedTimer &v2); private: qint64 t1; qint64 t2; }; typedef QtValidLicenseForCoreModule QtCoreModule; class QPoint { public: QPoint(); QPoint(int xpos, int ypos); bool isNull() const; int x() const; int y() const; void setX(int x); void setY(int y); int manhattanLength() const; int &rx(); int &ry(); QPoint &operator+=(const QPoint &p); QPoint &operator-=(const QPoint &p); QPoint &operator*=(float c); QPoint &operator*=(double c); QPoint &operator*=(int c); QPoint &operator/=(qreal c); friend inline bool operator==(const QPoint &, const QPoint &); friend inline bool operator!=(const QPoint &, const QPoint &); friend inline const QPoint operator+(const QPoint &, const QPoint &); friend inline const QPoint operator-(const QPoint &, const QPoint &); friend inline const QPoint operator*(const QPoint &, float); friend inline const QPoint operator*(float, const QPoint &); friend inline const QPoint operator*(const QPoint &, double); friend inline const QPoint operator*(double, const QPoint &); friend inline const QPoint operator*(const QPoint &, int); friend inline const QPoint operator*(int, const QPoint &); friend inline const QPoint operator-(const QPoint &); friend inline const QPoint operator/(const QPoint &, qreal); private: friend class QTransform; int xp; int yp; }; template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QPoint)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QPoint"; } }; QDataStream &operator<<(QDataStream &, const QPoint &); QDataStream &operator>>(QDataStream &, QPoint &); inline QPoint::QPoint() { xp=0; yp=0; } inline QPoint::QPoint(int xpos, int ypos) { xp = xpos; yp = ypos; } inline bool QPoint::isNull() const { return xp == 0 && yp == 0; } inline int QPoint::x() const { return xp; } inline int QPoint::y() const { return yp; } inline void QPoint::setX(int xpos) { xp = xpos; } inline void QPoint::setY(int ypos) { yp = ypos; } inline int &QPoint::rx() { return xp; } inline int &QPoint::ry() { return yp; } inline QPoint &QPoint::operator+=(const QPoint &p) { xp+=p.xp; yp+=p.yp; return *this; } inline QPoint &QPoint::operator-=(const QPoint &p) { xp-=p.xp; yp-=p.yp; return *this; } inline QPoint &QPoint::operator*=(float c) { xp = qRound(xp*c); yp = qRound(yp*c); return *this; } inline QPoint &QPoint::operator*=(double c) { xp = qRound(xp*c); yp = qRound(yp*c); return *this; } inline QPoint &QPoint::operator*=(int c) { xp = xp*c; yp = yp*c; return *this; } inline bool operator==(const QPoint &p1, const QPoint &p2) { return p1.xp == p2.xp && p1.yp == p2.yp; } inline bool operator!=(const QPoint &p1, const QPoint &p2) { return p1.xp != p2.xp || p1.yp != p2.yp; } inline const QPoint operator+(const QPoint &p1, const QPoint &p2) { return QPoint(p1.xp+p2.xp, p1.yp+p2.yp); } inline const QPoint operator-(const QPoint &p1, const QPoint &p2) { return QPoint(p1.xp-p2.xp, p1.yp-p2.yp); } inline const QPoint operator*(const QPoint &p, float c) { return QPoint(qRound(p.xp*c), qRound(p.yp*c)); } inline const QPoint operator*(const QPoint &p, double c) { return QPoint(qRound(p.xp*c), qRound(p.yp*c)); } inline const QPoint operator*(const QPoint &p, int c) { return QPoint(p.xp*c, p.yp*c); } inline const QPoint operator*(float c, const QPoint &p) { return QPoint(qRound(p.xp*c), qRound(p.yp*c)); } inline const QPoint operator*(double c, const QPoint &p) { return QPoint(qRound(p.xp*c), qRound(p.yp*c)); } inline const QPoint operator*(int c, const QPoint &p) { return QPoint(p.xp*c, p.yp*c); } inline const QPoint operator-(const QPoint &p) { return QPoint(-p.xp, -p.yp); } inline QPoint &QPoint::operator/=(qreal c) { xp = qRound(xp/c); yp = qRound(yp/c); return *this; } inline const QPoint operator/(const QPoint &p, qreal c) { return QPoint(qRound(p.xp/c), qRound(p.yp/c)); } QDebug operator<<(QDebug, const QPoint &); class QPointF { public: QPointF(); QPointF(const QPoint &p); QPointF(qreal xpos, qreal ypos); qreal manhattanLength() const; bool isNull() const; qreal x() const; qreal y() const; void setX(qreal x); void setY(qreal y); qreal &rx(); qreal &ry(); QPointF &operator+=(const QPointF &p); QPointF &operator-=(const QPointF &p); QPointF &operator*=(qreal c); QPointF &operator/=(qreal c); friend inline bool operator==(const QPointF &, const QPointF &); friend inline bool operator!=(const QPointF &, const QPointF &); friend inline const QPointF operator+(const QPointF &, const QPointF &); friend inline const QPointF operator-(const QPointF &, const QPointF &); friend inline const QPointF operator*(qreal, const QPointF &); friend inline const QPointF operator*(const QPointF &, qreal); friend inline const QPointF operator-(const QPointF &); friend inline const QPointF operator/(const QPointF &, qreal); QPoint toPoint() const; private: friend class QMatrix; friend class QTransform; qreal xp; qreal yp; }; template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QPointF)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QPointF"; } }; QDataStream &operator<<(QDataStream &, const QPointF &); QDataStream &operator>>(QDataStream &, QPointF &); inline QPointF::QPointF() : xp(0), yp(0) { } inline QPointF::QPointF(qreal xpos, qreal ypos) : xp(xpos), yp(ypos) { } inline QPointF::QPointF(const QPoint &p) : xp(p.x()), yp(p.y()) { } inline bool QPointF::isNull() const { return qIsNull(xp) && qIsNull(yp); } inline qreal QPointF::x() const { return xp; } inline qreal QPointF::y() const { return yp; } inline void QPointF::setX(qreal xpos) { xp = xpos; } inline void QPointF::setY(qreal ypos) { yp = ypos; } inline qreal &QPointF::rx() { return xp; } inline qreal &QPointF::ry() { return yp; } inline QPointF &QPointF::operator+=(const QPointF &p) { xp+=p.xp; yp+=p.yp; return *this; } inline QPointF &QPointF::operator-=(const QPointF &p) { xp-=p.xp; yp-=p.yp; return *this; } inline QPointF &QPointF::operator*=(qreal c) { xp*=c; yp*=c; return *this; } inline bool operator==(const QPointF &p1, const QPointF &p2) { return qFuzzyIsNull(p1.xp - p2.xp) && qFuzzyIsNull(p1.yp - p2.yp); } inline bool operator!=(const QPointF &p1, const QPointF &p2) { return !qFuzzyIsNull(p1.xp - p2.xp) || !qFuzzyIsNull(p1.yp - p2.yp); } inline const QPointF operator+(const QPointF &p1, const QPointF &p2) { return QPointF(p1.xp+p2.xp, p1.yp+p2.yp); } inline const QPointF operator-(const QPointF &p1, const QPointF &p2) { return QPointF(p1.xp-p2.xp, p1.yp-p2.yp); } inline const QPointF operator*(const QPointF &p, qreal c) { return QPointF(p.xp*c, p.yp*c); } inline const QPointF operator*(qreal c, const QPointF &p) { return QPointF(p.xp*c, p.yp*c); } inline const QPointF operator-(const QPointF &p) { return QPointF(-p.xp, -p.yp); } inline QPointF &QPointF::operator/=(qreal c) { xp/=c; yp/=c; return *this; } inline const QPointF operator/(const QPointF &p, qreal c) { return QPointF(p.xp/c, p.yp/c); } inline QPoint QPointF::toPoint() const { return QPoint(qRound(xp), qRound(yp)); } QDebug operator<<(QDebug d, const QPointF &p); typedef QtValidLicenseForCoreModule QtCoreModule; class QLine { public: inline QLine(); inline QLine(const QPoint &pt1, const QPoint &pt2); inline QLine(int x1, int y1, int x2, int y2); inline bool isNull() const; inline QPoint p1() const; inline QPoint p2() const; inline int x1() const; inline int y1() const; inline int x2() const; inline int y2() const; inline int dx() const; inline int dy() const; inline void translate(const QPoint &p); inline void translate(int dx, int dy); inline QLine translated(const QPoint &p) const; inline QLine translated(int dx, int dy) const; inline void setP1(const QPoint &p1); inline void setP2(const QPoint &p2); inline void setPoints(const QPoint &p1, const QPoint &p2); inline void setLine(int x1, int y1, int x2, int y2); inline bool operator==(const QLine &d) const; inline bool operator!=(const QLine &d) const { return !(*this == d); } private: QPoint pt1, pt2; }; template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QLine)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QLine"; } }; inline QLine::QLine() { } inline QLine::QLine(const QPoint &pt1_, const QPoint &pt2_) : pt1(pt1_), pt2(pt2_) { } inline QLine::QLine(int x1pos, int y1pos, int x2pos, int y2pos) : pt1(QPoint(x1pos, y1pos)), pt2(QPoint(x2pos, y2pos)) { } inline bool QLine::isNull() const { return pt1 == pt2; } inline int QLine::x1() const { return pt1.x(); } inline int QLine::y1() const { return pt1.y(); } inline int QLine::x2() const { return pt2.x(); } inline int QLine::y2() const { return pt2.y(); } inline QPoint QLine::p1() const { return pt1; } inline QPoint QLine::p2() const { return pt2; } inline int QLine::dx() const { return pt2.x() - pt1.x(); } inline int QLine::dy() const { return pt2.y() - pt1.y(); } inline void QLine::translate(const QPoint &point) { pt1 += point; pt2 += point; } inline void QLine::translate(int adx, int ady) { this->translate(QPoint(adx, ady)); } inline QLine QLine::translated(const QPoint &p) const { return QLine(pt1 + p, pt2 + p); } inline QLine QLine::translated(int adx, int ady) const { return translated(QPoint(adx, ady)); } inline void QLine::setP1(const QPoint &aP1) { pt1 = aP1; } inline void QLine::setP2(const QPoint &aP2) { pt2 = aP2; } inline void QLine::setPoints(const QPoint &aP1, const QPoint &aP2) { pt1 = aP1; pt2 = aP2; } inline void QLine::setLine(int aX1, int aY1, int aX2, int aY2) { pt1 = QPoint(aX1, aY1); pt2 = QPoint(aX2, aY2); } inline bool QLine::operator==(const QLine &d) const { return pt1 == d.pt1 && pt2 == d.pt2; } QDebug operator<<(QDebug d, const QLine &p); QDataStream &operator<<(QDataStream &, const QLine &); QDataStream &operator>>(QDataStream &, QLine &); class QLineF { public: enum IntersectType { NoIntersection, BoundedIntersection, UnboundedIntersection }; inline QLineF(); inline QLineF(const QPointF &pt1, const QPointF &pt2); inline QLineF(qreal x1, qreal y1, qreal x2, qreal y2); inline QLineF(const QLine &line) : pt1(line.p1()), pt2(line.p2()) { } static QLineF fromPolar(qreal length, qreal angle); bool isNull() const; inline QPointF p1() const; inline QPointF p2() const; inline qreal x1() const; inline qreal y1() const; inline qreal x2() const; inline qreal y2() const; inline qreal dx() const; inline qreal dy() const; qreal length() const; void setLength(qreal len); qreal angle() const; void setAngle(qreal angle); qreal angleTo(const QLineF &l) const; QLineF unitVector() const; QLineF normalVector() const; IntersectType intersect(const QLineF &l, QPointF *intersectionPoint) const; qreal angle(const QLineF &l) const; QPointF pointAt(qreal t) const; inline void translate(const QPointF &p); inline void translate(qreal dx, qreal dy); inline QLineF translated(const QPointF &p) const; inline QLineF translated(qreal dx, qreal dy) const; inline void setP1(const QPointF &p1); inline void setP2(const QPointF &p2); inline void setPoints(const QPointF &p1, const QPointF &p2); inline void setLine(qreal x1, qreal y1, qreal x2, qreal y2); inline bool operator==(const QLineF &d) const; inline bool operator!=(const QLineF &d) const { return !(*this == d); } QLine toLine() const; private: QPointF pt1, pt2; }; template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QLineF)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QLineF"; } }; inline QLineF::QLineF() { } inline QLineF::QLineF(const QPointF &apt1, const QPointF &apt2) : pt1(apt1), pt2(apt2) { } inline QLineF::QLineF(qreal x1pos, qreal y1pos, qreal x2pos, qreal y2pos) : pt1(x1pos, y1pos), pt2(x2pos, y2pos) { } inline qreal QLineF::x1() const { return pt1.x(); } inline qreal QLineF::y1() const { return pt1.y(); } inline qreal QLineF::x2() const { return pt2.x(); } inline qreal QLineF::y2() const { return pt2.y(); } inline QPointF QLineF::p1() const { return pt1; } inline QPointF QLineF::p2() const { return pt2; } inline qreal QLineF::dx() const { return pt2.x() - pt1.x(); } inline qreal QLineF::dy() const { return pt2.y() - pt1.y(); } inline QLineF QLineF::normalVector() const { return QLineF(p1(), p1() + QPointF(dy(), -dx())); } inline void QLineF::translate(const QPointF &point) { pt1 += point; pt2 += point; } inline void QLineF::translate(qreal adx, qreal ady) { this->translate(QPointF(adx, ady)); } inline QLineF QLineF::translated(const QPointF &p) const { return QLineF(pt1 + p, pt2 + p); } inline QLineF QLineF::translated(qreal adx, qreal ady) const { return translated(QPointF(adx, ady)); } inline void QLineF::setLength(qreal len) { if (isNull()) return; QLineF v = unitVector(); pt2 = QPointF(pt1.x() + v.dx() * len, pt1.y() + v.dy() * len); } inline QPointF QLineF::pointAt(qreal t) const { qreal vx = pt2.x() - pt1.x(); qreal vy = pt2.y() - pt1.y(); return QPointF(pt1.x() + vx * t, pt1.y() + vy * t); } inline QLine QLineF::toLine() const { return QLine(pt1.toPoint(), pt2.toPoint()); } inline void QLineF::setP1(const QPointF &aP1) { pt1 = aP1; } inline void QLineF::setP2(const QPointF &aP2) { pt2 = aP2; } inline void QLineF::setPoints(const QPointF &aP1, const QPointF &aP2) { pt1 = aP1; pt2 = aP2; } inline void QLineF::setLine(qreal aX1, qreal aY1, qreal aX2, qreal aY2) { pt1 = QPointF(aX1, aY1); pt2 = QPointF(aX2, aY2); } inline bool QLineF::operator==(const QLineF &d) const { return pt1 == d.pt1 && pt2 == d.pt2; } QDebug operator<<(QDebug d, const QLineF &p); QDataStream &operator<<(QDataStream &, const QLineF &); QDataStream &operator>>(QDataStream &, QLineF &); typedef QtValidLicenseForCoreModule QtCoreModule; struct QLinkedListData { QLinkedListData *n, *p; QBasicAtomicInt ref; int size; uint sharable : 1; static QLinkedListData shared_null; }; template struct QLinkedListNode { inline QLinkedListNode(const T &arg): t(arg) { } QLinkedListNode *n, *p; T t; }; template class QLinkedList { typedef QLinkedListNode Node; union { QLinkedListData *d; QLinkedListNode *e; }; public: inline QLinkedList() : d(&QLinkedListData::shared_null) { d->ref.ref(); } inline QLinkedList(const QLinkedList &l) : d(l.d) { d->ref.ref(); if (!d->sharable) detach(); } ~QLinkedList(); QLinkedList &operator=(const QLinkedList &); inline void swap(QLinkedList &other) { qSwap(d, other.d); } bool operator==(const QLinkedList &l) const; inline bool operator!=(const QLinkedList &l) const { return !(*this == l); } inline int size() const { return d->size; } inline void detach() { if (d->ref != 1) detach_helper(); } inline bool isDetached() const { return d->ref == 1; } inline void setSharable(bool sharable) { if (!sharable) detach(); d->sharable = sharable; } inline bool isSharedWith(const QLinkedList &other) const { return d == other.d; } inline bool isEmpty() const { return d->size == 0; } void clear(); void append(const T &); void prepend(const T &); T takeFirst(); T takeLast(); int removeAll(const T &t); bool removeOne(const T &t); bool contains(const T &t) const; int count(const T &t) const; class const_iterator; class iterator { public: typedef std::bidirectional_iterator_tag iterator_category; typedef qptrdiff difference_type; typedef T value_type; typedef T *pointer; typedef T &reference; Node *i; inline iterator() : i(0) {} inline iterator(Node *n) : i(n) {} inline iterator(const iterator &o) : i(o.i) {} inline iterator &operator=(const iterator &o) { i = o.i; return *this; } inline T &operator*() const { return i->t; } inline T *operator->() const { return &i->t; } inline bool operator==(const iterator &o) const { return i == o.i; } inline bool operator!=(const iterator &o) const { return i != o.i; } inline bool operator==(const const_iterator &o) const { return i == o.i; } inline bool operator!=(const const_iterator &o) const { return i != o.i; } inline iterator &operator++() { i = i->n; return *this; } inline iterator operator++(int) { Node *n = i; i = i->n; return n; } inline iterator &operator--() { i = i->p; return *this; } inline iterator operator--(int) { Node *n = i; i = i->p; return n; } inline iterator operator+(int j) const { Node *n = i; if (j > 0) while (j--) n = n->n; else while (j++) n = n->p; return n; } inline iterator operator-(int j) const { return operator+(-j); } inline iterator &operator+=(int j) { return *this = *this + j; } inline iterator &operator-=(int j) { return *this = *this - j; } }; friend class iterator; class const_iterator { public: typedef std::bidirectional_iterator_tag iterator_category; typedef qptrdiff difference_type; typedef T value_type; typedef const T *pointer; typedef const T &reference; Node *i; inline const_iterator() : i(0) {} inline const_iterator(Node *n) : i(n) {} inline const_iterator(const const_iterator &o) : i(o.i){} inline const_iterator(iterator ci) : i(ci.i){} inline const_iterator &operator=(const const_iterator &o) { i = o.i; return *this; } inline const T &operator*() const { return i->t; } inline const T *operator->() const { return &i->t; } inline bool operator==(const const_iterator &o) const { return i == o.i; } inline bool operator!=(const const_iterator &o) const { return i != o.i; } inline const_iterator &operator++() { i = i->n; return *this; } inline const_iterator operator++(int) { Node *n = i; i = i->n; return n; } inline const_iterator &operator--() { i = i->p; return *this; } inline const_iterator operator--(int) { Node *n = i; i = i->p; return n; } inline const_iterator operator+(int j) const { Node *n = i; if (j > 0) while (j--) n = n->n; else while (j++) n = n->p; return n; } inline const_iterator operator-(int j) const { return operator+(-j); } inline const_iterator &operator+=(int j) { return *this = *this + j; } inline const_iterator &operator-=(int j) { return *this = *this - j; } }; friend class const_iterator; inline iterator begin() { detach(); return e->n; } inline const_iterator begin() const { return e->n; } inline const_iterator constBegin() const { return e->n; } inline iterator end() { detach(); return e; } inline const_iterator end() const { return e; } inline const_iterator constEnd() const { return e; } iterator insert(iterator before, const T &t); iterator erase(iterator pos); iterator erase(iterator first, iterator last); typedef iterator Iterator; typedef const_iterator ConstIterator; inline int count() const { return d->size; } inline T& first() { qt_noop(); return *begin(); } inline const T& first() const { qt_noop(); return *begin(); } T& last() { qt_noop(); return *(--end()); } const T& last() const { qt_noop(); return *(--end()); } inline void removeFirst() { qt_noop(); erase(begin()); } inline void removeLast() { qt_noop(); erase(--end()); } inline bool startsWith(const T &t) const { return !isEmpty() && first() == t; } inline bool endsWith(const T &t) const { return !isEmpty() && last() == t; } inline void push_back(const T &t) { append(t); } inline void push_front(const T &t) { prepend(t); } inline T& front() { return first(); } inline const T& front() const { return first(); } inline T& back() { return last(); } inline const T& back() const { return last(); } inline void pop_front() { removeFirst(); } inline void pop_back() { removeLast(); } inline bool empty() const { return isEmpty(); } typedef int size_type; typedef T value_type; typedef value_type *pointer; typedef const value_type *const_pointer; typedef value_type &reference; typedef const value_type &const_reference; typedef qptrdiff difference_type; static inline QLinkedList fromStdList(const std::list &list) { QLinkedList tmp; qCopy(list.begin(), list.end(), std::back_inserter(tmp)); return tmp; } inline std::list toStdList() const { std::list tmp; qCopy(constBegin(), constEnd(), std::back_inserter(tmp)); return tmp; } QLinkedList &operator+=(const QLinkedList &l); QLinkedList operator+(const QLinkedList &l) const; inline QLinkedList &operator+=(const T &t) { append(t); return *this; } inline QLinkedList &operator<< (const T &t) { append(t); return *this; } inline QLinkedList &operator<<(const QLinkedList &l) { *this += l; return *this; } private: void detach_helper(); void free(QLinkedListData*); }; template inline QLinkedList::~QLinkedList() { if (!d) return; if (!d->ref.deref()) free(d); } template void QLinkedList::detach_helper() { union { QLinkedListData *d; Node *e; } x; x.d = new QLinkedListData; x.d->ref = 1; x.d->size = d->size; x.d->sharable = true; Node *original = e->n; Node *copy = x.e; while (original != e) { try { copy->n = new Node(original->t); copy->n->p = copy; original = original->n; copy = copy->n; } catch (...) { copy->n = x.e; free(x.d); throw; } } copy->n = x.e; x.e->p = copy; if (!d->ref.deref()) free(d); d = x.d; } template void QLinkedList::free(QLinkedListData *x) { Node *y = reinterpret_cast(x); Node *i = y->n; if (x->ref == 0) { while(i != y) { Node *n = i; i = i->n; delete n; } delete x; } } template void QLinkedList::clear() { *this = QLinkedList(); } template QLinkedList &QLinkedList::operator=(const QLinkedList &l) { if (d != l.d) { QLinkedListData *o = l.d; o->ref.ref(); if (!d->ref.deref()) free(d); d = o; if (!d->sharable) detach_helper(); } return *this; } template bool QLinkedList::operator== (const QLinkedList &l) const { if (d->size != l.d->size) return false; if (e == l.e) return true; Node *i = e->n; Node *il = l.e->n; while (i != e) { if (! (i->t == il->t)) return false; i = i->n; il = il->n; } return true; } template void QLinkedList::append(const T &t) { detach(); Node *i = new Node(t); i->n = e; i->p = e->p; i->p->n = i; e->p = i; d->size++; } template void QLinkedList::prepend(const T &t) { detach(); Node *i = new Node(t); i->n = e->n; i->p = e; i->n->p = i; e->n = i; d->size++; } template int QLinkedList::removeAll(const T &_t) { detach(); const T t = _t; Node *i = e->n; int c = 0; while (i != e) { if (i->t == t) { Node *n = i; i->n->p = i->p; i->p->n = i->n; i = i->n; delete n; c++; } else { i = i->n; } } d->size-=c; return c; } template bool QLinkedList::removeOne(const T &_t) { detach(); iterator it = qFind(begin(), end(), _t); if (it != end()) { erase(it); return true; } return false; } template inline T QLinkedList::takeFirst() { T t = first(); removeFirst(); return t; } template inline T QLinkedList::takeLast() { T t = last(); removeLast(); return t; } template bool QLinkedList::contains(const T &t) const { Node *i = e; while ((i = i->n) != e) if (i->t == t) return true; return false; } template int QLinkedList::count(const T &t) const { Node *i = e; int c = 0; while ((i = i->n) != e) if (i->t == t) c++; return c; } template typename QLinkedList::iterator QLinkedList::insert(iterator before, const T &t) { Node *i = before.i; Node *m = new Node(t); m->n = i; m->p = i->p; m->p->n = m; i->p = m; d->size++; return m; } template typename QLinkedList::iterator QLinkedList::erase(typename QLinkedList::iterator afirst, typename QLinkedList::iterator alast) { while (afirst != alast) erase(afirst++); return alast; } template typename QLinkedList::iterator QLinkedList::erase(iterator pos) { detach(); Node *i = pos.i; if (i != e) { Node *n = i; i->n->p = i->p; i->p->n = i->n; i = i->n; delete n; d->size--; } return i; } template QLinkedList &QLinkedList::operator+=(const QLinkedList &l) { detach(); int n = l.d->size; d->size += n; Node *original = l.e->n; while (n--) { try { Node *copy = new Node(original->t); original = original->n; copy->n = e; copy->p = e->p; copy->p->n = copy; e->p = copy; } catch (...) { while (n++size) removeLast(); throw; } } return *this; } template QLinkedList QLinkedList::operator+(const QLinkedList &l) const { QLinkedList n = *this; n += l; return n; } template class QLinkedListIterator { typedef typename QLinkedList::const_iterator const_iterator; QLinkedList c; const_iterator i; public: inline QLinkedListIterator(const QLinkedList &container) : c(container), i(c.constBegin()) {} inline QLinkedListIterator &operator=(const QLinkedList &container) { c = container; i = c.constBegin(); return *this; } inline void toFront() { i = c.constBegin(); } inline void toBack() { i = c.constEnd(); } inline bool hasNext() const { return i != c.constEnd(); } inline const T &next() { return *i++; } inline const T &peekNext() const { return *i; } inline bool hasPrevious() const { return i != c.constBegin(); } inline const T &previous() { return *--i; } inline const T &peekPrevious() const { const_iterator p = i; return *--p; } inline bool findNext(const T &t) { while (i != c.constEnd()) if (*i++ == t) return true; return false; } inline bool findPrevious(const T &t) { while (i != c.constBegin()) if (*(--i) == t) return true; return false; } }; template class QMutableLinkedListIterator { typedef typename QLinkedList::iterator iterator; typedef typename QLinkedList::const_iterator const_iterator; QLinkedList *c; iterator i, n; inline bool item_exists() const { return const_iterator(n) != c->constEnd(); } public: inline QMutableLinkedListIterator(QLinkedList &container) : c(&container) { c->setSharable(false); i = c->begin(); n = c->end(); } inline ~QMutableLinkedListIterator() { c->setSharable(true); } inline QMutableLinkedListIterator &operator=(QLinkedList &container) { c->setSharable(true); c = &container; c->setSharable(false); i = c->begin(); n = c->end(); return *this; } inline void toFront() { i = c->begin(); n = c->end(); } inline void toBack() { i = c->end(); n = i; } inline bool hasNext() const { return c->constEnd() != const_iterator(i); } inline T &next() { n = i++; return *n; } inline T &peekNext() const { return *i; } inline bool hasPrevious() const { return c->constBegin() != const_iterator(i); } inline T &previous() { n = --i; return *n; } inline T &peekPrevious() const { iterator p = i; return *--p; } inline void remove() { if (c->constEnd() != const_iterator(n)) { i = c->erase(n); n = c->end(); } } inline void setValue(const T &t) const { if (c->constEnd() != const_iterator(n)) *n = t; } inline T &value() { qt_noop(); return *n; } inline const T &value() const { qt_noop(); return *n; } inline void insert(const T &t) { n = i = c->insert(i, t); ++i; } inline bool findNext(const T &t) { while (c->constEnd() != const_iterator(n = i)) if (*i++ == t) return true; return false; } inline bool findPrevious(const T &t) { while (c->constBegin() != const_iterator(i)) if (*(n = --i) == t) return true; n = c->end(); return false; } }; typedef QtValidLicenseForCoreModule QtCoreModule; class QMetaType { public: enum Type { Void = 0, Bool = 1, Int = 2, UInt = 3, LongLong = 4, ULongLong = 5, Double = 6, QChar = 7, QVariantMap = 8, QVariantList = 9, QString = 10, QStringList = 11, QByteArray = 12, QBitArray = 13, QDate = 14, QTime = 15, QDateTime = 16, QUrl = 17, QLocale = 18, QRect = 19, QRectF = 20, QSize = 21, QSizeF = 22, QLine = 23, QLineF = 24, QPoint = 25, QPointF = 26, QRegExp = 27, QVariantHash = 28, QEasingCurve = 29, LastCoreType = QEasingCurve, FirstGuiType = 63 , QFont = 64, QPixmap = 65, QBrush = 66, QColor = 67, QPalette = 68, QIcon = 69, QImage = 70, QPolygon = 71, QRegion = 72, QBitmap = 73, QCursor = 74, QSizePolicy = 75, QKeySequence = 76, QPen = 77, QTextLength = 78, QTextFormat = 79, QMatrix = 80, QTransform = 81, QMatrix4x4 = 82, QVector2D = 83, QVector3D = 84, QVector4D = 85, QQuaternion = 86, LastGuiType = QQuaternion, FirstCoreExtType = 128 , VoidStar = 128, Long = 129, Short = 130, Char = 131, ULong = 132, UShort = 133, UChar = 134, Float = 135, QObjectStar = 136, QWidgetStar = 137, QVariant = 138, LastCoreExtType = QVariant, QReal = Double, User = 256 }; typedef void (*Destructor)(void *); typedef void *(*Constructor)(const void *); typedef void (*SaveOperator)(QDataStream &, const void *); typedef void (*LoadOperator)(QDataStream &, void *); static void registerStreamOperators(const char *typeName, SaveOperator saveOp, LoadOperator loadOp); static void registerStreamOperators(int type, SaveOperator saveOp, LoadOperator loadOp); static int registerType(const char *typeName, Destructor destructor, Constructor constructor); static int registerTypedef(const char *typeName, int aliasId); static int type(const char *typeName); static const char *typeName(int type); static bool isRegistered(int type); static void *construct(int type, const void *copy = 0); static void destroy(int type, void *data); static void unregisterType(const char *typeName); static bool save(QDataStream &stream, int type, const void *data); static bool load(QDataStream &stream, int type, void *data); }; template void qMetaTypeDeleteHelper(T *t) { delete t; } template void *qMetaTypeConstructHelper(const T *t) { if (!t) return new T(); return new T(*static_cast(t)); } template void qMetaTypeSaveHelper(QDataStream &stream, const T *t) { stream << *t; } template void qMetaTypeLoadHelper(QDataStream &stream, T *t) { stream >> *t; } template struct QMetaTypeId { enum { Defined = 0 }; }; template struct QMetaTypeId2 { enum { Defined = QMetaTypeId::Defined }; static inline int qt_metatype_id() { return QMetaTypeId::qt_metatype_id(); } }; namespace QtPrivate { template ::Defined> struct QMetaTypeIdHelper { static inline int qt_metatype_id() { return QMetaTypeId2::qt_metatype_id(); } }; template struct QMetaTypeIdHelper { static inline int qt_metatype_id() { return -1; } }; } template int qRegisterMetaType(const char *typeName , T * dummy = 0 ) { const int typedefOf = dummy ? -1 : QtPrivate::QMetaTypeIdHelper::qt_metatype_id(); if (typedefOf != -1) return QMetaType::registerTypedef(typeName, typedefOf); typedef void*(*ConstructPtr)(const T*); ConstructPtr cptr = qMetaTypeConstructHelper; typedef void(*DeletePtr)(T*); DeletePtr dptr = qMetaTypeDeleteHelper; return QMetaType::registerType(typeName, reinterpret_cast(dptr), reinterpret_cast(cptr)); } template void qRegisterMetaTypeStreamOperators(const char *typeName , T * = 0 ) { typedef void(*SavePtr)(QDataStream &, const T *); typedef void(*LoadPtr)(QDataStream &, T *); SavePtr sptr = qMetaTypeSaveHelper; LoadPtr lptr = qMetaTypeLoadHelper; qRegisterMetaType(typeName); QMetaType::registerStreamOperators(typeName, reinterpret_cast(sptr), reinterpret_cast(lptr)); } template inline int qMetaTypeId( T * = 0 ) { return QMetaTypeId2::qt_metatype_id(); } template inline int qRegisterMetaType( T * dummy = 0 ) { return qMetaTypeId(dummy); } template inline int qRegisterMetaTypeStreamOperators() { typedef void(*SavePtr)(QDataStream &, const T *); typedef void(*LoadPtr)(QDataStream &, T *); SavePtr sptr = qMetaTypeSaveHelper; LoadPtr lptr = qMetaTypeLoadHelper; register int id = qMetaTypeId(); QMetaType::registerStreamOperators(id, reinterpret_cast(sptr), reinterpret_cast(lptr)); return id; } class QString; class QByteArray; class QChar; class QStringList; class QBitArray; class QDate; class QTime; class QDateTime; class QUrl; class QLocale; class QRect; class QRectF; class QSize; class QSizeF; class QLine; class QLineF; class QPoint; class QPointF; class QRegExp; class QEasingCurve; class QWidget; class QObject; class QFont; class QPixmap; class QBrush; class QColor; class QPalette; class QIcon; class QImage; class QPolygon; class QRegion; class QBitmap; class QCursor; class QSizePolicy; class QKeySequence; class QPen; class QTextLength; class QTextFormat; class QMatrix; class QTransform; class QMatrix4x4; class QVector2D; class QVector3D; class QVector4D; class QQuaternion; class QVariant; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QString }; static inline int qt_metatype_id() { return QMetaType::QString; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::Int }; static inline int qt_metatype_id() { return QMetaType::Int; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::UInt }; static inline int qt_metatype_id() { return QMetaType::UInt; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::Bool }; static inline int qt_metatype_id() { return QMetaType::Bool; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::Double }; static inline int qt_metatype_id() { return QMetaType::Double; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QByteArray }; static inline int qt_metatype_id() { return QMetaType::QByteArray; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QChar }; static inline int qt_metatype_id() { return QMetaType::QChar; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::Long }; static inline int qt_metatype_id() { return QMetaType::Long; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::Short }; static inline int qt_metatype_id() { return QMetaType::Short; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::Char }; static inline int qt_metatype_id() { return QMetaType::Char; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::Char }; static inline int qt_metatype_id() { return QMetaType::Char; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::ULong }; static inline int qt_metatype_id() { return QMetaType::ULong; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::UShort }; static inline int qt_metatype_id() { return QMetaType::UShort; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::UChar }; static inline int qt_metatype_id() { return QMetaType::UChar; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::Float }; static inline int qt_metatype_id() { return QMetaType::Float; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QObjectStar }; static inline int qt_metatype_id() { return QMetaType::QObjectStar; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QWidgetStar }; static inline int qt_metatype_id() { return QMetaType::QWidgetStar; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::VoidStar }; static inline int qt_metatype_id() { return QMetaType::VoidStar; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::LongLong }; static inline int qt_metatype_id() { return QMetaType::LongLong; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::ULongLong }; static inline int qt_metatype_id() { return QMetaType::ULongLong; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QStringList }; static inline int qt_metatype_id() { return QMetaType::QStringList; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QBitArray }; static inline int qt_metatype_id() { return QMetaType::QBitArray; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QDate }; static inline int qt_metatype_id() { return QMetaType::QDate; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QTime }; static inline int qt_metatype_id() { return QMetaType::QTime; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QDateTime }; static inline int qt_metatype_id() { return QMetaType::QDateTime; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QUrl }; static inline int qt_metatype_id() { return QMetaType::QUrl; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QLocale }; static inline int qt_metatype_id() { return QMetaType::QLocale; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QRect }; static inline int qt_metatype_id() { return QMetaType::QRect; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QRectF }; static inline int qt_metatype_id() { return QMetaType::QRectF; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QSize }; static inline int qt_metatype_id() { return QMetaType::QSize; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QSizeF }; static inline int qt_metatype_id() { return QMetaType::QSizeF; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QLine }; static inline int qt_metatype_id() { return QMetaType::QLine; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QLineF }; static inline int qt_metatype_id() { return QMetaType::QLineF; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QPoint }; static inline int qt_metatype_id() { return QMetaType::QPoint; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QPointF }; static inline int qt_metatype_id() { return QMetaType::QPointF; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QRegExp }; static inline int qt_metatype_id() { return QMetaType::QRegExp; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QEasingCurve }; static inline int qt_metatype_id() { return QMetaType::QEasingCurve; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QFont }; static inline int qt_metatype_id() { return QMetaType::QFont; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QPixmap }; static inline int qt_metatype_id() { return QMetaType::QPixmap; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QBrush }; static inline int qt_metatype_id() { return QMetaType::QBrush; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QColor }; static inline int qt_metatype_id() { return QMetaType::QColor; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QPalette }; static inline int qt_metatype_id() { return QMetaType::QPalette; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QIcon }; static inline int qt_metatype_id() { return QMetaType::QIcon; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QImage }; static inline int qt_metatype_id() { return QMetaType::QImage; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QPolygon }; static inline int qt_metatype_id() { return QMetaType::QPolygon; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QRegion }; static inline int qt_metatype_id() { return QMetaType::QRegion; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QBitmap }; static inline int qt_metatype_id() { return QMetaType::QBitmap; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QCursor }; static inline int qt_metatype_id() { return QMetaType::QCursor; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QSizePolicy }; static inline int qt_metatype_id() { return QMetaType::QSizePolicy; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QKeySequence }; static inline int qt_metatype_id() { return QMetaType::QKeySequence; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QPen }; static inline int qt_metatype_id() { return QMetaType::QPen; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QTextLength }; static inline int qt_metatype_id() { return QMetaType::QTextLength; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QTextFormat }; static inline int qt_metatype_id() { return QMetaType::QTextFormat; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QMatrix }; static inline int qt_metatype_id() { return QMetaType::QMatrix; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QTransform }; static inline int qt_metatype_id() { return QMetaType::QTransform; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QMatrix4x4 }; static inline int qt_metatype_id() { return QMetaType::QMatrix4x4; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QVector2D }; static inline int qt_metatype_id() { return QMetaType::QVector2D; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QVector3D }; static inline int qt_metatype_id() { return QMetaType::QVector3D; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QVector4D }; static inline int qt_metatype_id() { return QMetaType::QVector4D; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QQuaternion }; static inline int qt_metatype_id() { return QMetaType::QQuaternion; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QVariant }; static inline int qt_metatype_id() { return QMetaType::QVariant; } }; namespace std __attribute__ ((__visibility__ ("default"))) { enum _Rb_tree_color { _S_red = false, _S_black = true }; struct _Rb_tree_node_base { typedef _Rb_tree_node_base* _Base_ptr; typedef const _Rb_tree_node_base* _Const_Base_ptr; _Rb_tree_color _M_color; _Base_ptr _M_parent; _Base_ptr _M_left; _Base_ptr _M_right; static _Base_ptr _S_minimum(_Base_ptr __x) { while (__x->_M_left != 0) __x = __x->_M_left; return __x; } static _Const_Base_ptr _S_minimum(_Const_Base_ptr __x) { while (__x->_M_left != 0) __x = __x->_M_left; return __x; } static _Base_ptr _S_maximum(_Base_ptr __x) { while (__x->_M_right != 0) __x = __x->_M_right; return __x; } static _Const_Base_ptr _S_maximum(_Const_Base_ptr __x) { while (__x->_M_right != 0) __x = __x->_M_right; return __x; } }; template struct _Rb_tree_node : public _Rb_tree_node_base { typedef _Rb_tree_node<_Val>* _Link_type; _Val _M_value_field; }; __attribute__ ((__pure__)) _Rb_tree_node_base* _Rb_tree_increment(_Rb_tree_node_base* __x) throw (); __attribute__ ((__pure__)) const _Rb_tree_node_base* _Rb_tree_increment(const _Rb_tree_node_base* __x) throw (); __attribute__ ((__pure__)) _Rb_tree_node_base* _Rb_tree_decrement(_Rb_tree_node_base* __x) throw (); __attribute__ ((__pure__)) const _Rb_tree_node_base* _Rb_tree_decrement(const _Rb_tree_node_base* __x) throw (); template struct _Rb_tree_iterator { typedef _Tp value_type; typedef _Tp& reference; typedef _Tp* pointer; typedef bidirectional_iterator_tag iterator_category; typedef ptrdiff_t difference_type; typedef _Rb_tree_iterator<_Tp> _Self; typedef _Rb_tree_node_base::_Base_ptr _Base_ptr; typedef _Rb_tree_node<_Tp>* _Link_type; _Rb_tree_iterator() : _M_node() { } explicit _Rb_tree_iterator(_Link_type __x) : _M_node(__x) { } reference operator*() const { return static_cast<_Link_type>(_M_node)->_M_value_field; } pointer operator->() const { return std::__addressof(static_cast<_Link_type> (_M_node)->_M_value_field); } _Self& operator++() { _M_node = _Rb_tree_increment(_M_node); return *this; } _Self operator++(int) { _Self __tmp = *this; _M_node = _Rb_tree_increment(_M_node); return __tmp; } _Self& operator--() { _M_node = _Rb_tree_decrement(_M_node); return *this; } _Self operator--(int) { _Self __tmp = *this; _M_node = _Rb_tree_decrement(_M_node); return __tmp; } bool operator==(const _Self& __x) const { return _M_node == __x._M_node; } bool operator!=(const _Self& __x) const { return _M_node != __x._M_node; } _Base_ptr _M_node; }; template struct _Rb_tree_const_iterator { typedef _Tp value_type; typedef const _Tp& reference; typedef const _Tp* pointer; typedef _Rb_tree_iterator<_Tp> iterator; typedef bidirectional_iterator_tag iterator_category; typedef ptrdiff_t difference_type; typedef _Rb_tree_const_iterator<_Tp> _Self; typedef _Rb_tree_node_base::_Const_Base_ptr _Base_ptr; typedef const _Rb_tree_node<_Tp>* _Link_type; _Rb_tree_const_iterator() : _M_node() { } explicit _Rb_tree_const_iterator(_Link_type __x) : _M_node(__x) { } _Rb_tree_const_iterator(const iterator& __it) : _M_node(__it._M_node) { } iterator _M_const_cast() const { return iterator(static_cast (const_cast(_M_node))); } reference operator*() const { return static_cast<_Link_type>(_M_node)->_M_value_field; } pointer operator->() const { return std::__addressof(static_cast<_Link_type> (_M_node)->_M_value_field); } _Self& operator++() { _M_node = _Rb_tree_increment(_M_node); return *this; } _Self operator++(int) { _Self __tmp = *this; _M_node = _Rb_tree_increment(_M_node); return __tmp; } _Self& operator--() { _M_node = _Rb_tree_decrement(_M_node); return *this; } _Self operator--(int) { _Self __tmp = *this; _M_node = _Rb_tree_decrement(_M_node); return __tmp; } bool operator==(const _Self& __x) const { return _M_node == __x._M_node; } bool operator!=(const _Self& __x) const { return _M_node != __x._M_node; } _Base_ptr _M_node; }; template inline bool operator==(const _Rb_tree_iterator<_Val>& __x, const _Rb_tree_const_iterator<_Val>& __y) { return __x._M_node == __y._M_node; } template inline bool operator!=(const _Rb_tree_iterator<_Val>& __x, const _Rb_tree_const_iterator<_Val>& __y) { return __x._M_node != __y._M_node; } void _Rb_tree_insert_and_rebalance(const bool __insert_left, _Rb_tree_node_base* __x, _Rb_tree_node_base* __p, _Rb_tree_node_base& __header) throw (); _Rb_tree_node_base* _Rb_tree_rebalance_for_erase(_Rb_tree_node_base* const __z, _Rb_tree_node_base& __header) throw (); template > class _Rb_tree { typedef typename _Alloc::template rebind<_Rb_tree_node<_Val> >::other _Node_allocator; protected: typedef _Rb_tree_node_base* _Base_ptr; typedef const _Rb_tree_node_base* _Const_Base_ptr; public: typedef _Key key_type; typedef _Val value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef _Rb_tree_node<_Val>* _Link_type; typedef const _Rb_tree_node<_Val>* _Const_Link_type; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Alloc allocator_type; _Node_allocator& _M_get_Node_allocator() { return *static_cast<_Node_allocator*>(&this->_M_impl); } const _Node_allocator& _M_get_Node_allocator() const { return *static_cast(&this->_M_impl); } allocator_type get_allocator() const { return allocator_type(_M_get_Node_allocator()); } protected: _Link_type _M_get_node() { return _M_impl._Node_allocator::allocate(1); } void _M_put_node(_Link_type __p) { _M_impl._Node_allocator::deallocate(__p, 1); } _Link_type _M_create_node(const value_type& __x) { _Link_type __tmp = _M_get_node(); try { get_allocator().construct (std::__addressof(__tmp->_M_value_field), __x); } catch(...) { _M_put_node(__tmp); throw; } return __tmp; } void _M_destroy_node(_Link_type __p) { get_allocator().destroy(std::__addressof(__p->_M_value_field)); _M_put_node(__p); } _Link_type _M_clone_node(_Const_Link_type __x) { _Link_type __tmp = _M_create_node(__x->_M_value_field); __tmp->_M_color = __x->_M_color; __tmp->_M_left = 0; __tmp->_M_right = 0; return __tmp; } protected: template struct _Rb_tree_impl : public _Node_allocator { _Key_compare _M_key_compare; _Rb_tree_node_base _M_header; size_type _M_node_count; _Rb_tree_impl() : _Node_allocator(), _M_key_compare(), _M_header(), _M_node_count(0) { _M_initialize(); } _Rb_tree_impl(const _Key_compare& __comp, const _Node_allocator& __a) : _Node_allocator(__a), _M_key_compare(__comp), _M_header(), _M_node_count(0) { _M_initialize(); } private: void _M_initialize() { this->_M_header._M_color = _S_red; this->_M_header._M_parent = 0; this->_M_header._M_left = &this->_M_header; this->_M_header._M_right = &this->_M_header; } }; _Rb_tree_impl<_Compare> _M_impl; protected: _Base_ptr& _M_root() { return this->_M_impl._M_header._M_parent; } _Const_Base_ptr _M_root() const { return this->_M_impl._M_header._M_parent; } _Base_ptr& _M_leftmost() { return this->_M_impl._M_header._M_left; } _Const_Base_ptr _M_leftmost() const { return this->_M_impl._M_header._M_left; } _Base_ptr& _M_rightmost() { return this->_M_impl._M_header._M_right; } _Const_Base_ptr _M_rightmost() const { return this->_M_impl._M_header._M_right; } _Link_type _M_begin() { return static_cast<_Link_type>(this->_M_impl._M_header._M_parent); } _Const_Link_type _M_begin() const { return static_cast<_Const_Link_type> (this->_M_impl._M_header._M_parent); } _Link_type _M_end() { return static_cast<_Link_type>(&this->_M_impl._M_header); } _Const_Link_type _M_end() const { return static_cast<_Const_Link_type>(&this->_M_impl._M_header); } static const_reference _S_value(_Const_Link_type __x) { return __x->_M_value_field; } static const _Key& _S_key(_Const_Link_type __x) { return _KeyOfValue()(_S_value(__x)); } static _Link_type _S_left(_Base_ptr __x) { return static_cast<_Link_type>(__x->_M_left); } static _Const_Link_type _S_left(_Const_Base_ptr __x) { return static_cast<_Const_Link_type>(__x->_M_left); } static _Link_type _S_right(_Base_ptr __x) { return static_cast<_Link_type>(__x->_M_right); } static _Const_Link_type _S_right(_Const_Base_ptr __x) { return static_cast<_Const_Link_type>(__x->_M_right); } static const_reference _S_value(_Const_Base_ptr __x) { return static_cast<_Const_Link_type>(__x)->_M_value_field; } static const _Key& _S_key(_Const_Base_ptr __x) { return _KeyOfValue()(_S_value(__x)); } static _Base_ptr _S_minimum(_Base_ptr __x) { return _Rb_tree_node_base::_S_minimum(__x); } static _Const_Base_ptr _S_minimum(_Const_Base_ptr __x) { return _Rb_tree_node_base::_S_minimum(__x); } static _Base_ptr _S_maximum(_Base_ptr __x) { return _Rb_tree_node_base::_S_maximum(__x); } static _Const_Base_ptr _S_maximum(_Const_Base_ptr __x) { return _Rb_tree_node_base::_S_maximum(__x); } public: typedef _Rb_tree_iterator iterator; typedef _Rb_tree_const_iterator const_iterator; typedef std::reverse_iterator reverse_iterator; typedef std::reverse_iterator const_reverse_iterator; private: iterator _M_insert_(_Const_Base_ptr __x, _Const_Base_ptr __y, const value_type& __v); iterator _M_insert_lower(_Base_ptr __x, _Base_ptr __y, const value_type& __v); iterator _M_insert_equal_lower(const value_type& __x); _Link_type _M_copy(_Const_Link_type __x, _Link_type __p); void _M_erase(_Link_type __x); iterator _M_lower_bound(_Link_type __x, _Link_type __y, const _Key& __k); const_iterator _M_lower_bound(_Const_Link_type __x, _Const_Link_type __y, const _Key& __k) const; iterator _M_upper_bound(_Link_type __x, _Link_type __y, const _Key& __k); const_iterator _M_upper_bound(_Const_Link_type __x, _Const_Link_type __y, const _Key& __k) const; public: _Rb_tree() { } _Rb_tree(const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_impl(__comp, __a) { } _Rb_tree(const _Rb_tree& __x) : _M_impl(__x._M_impl._M_key_compare, __x._M_get_Node_allocator()) { if (__x._M_root() != 0) { _M_root() = _M_copy(__x._M_begin(), _M_end()); _M_leftmost() = _S_minimum(_M_root()); _M_rightmost() = _S_maximum(_M_root()); _M_impl._M_node_count = __x._M_impl._M_node_count; } } ~_Rb_tree() { _M_erase(_M_begin()); } _Rb_tree& operator=(const _Rb_tree& __x); _Compare key_comp() const { return _M_impl._M_key_compare; } iterator begin() { return iterator(static_cast<_Link_type> (this->_M_impl._M_header._M_left)); } const_iterator begin() const { return const_iterator(static_cast<_Const_Link_type> (this->_M_impl._M_header._M_left)); } iterator end() { return iterator(static_cast<_Link_type>(&this->_M_impl._M_header)); } const_iterator end() const { return const_iterator(static_cast<_Const_Link_type> (&this->_M_impl._M_header)); } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } bool empty() const { return _M_impl._M_node_count == 0; } size_type size() const { return _M_impl._M_node_count; } size_type max_size() const { return _M_get_Node_allocator().max_size(); } void swap(_Rb_tree& __t); pair _M_insert_unique(const value_type& __x); iterator _M_insert_equal(const value_type& __x); iterator _M_insert_unique_(const_iterator __position, const value_type& __x); iterator _M_insert_equal_(const_iterator __position, const value_type& __x); template void _M_insert_unique(_InputIterator __first, _InputIterator __last); template void _M_insert_equal(_InputIterator __first, _InputIterator __last); private: void _M_erase_aux(const_iterator __position); void _M_erase_aux(const_iterator __first, const_iterator __last); public: void erase(iterator __position) { _M_erase_aux(__position); } void erase(const_iterator __position) { _M_erase_aux(__position); } size_type erase(const key_type& __x); void erase(iterator __first, iterator __last) { _M_erase_aux(__first, __last); } void erase(const_iterator __first, const_iterator __last) { _M_erase_aux(__first, __last); } void erase(const key_type* __first, const key_type* __last); void clear() { _M_erase(_M_begin()); _M_leftmost() = _M_end(); _M_root() = 0; _M_rightmost() = _M_end(); _M_impl._M_node_count = 0; } iterator find(const key_type& __k); const_iterator find(const key_type& __k) const; size_type count(const key_type& __k) const; iterator lower_bound(const key_type& __k) { return _M_lower_bound(_M_begin(), _M_end(), __k); } const_iterator lower_bound(const key_type& __k) const { return _M_lower_bound(_M_begin(), _M_end(), __k); } iterator upper_bound(const key_type& __k) { return _M_upper_bound(_M_begin(), _M_end(), __k); } const_iterator upper_bound(const key_type& __k) const { return _M_upper_bound(_M_begin(), _M_end(), __k); } pair equal_range(const key_type& __k); pair equal_range(const key_type& __k) const; bool __rb_verify() const; }; template inline bool operator==(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x, const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y) { return __x.size() == __y.size() && std::equal(__x.begin(), __x.end(), __y.begin()); } template inline bool operator<(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x, const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y) { return std::lexicographical_compare(__x.begin(), __x.end(), __y.begin(), __y.end()); } template inline bool operator!=(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x, const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y) { return !(__x == __y); } template inline bool operator>(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x, const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y) { return __y < __x; } template inline bool operator<=(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x, const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y) { return !(__y < __x); } template inline bool operator>=(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x, const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y) { return !(__x < __y); } template inline void swap(_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x, _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y) { __x.swap(__y); } template _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: operator=(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x) { if (this != &__x) { clear(); _M_impl._M_key_compare = __x._M_impl._M_key_compare; if (__x._M_root() != 0) { _M_root() = _M_copy(__x._M_begin(), _M_end()); _M_leftmost() = _S_minimum(_M_root()); _M_rightmost() = _S_maximum(_M_root()); _M_impl._M_node_count = __x._M_impl._M_node_count; } } return *this; } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_insert_(_Const_Base_ptr __x, _Const_Base_ptr __p, const _Val& __v) { bool __insert_left = (__x != 0 || __p == _M_end() || _M_impl._M_key_compare(_KeyOfValue()(__v), _S_key(__p))); _Link_type __z = _M_create_node((__v)); _Rb_tree_insert_and_rebalance(__insert_left, __z, const_cast<_Base_ptr>(__p), this->_M_impl._M_header); ++_M_impl._M_node_count; return iterator(__z); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_insert_lower(_Base_ptr __x, _Base_ptr __p, const _Val& __v) { bool __insert_left = (__x != 0 || __p == _M_end() || !_M_impl._M_key_compare(_S_key(__p), _KeyOfValue()(__v))); _Link_type __z = _M_create_node((__v)); _Rb_tree_insert_and_rebalance(__insert_left, __z, __p, this->_M_impl._M_header); ++_M_impl._M_node_count; return iterator(__z); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_insert_equal_lower(const _Val& __v) { _Link_type __x = _M_begin(); _Link_type __y = _M_end(); while (__x != 0) { __y = __x; __x = !_M_impl._M_key_compare(_S_key(__x), _KeyOfValue()(__v)) ? _S_left(__x) : _S_right(__x); } return _M_insert_lower(__x, __y, (__v)); } template typename _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::_Link_type _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>:: _M_copy(_Const_Link_type __x, _Link_type __p) { _Link_type __top = _M_clone_node(__x); __top->_M_parent = __p; try { if (__x->_M_right) __top->_M_right = _M_copy(_S_right(__x), __top); __p = __top; __x = _S_left(__x); while (__x != 0) { _Link_type __y = _M_clone_node(__x); __p->_M_left = __y; __y->_M_parent = __p; if (__x->_M_right) __y->_M_right = _M_copy(_S_right(__x), __y); __p = __y; __x = _S_left(__x); } } catch(...) { _M_erase(__top); throw; } return __top; } template void _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_erase(_Link_type __x) { while (__x != 0) { _M_erase(_S_right(__x)); _Link_type __y = _S_left(__x); _M_destroy_node(__x); __x = __y; } } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_lower_bound(_Link_type __x, _Link_type __y, const _Key& __k) { while (__x != 0) if (!_M_impl._M_key_compare(_S_key(__x), __k)) __y = __x, __x = _S_left(__x); else __x = _S_right(__x); return iterator(__y); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::const_iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_lower_bound(_Const_Link_type __x, _Const_Link_type __y, const _Key& __k) const { while (__x != 0) if (!_M_impl._M_key_compare(_S_key(__x), __k)) __y = __x, __x = _S_left(__x); else __x = _S_right(__x); return const_iterator(__y); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_upper_bound(_Link_type __x, _Link_type __y, const _Key& __k) { while (__x != 0) if (_M_impl._M_key_compare(__k, _S_key(__x))) __y = __x, __x = _S_left(__x); else __x = _S_right(__x); return iterator(__y); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::const_iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_upper_bound(_Const_Link_type __x, _Const_Link_type __y, const _Key& __k) const { while (__x != 0) if (_M_impl._M_key_compare(__k, _S_key(__x))) __y = __x, __x = _S_left(__x); else __x = _S_right(__x); return const_iterator(__y); } template pair::iterator, typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator> _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: equal_range(const _Key& __k) { _Link_type __x = _M_begin(); _Link_type __y = _M_end(); while (__x != 0) { if (_M_impl._M_key_compare(_S_key(__x), __k)) __x = _S_right(__x); else if (_M_impl._M_key_compare(__k, _S_key(__x))) __y = __x, __x = _S_left(__x); else { _Link_type __xu(__x), __yu(__y); __y = __x, __x = _S_left(__x); __xu = _S_right(__xu); return pair(_M_lower_bound(__x, __y, __k), _M_upper_bound(__xu, __yu, __k)); } } return pair(iterator(__y), iterator(__y)); } template pair::const_iterator, typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::const_iterator> _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: equal_range(const _Key& __k) const { _Const_Link_type __x = _M_begin(); _Const_Link_type __y = _M_end(); while (__x != 0) { if (_M_impl._M_key_compare(_S_key(__x), __k)) __x = _S_right(__x); else if (_M_impl._M_key_compare(__k, _S_key(__x))) __y = __x, __x = _S_left(__x); else { _Const_Link_type __xu(__x), __yu(__y); __y = __x, __x = _S_left(__x); __xu = _S_right(__xu); return pair(_M_lower_bound(__x, __y, __k), _M_upper_bound(__xu, __yu, __k)); } } return pair(const_iterator(__y), const_iterator(__y)); } template void _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: swap(_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __t) { if (_M_root() == 0) { if (__t._M_root() != 0) { _M_root() = __t._M_root(); _M_leftmost() = __t._M_leftmost(); _M_rightmost() = __t._M_rightmost(); _M_root()->_M_parent = _M_end(); __t._M_root() = 0; __t._M_leftmost() = __t._M_end(); __t._M_rightmost() = __t._M_end(); } } else if (__t._M_root() == 0) { __t._M_root() = _M_root(); __t._M_leftmost() = _M_leftmost(); __t._M_rightmost() = _M_rightmost(); __t._M_root()->_M_parent = __t._M_end(); _M_root() = 0; _M_leftmost() = _M_end(); _M_rightmost() = _M_end(); } else { std::swap(_M_root(),__t._M_root()); std::swap(_M_leftmost(),__t._M_leftmost()); std::swap(_M_rightmost(),__t._M_rightmost()); _M_root()->_M_parent = _M_end(); __t._M_root()->_M_parent = __t._M_end(); } std::swap(this->_M_impl._M_node_count, __t._M_impl._M_node_count); std::swap(this->_M_impl._M_key_compare, __t._M_impl._M_key_compare); std::__alloc_swap<_Node_allocator>:: _S_do_it(_M_get_Node_allocator(), __t._M_get_Node_allocator()); } template pair::iterator, bool> _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_insert_unique(const _Val& __v) { _Link_type __x = _M_begin(); _Link_type __y = _M_end(); bool __comp = true; while (__x != 0) { __y = __x; __comp = _M_impl._M_key_compare(_KeyOfValue()(__v), _S_key(__x)); __x = __comp ? _S_left(__x) : _S_right(__x); } iterator __j = iterator(__y); if (__comp) { if (__j == begin()) return pair (_M_insert_(__x, __y, (__v)), true); else --__j; } if (_M_impl._M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__v))) return pair (_M_insert_(__x, __y, (__v)), true); return pair(__j, false); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_insert_equal(const _Val& __v) { _Link_type __x = _M_begin(); _Link_type __y = _M_end(); while (__x != 0) { __y = __x; __x = _M_impl._M_key_compare(_KeyOfValue()(__v), _S_key(__x)) ? _S_left(__x) : _S_right(__x); } return _M_insert_(__x, __y, (__v)); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_insert_unique_(const_iterator __position, const _Val& __v) { if (__position._M_node == _M_end()) { if (size() > 0 && _M_impl._M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__v))) return _M_insert_(0, _M_rightmost(), (__v)); else return _M_insert_unique((__v)).first; } else if (_M_impl._M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node))) { const_iterator __before = __position; if (__position._M_node == _M_leftmost()) return _M_insert_(_M_leftmost(), _M_leftmost(), (__v)); else if (_M_impl._M_key_compare(_S_key((--__before)._M_node), _KeyOfValue()(__v))) { if (_S_right(__before._M_node) == 0) return _M_insert_(0, __before._M_node, (__v)); else return _M_insert_(__position._M_node, __position._M_node, (__v)); } else return _M_insert_unique((__v)).first; } else if (_M_impl._M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v))) { const_iterator __after = __position; if (__position._M_node == _M_rightmost()) return _M_insert_(0, _M_rightmost(), (__v)); else if (_M_impl._M_key_compare(_KeyOfValue()(__v), _S_key((++__after)._M_node))) { if (_S_right(__position._M_node) == 0) return _M_insert_(0, __position._M_node, (__v)); else return _M_insert_(__after._M_node, __after._M_node, (__v)); } else return _M_insert_unique((__v)).first; } else return __position._M_const_cast(); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_insert_equal_(const_iterator __position, const _Val& __v) { if (__position._M_node == _M_end()) { if (size() > 0 && !_M_impl._M_key_compare(_KeyOfValue()(__v), _S_key(_M_rightmost()))) return _M_insert_(0, _M_rightmost(), (__v)); else return _M_insert_equal((__v)); } else if (!_M_impl._M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v))) { const_iterator __before = __position; if (__position._M_node == _M_leftmost()) return _M_insert_(_M_leftmost(), _M_leftmost(), (__v)); else if (!_M_impl._M_key_compare(_KeyOfValue()(__v), _S_key((--__before)._M_node))) { if (_S_right(__before._M_node) == 0) return _M_insert_(0, __before._M_node, (__v)); else return _M_insert_(__position._M_node, __position._M_node, (__v)); } else return _M_insert_equal((__v)); } else { const_iterator __after = __position; if (__position._M_node == _M_rightmost()) return _M_insert_(0, _M_rightmost(), (__v)); else if (!_M_impl._M_key_compare(_S_key((++__after)._M_node), _KeyOfValue()(__v))) { if (_S_right(__position._M_node) == 0) return _M_insert_(0, __position._M_node, (__v)); else return _M_insert_(__after._M_node, __after._M_node, (__v)); } else return _M_insert_equal_lower((__v)); } } template template void _Rb_tree<_Key, _Val, _KoV, _Cmp, _Alloc>:: _M_insert_unique(_II __first, _II __last) { for (; __first != __last; ++__first) _M_insert_unique_(end(), *__first); } template template void _Rb_tree<_Key, _Val, _KoV, _Cmp, _Alloc>:: _M_insert_equal(_II __first, _II __last) { for (; __first != __last; ++__first) _M_insert_equal_(end(), *__first); } template void _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_erase_aux(const_iterator __position) { _Link_type __y = static_cast<_Link_type>(_Rb_tree_rebalance_for_erase (const_cast<_Base_ptr>(__position._M_node), this->_M_impl._M_header)); _M_destroy_node(__y); --_M_impl._M_node_count; } template void _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: _M_erase_aux(const_iterator __first, const_iterator __last) { if (__first == begin() && __last == end()) clear(); else while (__first != __last) erase(__first++); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::size_type _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: erase(const _Key& __x) { pair __p = equal_range(__x); const size_type __old_size = size(); erase(__p.first, __p.second); return __old_size - size(); } template void _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: erase(const _Key* __first, const _Key* __last) { while (__first != __last) erase(*__first++); } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: find(const _Key& __k) { iterator __j = _M_lower_bound(_M_begin(), _M_end(), __k); return (__j == end() || _M_impl._M_key_compare(__k, _S_key(__j._M_node))) ? end() : __j; } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::const_iterator _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: find(const _Key& __k) const { const_iterator __j = _M_lower_bound(_M_begin(), _M_end(), __k); return (__j == end() || _M_impl._M_key_compare(__k, _S_key(__j._M_node))) ? end() : __j; } template typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::size_type _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>:: count(const _Key& __k) const { pair __p = equal_range(__k); const size_type __n = std::distance(__p.first, __p.second); return __n; } __attribute__ ((__pure__)) unsigned int _Rb_tree_black_count(const _Rb_tree_node_base* __node, const _Rb_tree_node_base* __root) throw (); template bool _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::__rb_verify() const { if (_M_impl._M_node_count == 0 || begin() == end()) return _M_impl._M_node_count == 0 && begin() == end() && this->_M_impl._M_header._M_left == _M_end() && this->_M_impl._M_header._M_right == _M_end(); unsigned int __len = _Rb_tree_black_count(_M_leftmost(), _M_root()); for (const_iterator __it = begin(); __it != end(); ++__it) { _Const_Link_type __x = static_cast<_Const_Link_type>(__it._M_node); _Const_Link_type __L = _S_left(__x); _Const_Link_type __R = _S_right(__x); if (__x->_M_color == _S_red) if ((__L && __L->_M_color == _S_red) || (__R && __R->_M_color == _S_red)) return false; if (__L && _M_impl._M_key_compare(_S_key(__x), _S_key(__L))) return false; if (__R && _M_impl._M_key_compare(_S_key(__R), _S_key(__x))) return false; if (!__L && !__R && _Rb_tree_black_count(__x, _M_root()) != __len) return false; } if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root())) return false; if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root())) return false; return true; } } namespace std __attribute__ ((__visibility__ ("default"))) { template , typename _Alloc = std::allocator > > class map { public: typedef _Key key_type; typedef _Tp mapped_type; typedef std::pair value_type; typedef _Compare key_compare; typedef _Alloc allocator_type; private: typedef typename _Alloc::value_type _Alloc_value_type; public: class value_compare : public std::binary_function { friend class map<_Key, _Tp, _Compare, _Alloc>; protected: _Compare comp; value_compare(_Compare __c) : comp(__c) { } public: bool operator()(const value_type& __x, const value_type& __y) const { return comp(__x.first, __y.first); } }; private: typedef typename _Alloc::template rebind::other _Pair_alloc_type; typedef _Rb_tree, key_compare, _Pair_alloc_type> _Rep_type; _Rep_type _M_t; public: typedef typename _Pair_alloc_type::pointer pointer; typedef typename _Pair_alloc_type::const_pointer const_pointer; typedef typename _Pair_alloc_type::reference reference; typedef typename _Pair_alloc_type::const_reference const_reference; typedef typename _Rep_type::iterator iterator; typedef typename _Rep_type::const_iterator const_iterator; typedef typename _Rep_type::size_type size_type; typedef typename _Rep_type::difference_type difference_type; typedef typename _Rep_type::reverse_iterator reverse_iterator; typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; map() : _M_t() { } explicit map(const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, __a) { } map(const map& __x) : _M_t(__x._M_t) { } template map(_InputIterator __first, _InputIterator __last) : _M_t() { _M_t._M_insert_unique(__first, __last); } template map(_InputIterator __first, _InputIterator __last, const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, __a) { _M_t._M_insert_unique(__first, __last); } map& operator=(const map& __x) { _M_t = __x._M_t; return *this; } allocator_type get_allocator() const { return _M_t.get_allocator(); } iterator begin() { return _M_t.begin(); } const_iterator begin() const { return _M_t.begin(); } iterator end() { return _M_t.end(); } const_iterator end() const { return _M_t.end(); } reverse_iterator rbegin() { return _M_t.rbegin(); } const_reverse_iterator rbegin() const { return _M_t.rbegin(); } reverse_iterator rend() { return _M_t.rend(); } const_reverse_iterator rend() const { return _M_t.rend(); } bool empty() const { return _M_t.empty(); } size_type size() const { return _M_t.size(); } size_type max_size() const { return _M_t.max_size(); } mapped_type& operator[](const key_type& __k) { iterator __i = lower_bound(__k); if (__i == end() || key_comp()(__k, (*__i).first)) __i = insert(__i, value_type(__k, mapped_type())); return (*__i).second; } mapped_type& at(const key_type& __k) { iterator __i = lower_bound(__k); if (__i == end() || key_comp()(__k, (*__i).first)) __throw_out_of_range(("map::at")); return (*__i).second; } const mapped_type& at(const key_type& __k) const { const_iterator __i = lower_bound(__k); if (__i == end() || key_comp()(__k, (*__i).first)) __throw_out_of_range(("map::at")); return (*__i).second; } std::pair insert(const value_type& __x) { return _M_t._M_insert_unique(__x); } iterator insert(iterator __position, const value_type& __x) { return _M_t._M_insert_unique_(__position, __x); } template void insert(_InputIterator __first, _InputIterator __last) { _M_t._M_insert_unique(__first, __last); } void erase(iterator __position) { _M_t.erase(__position); } size_type erase(const key_type& __x) { return _M_t.erase(__x); } void erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); } void swap(map& __x) { _M_t.swap(__x._M_t); } void clear() { _M_t.clear(); } key_compare key_comp() const { return _M_t.key_comp(); } value_compare value_comp() const { return value_compare(_M_t.key_comp()); } iterator find(const key_type& __x) { return _M_t.find(__x); } const_iterator find(const key_type& __x) const { return _M_t.find(__x); } size_type count(const key_type& __x) const { return _M_t.find(__x) == _M_t.end() ? 0 : 1; } iterator lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); } const_iterator lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); } iterator upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); } const_iterator upper_bound(const key_type& __x) const { return _M_t.upper_bound(__x); } std::pair equal_range(const key_type& __x) { return _M_t.equal_range(__x); } std::pair equal_range(const key_type& __x) const { return _M_t.equal_range(__x); } template friend bool operator==(const map<_K1, _T1, _C1, _A1>&, const map<_K1, _T1, _C1, _A1>&); template friend bool operator<(const map<_K1, _T1, _C1, _A1>&, const map<_K1, _T1, _C1, _A1>&); }; template inline bool operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x, const map<_Key, _Tp, _Compare, _Alloc>& __y) { return __x._M_t == __y._M_t; } template inline bool operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x, const map<_Key, _Tp, _Compare, _Alloc>& __y) { return __x._M_t < __y._M_t; } template inline bool operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x, const map<_Key, _Tp, _Compare, _Alloc>& __y) { return !(__x == __y); } template inline bool operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x, const map<_Key, _Tp, _Compare, _Alloc>& __y) { return __y < __x; } template inline bool operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x, const map<_Key, _Tp, _Compare, _Alloc>& __y) { return !(__y < __x); } template inline bool operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x, const map<_Key, _Tp, _Compare, _Alloc>& __y) { return !(__x < __y); } template inline void swap(map<_Key, _Tp, _Compare, _Alloc>& __x, map<_Key, _Tp, _Compare, _Alloc>& __y) { __x.swap(__y); } } namespace std __attribute__ ((__visibility__ ("default"))) { template , typename _Alloc = std::allocator > > class multimap { public: typedef _Key key_type; typedef _Tp mapped_type; typedef std::pair value_type; typedef _Compare key_compare; typedef _Alloc allocator_type; private: typedef typename _Alloc::value_type _Alloc_value_type; public: class value_compare : public std::binary_function { friend class multimap<_Key, _Tp, _Compare, _Alloc>; protected: _Compare comp; value_compare(_Compare __c) : comp(__c) { } public: bool operator()(const value_type& __x, const value_type& __y) const { return comp(__x.first, __y.first); } }; private: typedef typename _Alloc::template rebind::other _Pair_alloc_type; typedef _Rb_tree, key_compare, _Pair_alloc_type> _Rep_type; _Rep_type _M_t; public: typedef typename _Pair_alloc_type::pointer pointer; typedef typename _Pair_alloc_type::const_pointer const_pointer; typedef typename _Pair_alloc_type::reference reference; typedef typename _Pair_alloc_type::const_reference const_reference; typedef typename _Rep_type::iterator iterator; typedef typename _Rep_type::const_iterator const_iterator; typedef typename _Rep_type::size_type size_type; typedef typename _Rep_type::difference_type difference_type; typedef typename _Rep_type::reverse_iterator reverse_iterator; typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; multimap() : _M_t() { } explicit multimap(const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, __a) { } multimap(const multimap& __x) : _M_t(__x._M_t) { } template multimap(_InputIterator __first, _InputIterator __last) : _M_t() { _M_t._M_insert_equal(__first, __last); } template multimap(_InputIterator __first, _InputIterator __last, const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, __a) { _M_t._M_insert_equal(__first, __last); } multimap& operator=(const multimap& __x) { _M_t = __x._M_t; return *this; } allocator_type get_allocator() const { return _M_t.get_allocator(); } iterator begin() { return _M_t.begin(); } const_iterator begin() const { return _M_t.begin(); } iterator end() { return _M_t.end(); } const_iterator end() const { return _M_t.end(); } reverse_iterator rbegin() { return _M_t.rbegin(); } const_reverse_iterator rbegin() const { return _M_t.rbegin(); } reverse_iterator rend() { return _M_t.rend(); } const_reverse_iterator rend() const { return _M_t.rend(); } bool empty() const { return _M_t.empty(); } size_type size() const { return _M_t.size(); } size_type max_size() const { return _M_t.max_size(); } iterator insert(const value_type& __x) { return _M_t._M_insert_equal(__x); } iterator insert(iterator __position, const value_type& __x) { return _M_t._M_insert_equal_(__position, __x); } template void insert(_InputIterator __first, _InputIterator __last) { _M_t._M_insert_equal(__first, __last); } void erase(iterator __position) { _M_t.erase(__position); } size_type erase(const key_type& __x) { return _M_t.erase(__x); } void erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); } void swap(multimap& __x) { _M_t.swap(__x._M_t); } void clear() { _M_t.clear(); } key_compare key_comp() const { return _M_t.key_comp(); } value_compare value_comp() const { return value_compare(_M_t.key_comp()); } iterator find(const key_type& __x) { return _M_t.find(__x); } const_iterator find(const key_type& __x) const { return _M_t.find(__x); } size_type count(const key_type& __x) const { return _M_t.count(__x); } iterator lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); } const_iterator lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); } iterator upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); } const_iterator upper_bound(const key_type& __x) const { return _M_t.upper_bound(__x); } std::pair equal_range(const key_type& __x) { return _M_t.equal_range(__x); } std::pair equal_range(const key_type& __x) const { return _M_t.equal_range(__x); } template friend bool operator==(const multimap<_K1, _T1, _C1, _A1>&, const multimap<_K1, _T1, _C1, _A1>&); template friend bool operator<(const multimap<_K1, _T1, _C1, _A1>&, const multimap<_K1, _T1, _C1, _A1>&); }; template inline bool operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, const multimap<_Key, _Tp, _Compare, _Alloc>& __y) { return __x._M_t == __y._M_t; } template inline bool operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, const multimap<_Key, _Tp, _Compare, _Alloc>& __y) { return __x._M_t < __y._M_t; } template inline bool operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, const multimap<_Key, _Tp, _Compare, _Alloc>& __y) { return !(__x == __y); } template inline bool operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, const multimap<_Key, _Tp, _Compare, _Alloc>& __y) { return __y < __x; } template inline bool operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, const multimap<_Key, _Tp, _Compare, _Alloc>& __y) { return !(__y < __x); } template inline bool operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, const multimap<_Key, _Tp, _Compare, _Alloc>& __y) { return !(__x < __y); } template inline void swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x, multimap<_Key, _Tp, _Compare, _Alloc>& __y) { __x.swap(__y); } } typedef QtValidLicenseForCoreModule QtCoreModule; struct QMapData { struct Node { Node *backward; Node *forward[1]; }; enum { LastLevel = 11, Sparseness = 3 }; QMapData *backward; QMapData *forward[QMapData::LastLevel + 1]; QBasicAtomicInt ref; int topLevel; int size; uint randomBits; uint insertInOrder : 1; uint sharable : 1; uint strictAlignment : 1; uint reserved : 29; static QMapData *createData(); static QMapData *createData(int alignment); void continueFreeData(int offset); Node *node_create(Node *update[], int offset); Node *node_create(Node *update[], int offset, int alignment); void node_delete(Node *update[], int offset, Node *node); static QMapData shared_null; }; template inline bool qMapLessThanKey(const Key &key1, const Key &key2) { return key1 < key2; } template inline bool qMapLessThanKey(Ptr *key1, Ptr *key2) { qt_noop(); return quintptr(key1) < quintptr(key2); } template inline bool qMapLessThanKey(const Ptr *key1, const Ptr *key2) { qt_noop(); return quintptr(key1) < quintptr(key2); } template struct QMapNode { Key key; T value; private: QMapData::Node *backward; QMapData::Node *forward[1]; }; template struct QMapPayloadNode { Key key; T value; private: QMapData::Node *backward; }; template class QMap { typedef QMapNode Node; typedef QMapPayloadNode PayloadNode; union { QMapData *d; QMapData::Node *e; }; static inline int payload() { return sizeof(PayloadNode) - sizeof(QMapData::Node *); } static inline int alignment() { return int(qMax(sizeof(void*), __alignof__(Node))); } static inline Node *concrete(QMapData::Node *node) { return reinterpret_cast(reinterpret_cast(node) - payload()); } public: inline QMap() : d(&QMapData::shared_null) { d->ref.ref(); } inline QMap(const QMap &other) : d(other.d) { d->ref.ref(); if (!d->sharable) detach(); } inline ~QMap() { if (!d) return; if (!d->ref.deref()) freeData(d); } QMap &operator=(const QMap &other); inline void swap(QMap &other) { qSwap(d, other.d); } explicit QMap(const typename std::map &other); std::map toStdMap() const; bool operator==(const QMap &other) const; inline bool operator!=(const QMap &other) const { return !(*this == other); } inline int size() const { return d->size; } inline bool isEmpty() const { return d->size == 0; } inline void detach() { if (d->ref != 1) detach_helper(); } inline bool isDetached() const { return d->ref == 1; } inline void setSharable(bool sharable) { if (!sharable) detach(); d->sharable = sharable; } inline bool isSharedWith(const QMap &other) const { return d == other.d; } inline void setInsertInOrder(bool ordered) { d->insertInOrder = ordered; } void clear(); int remove(const Key &key); T take(const Key &key); bool contains(const Key &key) const; const Key key(const T &value) const; const Key key(const T &value, const Key &defaultKey) const; const T value(const Key &key) const; const T value(const Key &key, const T &defaultValue) const; T &operator[](const Key &key); const T operator[](const Key &key) const; QList uniqueKeys() const; QList keys() const; QList keys(const T &value) const; QList values() const; QList values(const Key &key) const; int count(const Key &key) const; class const_iterator; class iterator { friend class const_iterator; QMapData::Node *i; public: typedef std::bidirectional_iterator_tag iterator_category; typedef qptrdiff difference_type; typedef T value_type; typedef T *pointer; typedef T &reference; inline operator QMapData::Node *() const { return i; } inline iterator() : i(0) { } inline iterator(QMapData::Node *node) : i(node) { } inline const Key &key() const { return concrete(i)->key; } inline T &value() const { return concrete(i)->value; } inline T &operator*() const { return concrete(i)->value; } inline T *operator->() const { return &concrete(i)->value; } inline bool operator==(const iterator &o) const { return i == o.i; } inline bool operator!=(const iterator &o) const { return i != o.i; } inline iterator &operator++() { i = i->forward[0]; return *this; } inline iterator operator++(int) { iterator r = *this; i = i->forward[0]; return r; } inline iterator &operator--() { i = i->backward; return *this; } inline iterator operator--(int) { iterator r = *this; i = i->backward; return r; } inline iterator operator+(int j) const { iterator r = *this; if (j > 0) while (j--) ++r; else while (j++) --r; return r; } inline iterator operator-(int j) const { return operator+(-j); } inline iterator &operator+=(int j) { return *this = *this + j; } inline iterator &operator-=(int j) { return *this = *this - j; } public: inline bool operator==(const const_iterator &o) const { return i == o.i; } inline bool operator!=(const const_iterator &o) const { return i != o.i; } private: inline operator bool() const { return false; } }; friend class iterator; class const_iterator { friend class iterator; QMapData::Node *i; public: typedef std::bidirectional_iterator_tag iterator_category; typedef qptrdiff difference_type; typedef T value_type; typedef const T *pointer; typedef const T &reference; inline operator QMapData::Node *() const { return i; } inline const_iterator() : i(0) { } inline const_iterator(QMapData::Node *node) : i(node) { } inline const_iterator(const iterator &o) { i = o.i; } inline const Key &key() const { return concrete(i)->key; } inline const T &value() const { return concrete(i)->value; } inline const T &operator*() const { return concrete(i)->value; } inline const T *operator->() const { return &concrete(i)->value; } inline bool operator==(const const_iterator &o) const { return i == o.i; } inline bool operator!=(const const_iterator &o) const { return i != o.i; } inline const_iterator &operator++() { i = i->forward[0]; return *this; } inline const_iterator operator++(int) { const_iterator r = *this; i = i->forward[0]; return r; } inline const_iterator &operator--() { i = i->backward; return *this; } inline const_iterator operator--(int) { const_iterator r = *this; i = i->backward; return r; } inline const_iterator operator+(int j) const { const_iterator r = *this; if (j > 0) while (j--) ++r; else while (j++) --r; return r; } inline const_iterator operator-(int j) const { return operator+(-j); } inline const_iterator &operator+=(int j) { return *this = *this + j; } inline const_iterator &operator-=(int j) { return *this = *this - j; } private: inline operator bool() const { return false; } }; friend class const_iterator; inline iterator begin() { detach(); return iterator(e->forward[0]); } inline const_iterator begin() const { return const_iterator(e->forward[0]); } inline const_iterator constBegin() const { return const_iterator(e->forward[0]); } inline iterator end() { detach(); return iterator(e); } inline const_iterator end() const { return const_iterator(e); } inline const_iterator constEnd() const { return const_iterator(e); } iterator erase(iterator it); typedef iterator Iterator; typedef const_iterator ConstIterator; inline int count() const { return d->size; } iterator find(const Key &key); const_iterator find(const Key &key) const; const_iterator constFind(const Key &key) const; iterator lowerBound(const Key &key); const_iterator lowerBound(const Key &key) const; iterator upperBound(const Key &key); const_iterator upperBound(const Key &key) const; iterator insert(const Key &key, const T &value); iterator insertMulti(const Key &key, const T &value); QMap &unite(const QMap &other); typedef Key key_type; typedef T mapped_type; typedef qptrdiff difference_type; typedef int size_type; inline bool empty() const { return isEmpty(); } private: void detach_helper(); void freeData(QMapData *d); QMapData::Node *findNode(const Key &key) const; QMapData::Node *mutableFindNode(QMapData::Node *update[], const Key &key) const; QMapData::Node *node_create(QMapData *d, QMapData::Node *update[], const Key &key, const T &value); }; template inline QMap &QMap::operator=(const QMap &other) { if (d != other.d) { QMapData* o = other.d; o->ref.ref(); if (!d->ref.deref()) freeData(d); d = o; if (!d->sharable) detach_helper(); } return *this; } template inline void QMap::clear() { *this = QMap(); } template inline typename QMapData::Node * QMap::node_create(QMapData *adt, QMapData::Node *aupdate[], const Key &akey, const T &avalue) { QMapData::Node *abstractNode = adt->node_create(aupdate, payload(), alignment()); try { Node *concreteNode = concrete(abstractNode); new (&concreteNode->key) Key(akey); try { new (&concreteNode->value) T(avalue); } catch (...) { concreteNode->key.~Key(); throw; } } catch (...) { adt->node_delete(aupdate, payload(), abstractNode); throw; } return abstractNode; } template inline QMapData::Node *QMap::findNode(const Key &akey) const { QMapData::Node *cur = e; QMapData::Node *next = e; for (int i = d->topLevel; i >= 0; i--) { while ((next = cur->forward[i]) != e && qMapLessThanKey(concrete(next)->key, akey)) cur = next; } if (next != e && !qMapLessThanKey(akey, concrete(next)->key)) { return next; } else { return e; } } template inline const T QMap::value(const Key &akey) const { QMapData::Node *node; if (d->size == 0 || (node = findNode(akey)) == e) { return T(); } else { return concrete(node)->value; } } template inline const T QMap::value(const Key &akey, const T &adefaultValue) const { QMapData::Node *node; if (d->size == 0 || (node = findNode(akey)) == e) { return adefaultValue; } else { return concrete(node)->value; } } template inline const T QMap::operator[](const Key &akey) const { return value(akey); } template inline T &QMap::operator[](const Key &akey) { detach(); QMapData::Node *update[QMapData::LastLevel + 1]; QMapData::Node *node = mutableFindNode(update, akey); if (node == e) node = node_create(d, update, akey, T()); return concrete(node)->value; } template inline int QMap::count(const Key &akey) const { int cnt = 0; QMapData::Node *node = findNode(akey); if (node != e) { do { ++cnt; node = node->forward[0]; } while (node != e && !qMapLessThanKey(akey, concrete(node)->key)); } return cnt; } template inline bool QMap::contains(const Key &akey) const { return findNode(akey) != e; } template inline typename QMap::iterator QMap::insert(const Key &akey, const T &avalue) { detach(); QMapData::Node *update[QMapData::LastLevel + 1]; QMapData::Node *node = mutableFindNode(update, akey); if (node == e) { node = node_create(d, update, akey, avalue); } else { concrete(node)->value = avalue; } return iterator(node); } template inline typename QMap::iterator QMap::insertMulti(const Key &akey, const T &avalue) { detach(); QMapData::Node *update[QMapData::LastLevel + 1]; mutableFindNode(update, akey); return iterator(node_create(d, update, akey, avalue)); } template inline typename QMap::const_iterator QMap::find(const Key &akey) const { return const_iterator(findNode(akey)); } template inline typename QMap::const_iterator QMap::constFind(const Key &akey) const { return const_iterator(findNode(akey)); } template inline typename QMap::iterator QMap::find(const Key &akey) { detach(); return iterator(findNode(akey)); } template inline QMap &QMap::unite(const QMap &other) { QMap copy(other); const_iterator it = copy.constEnd(); const const_iterator b = copy.constBegin(); while (it != b) { --it; insertMulti(it.key(), it.value()); } return *this; } template void QMap::freeData(QMapData *x) { if (QTypeInfo::isComplex || QTypeInfo::isComplex) { QMapData *cur = x; QMapData *next = cur->forward[0]; while (next != x) { cur = next; next = cur->forward[0]; Node *concreteNode = concrete(reinterpret_cast(cur)); concreteNode->key.~Key(); concreteNode->value.~T(); } } x->continueFreeData(payload()); } template int QMap::remove(const Key &akey) { detach(); QMapData::Node *update[QMapData::LastLevel + 1]; QMapData::Node *cur = e; QMapData::Node *next = e; int oldSize = d->size; for (int i = d->topLevel; i >= 0; i--) { while ((next = cur->forward[i]) != e && qMapLessThanKey(concrete(next)->key, akey)) cur = next; update[i] = cur; } if (next != e && !qMapLessThanKey(akey, concrete(next)->key)) { bool deleteNext = true; do { cur = next; next = cur->forward[0]; deleteNext = (next != e && !qMapLessThanKey(concrete(cur)->key, concrete(next)->key)); concrete(cur)->key.~Key(); concrete(cur)->value.~T(); d->node_delete(update, payload(), cur); } while (deleteNext); } return oldSize - d->size; } template T QMap::take(const Key &akey) { detach(); QMapData::Node *update[QMapData::LastLevel + 1]; QMapData::Node *cur = e; QMapData::Node *next = e; for (int i = d->topLevel; i >= 0; i--) { while ((next = cur->forward[i]) != e && qMapLessThanKey(concrete(next)->key, akey)) cur = next; update[i] = cur; } if (next != e && !qMapLessThanKey(akey, concrete(next)->key)) { T t = concrete(next)->value; concrete(next)->key.~Key(); concrete(next)->value.~T(); d->node_delete(update, payload(), next); return t; } return T(); } template typename QMap::iterator QMap::erase(iterator it) { QMapData::Node *update[QMapData::LastLevel + 1]; QMapData::Node *cur = e; QMapData::Node *next = e; if (it == iterator(e)) return it; for (int i = d->topLevel; i >= 0; i--) { while ((next = cur->forward[i]) != e && qMapLessThanKey(concrete(next)->key, it.key())) cur = next; update[i] = cur; } while (next != e) { cur = next; next = cur->forward[0]; if (cur == it) { concrete(cur)->key.~Key(); concrete(cur)->value.~T(); d->node_delete(update, payload(), cur); return iterator(next); } for (int i = 0; i <= d->topLevel; ++i) { if (update[i]->forward[i] != cur) break; update[i] = cur; } } return end(); } template void QMap::detach_helper() { union { QMapData *d; QMapData::Node *e; } x; x.d = QMapData::createData(alignment()); if (d->size) { x.d->insertInOrder = true; QMapData::Node *update[QMapData::LastLevel + 1]; QMapData::Node *cur = e->forward[0]; update[0] = x.e; while (cur != e) { try { Node *concreteNode = concrete(cur); node_create(x.d, update, concreteNode->key, concreteNode->value); } catch (...) { freeData(x.d); throw; } cur = cur->forward[0]; } x.d->insertInOrder = false; } if (!d->ref.deref()) freeData(d); d = x.d; } template QMapData::Node *QMap::mutableFindNode(QMapData::Node *aupdate[], const Key &akey) const { QMapData::Node *cur = e; QMapData::Node *next = e; for (int i = d->topLevel; i >= 0; i--) { while ((next = cur->forward[i]) != e && qMapLessThanKey(concrete(next)->key, akey)) cur = next; aupdate[i] = cur; } if (next != e && !qMapLessThanKey(akey, concrete(next)->key)) { return next; } else { return e; } } template QList QMap::uniqueKeys() const { QList res; res.reserve(size()); const_iterator i = begin(); if (i != end()) { for (;;) { const Key &aKey = i.key(); res.append(aKey); do { if (++i == end()) goto break_out_of_outer_loop; } while (!(aKey < i.key())); } } break_out_of_outer_loop: return res; } template QList QMap::keys() const { QList res; res.reserve(size()); const_iterator i = begin(); while (i != end()) { res.append(i.key()); ++i; } return res; } template QList QMap::keys(const T &avalue) const { QList res; const_iterator i = begin(); while (i != end()) { if (i.value() == avalue) res.append(i.key()); ++i; } return res; } template const Key QMap::key(const T &avalue) const { return key(avalue, Key()); } template const Key QMap::key(const T &avalue, const Key &defaultKey) const { const_iterator i = begin(); while (i != end()) { if (i.value() == avalue) return i.key(); ++i; } return defaultKey; } template QList QMap::values() const { QList res; res.reserve(size()); const_iterator i = begin(); while (i != end()) { res.append(i.value()); ++i; } return res; } template QList QMap::values(const Key &akey) const { QList res; QMapData::Node *node = findNode(akey); if (node != e) { do { res.append(concrete(node)->value); node = node->forward[0]; } while (node != e && !qMapLessThanKey(akey, concrete(node)->key)); } return res; } template inline typename QMap::const_iterator QMap::lowerBound(const Key &akey) const { QMapData::Node *update[QMapData::LastLevel + 1]; mutableFindNode(update, akey); return const_iterator(update[0]->forward[0]); } template inline typename QMap::iterator QMap::lowerBound(const Key &akey) { detach(); return static_cast(const_cast(this)->lowerBound(akey)); } template inline typename QMap::const_iterator QMap::upperBound(const Key &akey) const { QMapData::Node *update[QMapData::LastLevel + 1]; mutableFindNode(update, akey); QMapData::Node *node = update[0]->forward[0]; while (node != e && !qMapLessThanKey(akey, concrete(node)->key)) node = node->forward[0]; return const_iterator(node); } template inline typename QMap::iterator QMap::upperBound(const Key &akey) { detach(); return static_cast(const_cast(this)->upperBound(akey)); } template bool QMap::operator==(const QMap &other) const { if (size() != other.size()) return false; if (d == other.d) return true; const_iterator it1 = begin(); const_iterator it2 = other.begin(); while (it1 != end()) { if (!(it1.value() == it2.value()) || qMapLessThanKey(it1.key(), it2.key()) || qMapLessThanKey(it2.key(), it1.key())) return false; ++it2; ++it1; } return true; } template QMap::QMap(const std::map &other) { d = QMapData::createData(alignment()); d->insertInOrder = true; typename std::map::const_iterator it = other.end(); while (it != other.begin()) { --it; insert((*it).first, (*it).second); } d->insertInOrder = false; } template std::map QMap::toStdMap() const { std::map map; const_iterator it = end(); while (it != begin()) { --it; map.insert(std::pair(it.key(), it.value())); } return map; } template class QMultiMap : public QMap { public: QMultiMap() {} QMultiMap(const QMap &other) : QMap(other) {} inline void swap(QMultiMap &other) { QMap::swap(other); } inline typename QMap::iterator replace(const Key &key, const T &value) { return QMap::insert(key, value); } inline typename QMap::iterator insert(const Key &key, const T &value) { return QMap::insertMulti(key, value); } inline QMultiMap &operator+=(const QMultiMap &other) { this->unite(other); return *this; } inline QMultiMap operator+(const QMultiMap &other) const { QMultiMap result = *this; result += other; return result; } using QMap::contains; using QMap::remove; using QMap::count; using QMap::find; using QMap::constFind; bool contains(const Key &key, const T &value) const; int remove(const Key &key, const T &value); int count(const Key &key, const T &value) const; typename QMap::iterator find(const Key &key, const T &value) { typename QMap::iterator i(find(key)); typename QMap::iterator end(this->end()); while (i != end && !qMapLessThanKey(key, i.key())) { if (i.value() == value) return i; ++i; } return end; } typename QMap::const_iterator find(const Key &key, const T &value) const { typename QMap::const_iterator i(constFind(key)); typename QMap::const_iterator end(QMap::constEnd()); while (i != end && !qMapLessThanKey(key, i.key())) { if (i.value() == value) return i; ++i; } return end; } typename QMap::const_iterator constFind(const Key &key, const T &value) const { return find(key, value); } private: T &operator[](const Key &key); const T operator[](const Key &key) const; }; template inline bool QMultiMap::contains(const Key &key, const T &value) const { return constFind(key, value) != QMap::constEnd(); } template inline int QMultiMap::remove(const Key &key, const T &value) { int n = 0; typename QMap::iterator i(find(key)); typename QMap::iterator end(QMap::end()); while (i != end && !qMapLessThanKey(key, i.key())) { if (i.value() == value) { i = this->erase(i); ++n; } else { ++i; } } return n; } template inline int QMultiMap::count(const Key &key, const T &value) const { int n = 0; typename QMap::const_iterator i(constFind(key)); typename QMap::const_iterator end(QMap::constEnd()); while (i != end && !qMapLessThanKey(key, i.key())) { if (i.value() == value) ++n; ++i; } return n; } template class QMapIterator { typedef typename QMap::const_iterator const_iterator; typedef const_iterator Item; QMap c; const_iterator i, n; inline bool item_exists() const { return n != c.constEnd(); } public: inline QMapIterator(const QMap &container) : c(container), i(c.constBegin()), n(c.constEnd()) {} inline QMapIterator &operator=(const QMap &container) { c = container; i = c.constBegin(); n = c.constEnd(); return *this; } inline void toFront() { i = c.constBegin(); n = c.constEnd(); } inline void toBack() { i = c.constEnd(); n = c.constEnd(); } inline bool hasNext() const { return i != c.constEnd(); } inline Item next() { n = i++; return n; } inline Item peekNext() const { return i; } inline bool hasPrevious() const { return i != c.constBegin(); } inline Item previous() { n = --i; return n; } inline Item peekPrevious() const { const_iterator p = i; return --p; } inline const T &value() const { qt_noop(); return *n; } inline const Key &key() const { qt_noop(); return n.key(); } inline bool findNext(const T &t) { while ((n = i) != c.constEnd()) if (*i++ == t) return true; return false; } inline bool findPrevious(const T &t) { while (i != c.constBegin()) if (*(n = --i) == t) return true; n = c.constEnd(); return false; } }; template class QMutableMapIterator { typedef typename QMap::iterator iterator; typedef typename QMap::const_iterator const_iterator; typedef iterator Item; QMap *c; iterator i, n; inline bool item_exists() const { return const_iterator(n) != c->constEnd(); } public: inline QMutableMapIterator(QMap &container) : c(&container) { c->setSharable(false); i = c->begin(); n = c->end(); } inline ~QMutableMapIterator() { c->setSharable(true); } inline QMutableMapIterator &operator=(QMap &container) { c->setSharable(true); c = &container; c->setSharable(false); i = c->begin(); n = c->end(); return *this; } inline void toFront() { i = c->begin(); n = c->end(); } inline void toBack() { i = c->end(); n = c->end(); } inline bool hasNext() const { return const_iterator(i) != c->constEnd(); } inline Item next() { n = i++; return n; } inline Item peekNext() const { return i; } inline bool hasPrevious() const { return const_iterator(i) != c->constBegin(); } inline Item previous() { n = --i; return n; } inline Item peekPrevious() const { iterator p = i; return --p; } inline void remove() { if (const_iterator(n) != c->constEnd()) { i = c->erase(n); n = c->end(); } } inline void setValue(const T &t) { if (const_iterator(n) != c->constEnd()) *n = t; } inline T &value() { qt_noop(); return *n; } inline const T &value() const { qt_noop(); return *n; } inline const Key &key() const { qt_noop(); return n.key(); } inline bool findNext(const T &t) { while (const_iterator(n = i) != c->constEnd()) if (*i++ == t) return true; return false; } inline bool findPrevious(const T &t) { while (const_iterator(i) != c->constBegin()) if (*(n = --i) == t) return true; n = c->end(); return false; } }; typedef QtValidLicenseForCoreModule QtCoreModule; class QBitArray; class QDataStream; class QDate; class QDateTime; class QEasingCurve; class QLine; class QLineF; class QLocale; class QMatrix; class QTransform; class QStringList; class QTime; class QPoint; class QPointF; class QSize; class QSizeF; class QRect; class QRectF; class QRegExp; class QTextFormat; class QTextLength; class QUrl; class QVariant; class QVariantComparisonHelper; template inline QVariant qVariantFromValue(const T &); template inline T qvariant_cast(const QVariant &); class QVariant { public: enum Type { Invalid = 0, Bool = 1, Int = 2, UInt = 3, LongLong = 4, ULongLong = 5, Double = 6, Char = 7, Map = 8, List = 9, String = 10, StringList = 11, ByteArray = 12, BitArray = 13, Date = 14, Time = 15, DateTime = 16, Url = 17, Locale = 18, Rect = 19, RectF = 20, Size = 21, SizeF = 22, Line = 23, LineF = 24, Point = 25, PointF = 26, RegExp = 27, Hash = 28, EasingCurve = 29, LastCoreType = EasingCurve, Font = 64, Pixmap = 65, Brush = 66, Color = 67, Palette = 68, Icon = 69, Image = 70, Polygon = 71, Region = 72, Bitmap = 73, Cursor = 74, SizePolicy = 75, KeySequence = 76, Pen = 77, TextLength = 78, TextFormat = 79, Matrix = 80, Transform = 81, Matrix4x4 = 82, Vector2D = 83, Vector3D = 84, Vector4D = 85, Quaternion = 86, LastGuiType = Quaternion, UserType = 127, LastType = 0xffffffff }; inline QVariant(); ~QVariant(); QVariant(Type type); QVariant(int typeOrUserType, const void *copy); QVariant(int typeOrUserType, const void *copy, uint flags); QVariant(const QVariant &other); QVariant(QDataStream &s); QVariant(int i); QVariant(uint ui); QVariant(qlonglong ll); QVariant(qulonglong ull); QVariant(bool b); QVariant(double d); QVariant(float f) { d.is_null = false; d.type = QMetaType::Float; d.data.f = f; } QVariant(const char *str); QVariant(const QByteArray &bytearray); QVariant(const QBitArray &bitarray); QVariant(const QString &string); QVariant(const QLatin1String &string); QVariant(const QStringList &stringlist); QVariant(const QChar &qchar); QVariant(const QDate &date); QVariant(const QTime &time); QVariant(const QDateTime &datetime); QVariant(const QList &list); QVariant(const QMap &map); QVariant(const QHash &hash); QVariant(const QSize &size); QVariant(const QSizeF &size); QVariant(const QPoint &pt); QVariant(const QPointF &pt); QVariant(const QLine &line); QVariant(const QLineF &line); QVariant(const QRect &rect); QVariant(const QRectF &rect); QVariant(const QUrl &url); QVariant(const QLocale &locale); QVariant(const QRegExp ®Exp); QVariant(const QEasingCurve &easing); QVariant(Qt::GlobalColor color); QVariant& operator=(const QVariant &other); inline void swap(QVariant &other) { qSwap(d, other.d); } Type type() const; int userType() const; const char *typeName() const; bool canConvert(Type t) const; bool convert(Type t); inline bool isValid() const; bool isNull() const; void clear(); void detach(); inline bool isDetached() const; int toInt(bool *ok = 0) const; uint toUInt(bool *ok = 0) const; qlonglong toLongLong(bool *ok = 0) const; qulonglong toULongLong(bool *ok = 0) const; bool toBool() const; double toDouble(bool *ok = 0) const; float toFloat(bool *ok = 0) const; qreal toReal(bool *ok = 0) const; QByteArray toByteArray() const; QBitArray toBitArray() const; QString toString() const; QStringList toStringList() const; QChar toChar() const; QDate toDate() const; QTime toTime() const; QDateTime toDateTime() const; QList toList() const; QMap toMap() const; QHash toHash() const; QPoint toPoint() const; QPointF toPointF() const; QRect toRect() const; QSize toSize() const; QSizeF toSizeF() const; QLine toLine() const; QLineF toLineF() const; QRectF toRectF() const; QUrl toUrl() const; QLocale toLocale() const; QRegExp toRegExp() const; QEasingCurve toEasingCurve() const; void load(QDataStream &ds); void save(QDataStream &ds) const; static const char *typeToName(Type type); static Type nameToType(const char *name); void *data(); const void *constData() const; inline const void *data() const { return constData(); } template inline void setValue(const T &value); template inline T value() const { return qvariant_cast(*this); } template static inline QVariant fromValue(const T &value) { return qVariantFromValue(value); } template bool canConvert() const { return canConvert(Type(qMetaTypeId())); } public: struct PrivateShared { inline PrivateShared(void *v) : ptr(v), ref(1) { } void *ptr; QAtomicInt ref; }; struct Private { inline Private(): type(Invalid), is_shared(false), is_null(true) { data.ptr = 0; } inline Private(const Private &other) : data(other.data), type(other.type), is_shared(other.is_shared), is_null(other.is_null) {} union Data { char c; int i; uint u; bool b; double d; float f; qreal real; qlonglong ll; qulonglong ull; QObject *o; void *ptr; PrivateShared *shared; } data; uint type : 30; uint is_shared : 1; uint is_null : 1; }; public: typedef void (*f_construct)(Private *, const void *); typedef void (*f_clear)(Private *); typedef bool (*f_null)(const Private *); typedef void (*f_load)(Private *, QDataStream &); typedef void (*f_save)(const Private *, QDataStream &); typedef bool (*f_compare)(const Private *, const Private *); typedef bool (*f_convert)(const QVariant::Private *d, Type t, void *, bool *); typedef bool (*f_canConvert)(const QVariant::Private *d, Type t); typedef void (*f_debugStream)(QDebug, const QVariant &); struct Handler { f_construct construct; f_clear clear; f_null isNull; f_load load; f_save save; f_compare compare; f_convert convert; f_canConvert canConvert; f_debugStream debugStream; }; inline bool operator==(const QVariant &v) const { return cmp(v); } inline bool operator!=(const QVariant &v) const { return !cmp(v); } protected: friend inline bool qvariant_cast_helper(const QVariant &, QVariant::Type, void *); friend int qRegisterGuiVariant(); friend int qUnregisterGuiVariant(); friend inline bool operator==(const QVariant &, const QVariantComparisonHelper &); friend QDebug operator<<(QDebug, const QVariant &); Private d; static const Handler *handler; void create(int type, const void *copy); bool cmp(const QVariant &other) const; private: inline QVariant(void *) { qt_noop(); } inline QVariant(bool, int) { qt_noop(); } public: typedef Private DataPtr; inline DataPtr &data_ptr() { return d; } }; typedef QList QVariantList; typedef QMap QVariantMap; typedef QHash QVariantHash; inline bool qvariant_cast_helper(const QVariant &v, QVariant::Type tp, void *ptr) { return QVariant::handler->convert(&v.d, tp, ptr, 0); } template inline QVariant qVariantFromValue(const T &t) { return QVariant(qMetaTypeId(reinterpret_cast(0)), &t, QTypeInfo::isPointer); } template <> inline QVariant qVariantFromValue(const QVariant &t) { return t; } template inline void qVariantSetValue(QVariant &v, const T &t) { const uint type = qMetaTypeId(reinterpret_cast(0)); QVariant::Private &d = v.data_ptr(); if (v.isDetached() && (type == d.type || (type <= uint(QVariant::Char) && d.type <= uint(QVariant::Char)))) { d.type = type; d.is_null = false; T *old = reinterpret_cast(d.is_shared ? d.data.shared->ptr : &d.data.ptr); if (QTypeInfo::isComplex) old->~T(); new (old) T(t); } else { v = QVariant(type, &t, QTypeInfo::isPointer); } } template <> inline void qVariantSetValue(QVariant &v, const QVariant &t) { v = t; } inline QVariant::QVariant() {} inline bool QVariant::isValid() const { return d.type != Invalid; } template inline void QVariant::setValue(const T &avalue) { qVariantSetValue(*this, avalue); } QDataStream& operator>> (QDataStream& s, QVariant& p); QDataStream& operator<< (QDataStream& s, const QVariant& p); QDataStream& operator>> (QDataStream& s, QVariant::Type& p); QDataStream& operator<< (QDataStream& s, const QVariant::Type p); inline bool QVariant::isDetached() const { return !d.is_shared || d.data.shared->ref == 1; } class QVariantComparisonHelper { public: inline QVariantComparisonHelper(const QVariant &var) : v(&var) {} private: friend inline bool operator==(const QVariant &, const QVariantComparisonHelper &); const QVariant *v; }; inline bool operator==(const QVariant &v1, const QVariantComparisonHelper &v2) { return v1.cmp(*v2.v); } inline bool operator!=(const QVariant &v1, const QVariantComparisonHelper &v2) { return !operator==(v1, v2); } template inline T qvariant_cast(const QVariant &v) { const int vid = qMetaTypeId(static_cast(0)); if (vid == v.userType()) return *reinterpret_cast(v.constData()); if (vid < int(QMetaType::User)) { T t; if (qvariant_cast_helper(v, QVariant::Type(vid), &t)) return t; } return T(); } template<> inline QVariant qvariant_cast(const QVariant &v) { if (v.userType() == QMetaType::QVariant) return *reinterpret_cast(v.constData()); return v; } template inline T qVariantValue(const QVariant &variant) { return qvariant_cast(variant); } template inline bool qVariantCanConvert(const QVariant &variant) { return variant.template canConvert(); } template <> inline bool qIsDetached(QVariant &t) { return t.isDetached(); } template <> inline void qSwap(QVariant &value1, QVariant &value2) { qSwap(value1.data_ptr(), value2.data_ptr()); } namespace std { template<> inline void swap< ::QVariant>(::QVariant &value1, ::QVariant &value2) { swap(value1.data_ptr(), value2.data_ptr()); } } template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QVariant)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QVariant"; } }; QDebug operator<<(QDebug, const QVariant &); QDebug operator<<(QDebug, const QVariant::Type); template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QVariantList }; static inline int qt_metatype_id() { return QMetaType::QVariantList; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QVariantMap }; static inline int qt_metatype_id() { return QMetaType::QVariantMap; } }; template<> struct QMetaTypeId2 { enum { Defined = 1, MetaType = QMetaType::QVariantHash }; static inline int qt_metatype_id() { return QMetaType::QVariantHash; } }; typedef QtValidLicenseForCoreModule QtCoreModule; class QDataStream; class QDate; class QDateTime; class QTime; class QVariant; class QTextStream; class QTextStreamPrivate; class QLocale; class QSystemLocale { public: QSystemLocale(); virtual ~QSystemLocale(); struct CurrencyToStringArgument { CurrencyToStringArgument() { } CurrencyToStringArgument(const QVariant &v, const QString &s) : value(v), symbol(s) { } QVariant value; QString symbol; }; enum QueryType { LanguageId, CountryId, DecimalPoint, GroupSeparator, ZeroDigit, NegativeSign, DateFormatLong, DateFormatShort, TimeFormatLong, TimeFormatShort, DayNameLong, DayNameShort, MonthNameLong, MonthNameShort, DateToStringLong, DateToStringShort, TimeToStringLong, TimeToStringShort, DateTimeFormatLong, DateTimeFormatShort, DateTimeToStringLong, DateTimeToStringShort, MeasurementSystem, PositiveSign, AMText, PMText, FirstDayOfWeek, Weekdays, CurrencySymbol, CurrencyToString, UILanguages, StringToStandardQuotation, StringToAlternateQuotation, ScriptId, ListToSeparatedString, LocaleChanged, NativeLanguageName, NativeCountryName }; virtual QVariant query(QueryType type, QVariant in) const; virtual QLocale fallbackLocale() const; private: QSystemLocale(bool); friend QSystemLocale *QSystemLocale_globalSystemLocale(); }; struct QLocalePrivate; class QLocale { public: static const QMetaObject staticMetaObject; private: friend class QString; friend class QByteArray; friend class QIntValidator; friend class QDoubleValidatorPrivate; friend class QTextStream; friend class QTextStreamPrivate; public: enum Language { AnyLanguage = 0, C = 1, Abkhazian = 2, Afan = 3, Afar = 4, Afrikaans = 5, Albanian = 6, Amharic = 7, Arabic = 8, Armenian = 9, Assamese = 10, Aymara = 11, Azerbaijani = 12, Bashkir = 13, Basque = 14, Bengali = 15, Bhutani = 16, Bihari = 17, Bislama = 18, Breton = 19, Bulgarian = 20, Burmese = 21, Byelorussian = 22, Cambodian = 23, Catalan = 24, Chinese = 25, Corsican = 26, Croatian = 27, Czech = 28, Danish = 29, Dutch = 30, English = 31, Esperanto = 32, Estonian = 33, Faroese = 34, FijiLanguage = 35, Finnish = 36, French = 37, Frisian = 38, Gaelic = 39, Galician = 40, Georgian = 41, German = 42, Greek = 43, Greenlandic = 44, Guarani = 45, Gujarati = 46, Hausa = 47, Hebrew = 48, Hindi = 49, Hungarian = 50, Icelandic = 51, Indonesian = 52, Interlingua = 53, Interlingue = 54, Inuktitut = 55, Inupiak = 56, Irish = 57, Italian = 58, Japanese = 59, Javanese = 60, Kannada = 61, Kashmiri = 62, Kazakh = 63, Kinyarwanda = 64, Kirghiz = 65, Korean = 66, Kurdish = 67, Rundi = 68, Laothian = 69, Latin = 70, Latvian = 71, Lingala = 72, Lithuanian = 73, Macedonian = 74, Malagasy = 75, Malay = 76, Malayalam = 77, Maltese = 78, Maori = 79, Marathi = 80, Moldavian = 81, Mongolian = 82, NauruLanguage = 83, Nepali = 84, Norwegian = 85, Occitan = 86, Oriya = 87, Pashto = 88, Persian = 89, Polish = 90, Portuguese = 91, Punjabi = 92, Quechua = 93, RhaetoRomance = 94, Romanian = 95, Russian = 96, Samoan = 97, Sangho = 98, Sanskrit = 99, Serbian = 100, SerboCroatian = 101, Sesotho = 102, Setswana = 103, Shona = 104, Sindhi = 105, Singhalese = 106, Siswati = 107, Slovak = 108, Slovenian = 109, Somali = 110, Spanish = 111, Sundanese = 112, Swahili = 113, Swedish = 114, Tagalog = 115, Tajik = 116, Tamil = 117, Tatar = 118, Telugu = 119, Thai = 120, Tibetan = 121, Tigrinya = 122, TongaLanguage = 123, Tsonga = 124, Turkish = 125, Turkmen = 126, Twi = 127, Uigur = 128, Ukrainian = 129, Urdu = 130, Uzbek = 131, Vietnamese = 132, Volapuk = 133, Welsh = 134, Wolof = 135, Xhosa = 136, Yiddish = 137, Yoruba = 138, Zhuang = 139, Zulu = 140, Nynorsk = 141, Bosnian = 142, Divehi = 143, Manx = 144, Cornish = 145, Akan = 146, Konkani = 147, Ga = 148, Igbo = 149, Kamba = 150, Syriac = 151, Blin = 152, Geez = 153, Koro = 154, Sidamo = 155, Atsam = 156, Tigre = 157, Jju = 158, Friulian = 159, Venda = 160, Ewe = 161, Walamo = 162, Hawaiian = 163, Tyap = 164, Chewa = 165, Filipino = 166, SwissGerman = 167, SichuanYi = 168, Kpelle = 169, LowGerman = 170, SouthNdebele = 171, NorthernSotho = 172, NorthernSami = 173, Taroko = 174, Gusii = 175, Taita = 176, Fulah = 177, Kikuyu = 178, Samburu = 179, Sena = 180, NorthNdebele = 181, Rombo = 182, Tachelhit = 183, Kabyle = 184, Nyankole = 185, Bena = 186, Vunjo = 187, Bambara = 188, Embu = 189, Cherokee = 190, Morisyen = 191, Makonde = 192, Langi = 193, Ganda = 194, Bemba = 195, Kabuverdianu = 196, Meru = 197, Kalenjin = 198, Nama = 199, Machame = 200, Colognian = 201, Masai = 202, Soga = 203, Luyia = 204, Asu = 205, Teso = 206, Saho = 207, KoyraChiini = 208, Rwa = 209, Luo = 210, Chiga = 211, CentralMoroccoTamazight = 212, KoyraboroSenni = 213, Shambala = 214, Bodo = 215, Aghem = 216, Basaa = 217, Zarma = 218, Duala = 219, JolaFonyi = 220, Ewondo = 221, Bafia = 222, LubaKatanga = 223, MakhuwaMeetto = 224, Mundang = 225, Kwasio = 226, Nuer = 227, Sakha = 228, Sangu = 229, CongoSwahili = 230, Tasawaq = 231, Vai = 232, Walser = 233, Yangben = 234, NorwegianBokmal = Norwegian, NorwegianNynorsk = Nynorsk, Kurundi = Rundi, LastLanguage = Yangben }; enum Script { AnyScript = 0, ArabicScript = 1, CyrillicScript = 2, DeseretScript = 3, GurmukhiScript = 4, SimplifiedHanScript = 5, TraditionalHanScript = 6, LatinScript = 7, MongolianScript = 8, TifinaghScript = 9, SimplifiedChineseScript = SimplifiedHanScript, TraditionalChineseScript = TraditionalHanScript, LastScript = TifinaghScript }; enum Country { AnyCountry = 0, Afghanistan = 1, Albania = 2, Algeria = 3, AmericanSamoa = 4, Andorra = 5, Angola = 6, Anguilla = 7, Antarctica = 8, AntiguaAndBarbuda = 9, Argentina = 10, Armenia = 11, Aruba = 12, Australia = 13, Austria = 14, Azerbaijan = 15, Bahamas = 16, Bahrain = 17, Bangladesh = 18, Barbados = 19, Belarus = 20, Belgium = 21, Belize = 22, Benin = 23, Bermuda = 24, Bhutan = 25, Bolivia = 26, BosniaAndHerzegowina = 27, Botswana = 28, BouvetIsland = 29, Brazil = 30, BritishIndianOceanTerritory = 31, BruneiDarussalam = 32, Bulgaria = 33, BurkinaFaso = 34, Burundi = 35, Cambodia = 36, Cameroon = 37, Canada = 38, CapeVerde = 39, CaymanIslands = 40, CentralAfricanRepublic = 41, Chad = 42, Chile = 43, China = 44, ChristmasIsland = 45, CocosIslands = 46, Colombia = 47, Comoros = 48, DemocraticRepublicOfCongo = 49, PeoplesRepublicOfCongo = 50, CookIslands = 51, CostaRica = 52, IvoryCoast = 53, Croatia = 54, Cuba = 55, Cyprus = 56, CzechRepublic = 57, Denmark = 58, Djibouti = 59, Dominica = 60, DominicanRepublic = 61, EastTimor = 62, Ecuador = 63, Egypt = 64, ElSalvador = 65, EquatorialGuinea = 66, Eritrea = 67, Estonia = 68, Ethiopia = 69, FalklandIslands = 70, FaroeIslands = 71, FijiCountry = 72, Finland = 73, France = 74, MetropolitanFrance = 75, FrenchGuiana = 76, FrenchPolynesia = 77, FrenchSouthernTerritories = 78, Gabon = 79, Gambia = 80, Georgia = 81, Germany = 82, Ghana = 83, Gibraltar = 84, Greece = 85, Greenland = 86, Grenada = 87, Guadeloupe = 88, Guam = 89, Guatemala = 90, Guinea = 91, GuineaBissau = 92, Guyana = 93, Haiti = 94, HeardAndMcDonaldIslands = 95, Honduras = 96, HongKong = 97, Hungary = 98, Iceland = 99, India = 100, Indonesia = 101, Iran = 102, Iraq = 103, Ireland = 104, Israel = 105, Italy = 106, Jamaica = 107, Japan = 108, Jordan = 109, Kazakhstan = 110, Kenya = 111, Kiribati = 112, DemocraticRepublicOfKorea = 113, RepublicOfKorea = 114, Kuwait = 115, Kyrgyzstan = 116, Lao = 117, Latvia = 118, Lebanon = 119, Lesotho = 120, Liberia = 121, LibyanArabJamahiriya = 122, Liechtenstein = 123, Lithuania = 124, Luxembourg = 125, Macau = 126, Macedonia = 127, Madagascar = 128, Malawi = 129, Malaysia = 130, Maldives = 131, Mali = 132, Malta = 133, MarshallIslands = 134, Martinique = 135, Mauritania = 136, Mauritius = 137, Mayotte = 138, Mexico = 139, Micronesia = 140, Moldova = 141, Monaco = 142, Mongolia = 143, Montserrat = 144, Morocco = 145, Mozambique = 146, Myanmar = 147, Namibia = 148, NauruCountry = 149, Nepal = 150, Netherlands = 151, NetherlandsAntilles = 152, NewCaledonia = 153, NewZealand = 154, Nicaragua = 155, Niger = 156, Nigeria = 157, Niue = 158, NorfolkIsland = 159, NorthernMarianaIslands = 160, Norway = 161, Oman = 162, Pakistan = 163, Palau = 164, PalestinianTerritory = 165, Panama = 166, PapuaNewGuinea = 167, Paraguay = 168, Peru = 169, Philippines = 170, Pitcairn = 171, Poland = 172, Portugal = 173, PuertoRico = 174, Qatar = 175, Reunion = 176, Romania = 177, RussianFederation = 178, Rwanda = 179, SaintKittsAndNevis = 180, StLucia = 181, StVincentAndTheGrenadines = 182, Samoa = 183, SanMarino = 184, SaoTomeAndPrincipe = 185, SaudiArabia = 186, Senegal = 187, Seychelles = 188, SierraLeone = 189, Singapore = 190, Slovakia = 191, Slovenia = 192, SolomonIslands = 193, Somalia = 194, SouthAfrica = 195, SouthGeorgiaAndTheSouthSandwichIslands = 196, Spain = 197, SriLanka = 198, StHelena = 199, StPierreAndMiquelon = 200, Sudan = 201, Suriname = 202, SvalbardAndJanMayenIslands = 203, Swaziland = 204, Sweden = 205, Switzerland = 206, SyrianArabRepublic = 207, Taiwan = 208, Tajikistan = 209, Tanzania = 210, Thailand = 211, Togo = 212, Tokelau = 213, TongaCountry = 214, TrinidadAndTobago = 215, Tunisia = 216, Turkey = 217, Turkmenistan = 218, TurksAndCaicosIslands = 219, Tuvalu = 220, Uganda = 221, Ukraine = 222, UnitedArabEmirates = 223, UnitedKingdom = 224, UnitedStates = 225, UnitedStatesMinorOutlyingIslands = 226, Uruguay = 227, Uzbekistan = 228, Vanuatu = 229, VaticanCityState = 230, Venezuela = 231, VietNam = 232, BritishVirginIslands = 233, USVirginIslands = 234, WallisAndFutunaIslands = 235, WesternSahara = 236, Yemen = 237, Yugoslavia = 238, Zambia = 239, Zimbabwe = 240, SerbiaAndMontenegro = 241, Montenegro = 242, Serbia = 243, SaintBarthelemy = 244, SaintMartin = 245, LatinAmericaAndTheCaribbean = 246, LastCountry = LatinAmericaAndTheCaribbean }; enum MeasurementSystem { MetricSystem, ImperialSystem }; enum FormatType { LongFormat, ShortFormat, NarrowFormat }; enum NumberOption { OmitGroupSeparator = 0x01, RejectGroupSeparator = 0x02 }; typedef QFlags NumberOptions; enum CurrencySymbolFormat { CurrencyIsoCode, CurrencySymbol, CurrencyDisplayName }; QLocale(); QLocale(const QString &name); QLocale(Language language, Country country = AnyCountry); QLocale(Language language, Script script, Country country); QLocale(const QLocale &other); QLocale &operator=(const QLocale &other); Language language() const; Script script() const; Country country() const; QString name() const; QString bcp47Name() const; QString nativeLanguageName() const; QString nativeCountryName() const; short toShort(const QString &s, bool *ok = 0, int base = 0) const; ushort toUShort(const QString &s, bool *ok = 0, int base = 0) const; int toInt(const QString &s, bool *ok = 0, int base = 0) const; uint toUInt(const QString &s, bool *ok = 0, int base = 0) const; qlonglong toLongLong(const QString &s, bool *ok = 0, int base = 0) const; qlonglong toULongLong(const QString &s, bool *ok = 0, int base = 0) const; float toFloat(const QString &s, bool *ok = 0) const; double toDouble(const QString &s, bool *ok = 0) const; QString toString(qlonglong i) const; QString toString(qulonglong i) const; inline QString toString(short i) const; inline QString toString(ushort i) const; inline QString toString(int i) const; inline QString toString(uint i) const; QString toString(double i, char f = 'g', int prec = 6) const; inline QString toString(float i, char f = 'g', int prec = 6) const; QString toString(const QDate &date, const QString &formatStr) const; QString toString(const QDate &date, FormatType format = LongFormat) const; QString toString(const QTime &time, const QString &formatStr) const; QString toString(const QTime &time, FormatType format = LongFormat) const; QString toString(const QDateTime &dateTime, FormatType format = LongFormat) const; QString toString(const QDateTime &dateTime, const QString &format) const; QString dateFormat(FormatType format = LongFormat) const; QString timeFormat(FormatType format = LongFormat) const; QString dateTimeFormat(FormatType format = LongFormat) const; QDate toDate(const QString &string, FormatType = LongFormat) const; QTime toTime(const QString &string, FormatType = LongFormat) const; QDateTime toDateTime(const QString &string, FormatType format = LongFormat) const; QDate toDate(const QString &string, const QString &format) const; QTime toTime(const QString &string, const QString &format) const; QDateTime toDateTime(const QString &string, const QString &format) const; QChar decimalPoint() const; QChar groupSeparator() const; QChar percent() const; QChar zeroDigit() const; QChar negativeSign() const; QChar positiveSign() const; QChar exponential() const; QString monthName(int, FormatType format = LongFormat) const; QString standaloneMonthName(int, FormatType format = LongFormat) const; QString dayName(int, FormatType format = LongFormat) const; QString standaloneDayName(int, FormatType format = LongFormat) const; Qt::DayOfWeek firstDayOfWeek() const; QList weekdays() const; QString amText() const; QString pmText() const; MeasurementSystem measurementSystem() const; Qt::LayoutDirection textDirection() const; QString toUpper(const QString &str) const; QString toLower(const QString &str) const; QString currencySymbol(CurrencySymbolFormat = CurrencySymbol) const; QString toCurrencyString(qlonglong, const QString &symbol = QString()) const; QString toCurrencyString(qulonglong, const QString &symbol = QString()) const; inline QString toCurrencyString(short, const QString &symbol = QString()) const; inline QString toCurrencyString(ushort, const QString &symbol = QString()) const; inline QString toCurrencyString(int, const QString &symbol = QString()) const; inline QString toCurrencyString(uint, const QString &symbol = QString()) const; QString toCurrencyString(double, const QString &symbol = QString()) const; inline QString toCurrencyString(float, const QString &symbol = QString()) const; QStringList uiLanguages() const; inline bool operator==(const QLocale &other) const; inline bool operator!=(const QLocale &other) const; static QString languageToString(Language language); static QString countryToString(Country country); static QString scriptToString(Script script); static void setDefault(const QLocale &locale); static QLocale c() { return QLocale(C); } static QLocale system(); static QList matchingLocales(QLocale::Language language, QLocale::Script script, QLocale::Country country); static QList countriesForLanguage(Language lang); void setNumberOptions(NumberOptions options); NumberOptions numberOptions() const; enum QuotationStyle { StandardQuotation, AlternateQuotation }; QString quoteString(const QString &str, QuotationStyle style = StandardQuotation) const; QString quoteString(const QStringRef &str, QuotationStyle style = StandardQuotation) const; QString createSeparatedList(const QStringList &strl) const; struct Data { quint16 index; quint16 numberOptions; } __attribute__ ((__packed__)) ; private: friend struct QLocalePrivate; union { void *v; Data p; }; const QLocalePrivate *d() const; }; template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QLocale)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QLocale"; } }; inline QFlags operator|(QLocale::NumberOptions::enum_type f1, QLocale::NumberOptions::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(QLocale::NumberOptions::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(QLocale::NumberOptions::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } inline QString QLocale::toString(short i) const { return toString(qlonglong(i)); } inline QString QLocale::toString(ushort i) const { return toString(qulonglong(i)); } inline QString QLocale::toString(int i) const { return toString(qlonglong(i)); } inline QString QLocale::toString(uint i) const { return toString(qulonglong(i)); } inline QString QLocale::toString(float i, char f, int prec) const { return toString(double(i), f, prec); } inline bool QLocale::operator==(const QLocale &other) const { return d() == other.d() && numberOptions() == other.numberOptions(); } inline bool QLocale::operator!=(const QLocale &other) const { return d() != other.d() || numberOptions() != other.numberOptions(); } inline QString QLocale::toCurrencyString(short i, const QString &symbol) const { return toCurrencyString(qlonglong(i), symbol); } inline QString QLocale::toCurrencyString(ushort i, const QString &symbol) const { return toCurrencyString(qulonglong(i), symbol); } inline QString QLocale::toCurrencyString(int i, const QString &symbol) const { return toCurrencyString(qlonglong(i), symbol); } inline QString QLocale::toCurrencyString(uint i, const QString &symbol) const { return toCurrencyString(qulonglong(i), symbol); } inline QString QLocale::toCurrencyString(float i, const QString &symbol) const { return toCurrencyString(double(i), symbol); } QDataStream &operator<<(QDataStream &, const QLocale &); QDataStream &operator>>(QDataStream &, QLocale &); template <> struct QMetaTypeId< QSystemLocale::CurrencyToStringArgument > { enum { Defined = 1 }; static int qt_metatype_id() { static QBasicAtomicInt metatype_id = { (0) }; if (!metatype_id) metatype_id = qRegisterMetaType< QSystemLocale::CurrencyToStringArgument >("QSystemLocale::CurrencyToStringArgument", reinterpret_cast< QSystemLocale::CurrencyToStringArgument *>(quintptr(-1))); return metatype_id; } }; typedef QtValidLicenseForCoreModule QtCoreModule; class QMargins { public: QMargins(); QMargins(int left, int top, int right, int bottom); bool isNull() const; int left() const; int top() const; int right() const; int bottom() const; void setLeft(int left); void setTop(int top); void setRight(int right); void setBottom(int bottom); private: int m_left; int m_top; int m_right; int m_bottom; friend inline bool operator==(const QMargins &, const QMargins &); friend inline bool operator!=(const QMargins &, const QMargins &); }; template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QMargins)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QMargins"; } }; inline QMargins::QMargins() { m_top = m_bottom = m_left = m_right = 0; } inline QMargins::QMargins(int aleft, int atop, int aright, int abottom) : m_left(aleft), m_top(atop), m_right(aright), m_bottom(abottom) {} inline bool QMargins::isNull() const { return m_left==0 && m_top==0 && m_right==0 && m_bottom==0; } inline int QMargins::left() const { return m_left; } inline int QMargins::top() const { return m_top; } inline int QMargins::right() const { return m_right; } inline int QMargins::bottom() const { return m_bottom; } inline void QMargins::setLeft(int aleft) { m_left = aleft; } inline void QMargins::setTop(int atop) { m_top = atop; } inline void QMargins::setRight(int aright) { m_right = aright; } inline void QMargins::setBottom(int abottom) { m_bottom = abottom; } inline bool operator==(const QMargins &m1, const QMargins &m2) { return m1.m_left == m2.m_left && m1.m_top == m2.m_top && m1.m_right == m2.m_right && m1.m_bottom == m2.m_bottom; } inline bool operator!=(const QMargins &m1, const QMargins &m2) { return m1.m_left != m2.m_left || m1.m_top != m2.m_top || m1.m_right != m2.m_right || m1.m_bottom != m2.m_bottom; } QDebug operator<<(QDebug, const QMargins &); typedef QtValidLicenseForCoreModule QtCoreModule; template class QQueue : public QList { public: inline QQueue() {} inline ~QQueue() {} inline void swap(QQueue &other) { QList::swap(other); } inline void enqueue(const T &t) { QList::append(t); } inline T dequeue() { return QList::takeFirst(); } inline T &head() { return QList::first(); } inline const T &head() const { return QList::first(); } }; typedef QtValidLicenseForCoreModule QtCoreModule; class QSize { public: QSize(); QSize(int w, int h); bool isNull() const; bool isEmpty() const; bool isValid() const; int width() const; int height() const; void setWidth(int w); void setHeight(int h); void transpose(); void scale(int w, int h, Qt::AspectRatioMode mode); void scale(const QSize &s, Qt::AspectRatioMode mode); QSize expandedTo(const QSize &) const; QSize boundedTo(const QSize &) const; int &rwidth(); int &rheight(); QSize &operator+=(const QSize &); QSize &operator-=(const QSize &); QSize &operator*=(qreal c); QSize &operator/=(qreal c); friend inline bool operator==(const QSize &, const QSize &); friend inline bool operator!=(const QSize &, const QSize &); friend inline const QSize operator+(const QSize &, const QSize &); friend inline const QSize operator-(const QSize &, const QSize &); friend inline const QSize operator*(const QSize &, qreal); friend inline const QSize operator*(qreal, const QSize &); friend inline const QSize operator/(const QSize &, qreal); private: int wd; int ht; }; template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QSize)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QSize"; } }; QDataStream &operator<<(QDataStream &, const QSize &); QDataStream &operator>>(QDataStream &, QSize &); inline QSize::QSize() { wd = ht = -1; } inline QSize::QSize(int w, int h) { wd = w; ht = h; } inline bool QSize::isNull() const { return wd==0 && ht==0; } inline bool QSize::isEmpty() const { return wd<1 || ht<1; } inline bool QSize::isValid() const { return wd>=0 && ht>=0; } inline int QSize::width() const { return wd; } inline int QSize::height() const { return ht; } inline void QSize::setWidth(int w) { wd = w; } inline void QSize::setHeight(int h) { ht = h; } inline void QSize::scale(int w, int h, Qt::AspectRatioMode mode) { scale(QSize(w, h), mode); } inline int &QSize::rwidth() { return wd; } inline int &QSize::rheight() { return ht; } inline QSize &QSize::operator+=(const QSize &s) { wd+=s.wd; ht+=s.ht; return *this; } inline QSize &QSize::operator-=(const QSize &s) { wd-=s.wd; ht-=s.ht; return *this; } inline QSize &QSize::operator*=(qreal c) { wd = qRound(wd*c); ht = qRound(ht*c); return *this; } inline bool operator==(const QSize &s1, const QSize &s2) { return s1.wd == s2.wd && s1.ht == s2.ht; } inline bool operator!=(const QSize &s1, const QSize &s2) { return s1.wd != s2.wd || s1.ht != s2.ht; } inline const QSize operator+(const QSize & s1, const QSize & s2) { return QSize(s1.wd+s2.wd, s1.ht+s2.ht); } inline const QSize operator-(const QSize &s1, const QSize &s2) { return QSize(s1.wd-s2.wd, s1.ht-s2.ht); } inline const QSize operator*(const QSize &s, qreal c) { return QSize(qRound(s.wd*c), qRound(s.ht*c)); } inline const QSize operator*(qreal c, const QSize &s) { return QSize(qRound(s.wd*c), qRound(s.ht*c)); } inline QSize &QSize::operator/=(qreal c) { qt_noop(); wd = qRound(wd/c); ht = qRound(ht/c); return *this; } inline const QSize operator/(const QSize &s, qreal c) { qt_noop(); return QSize(qRound(s.wd/c), qRound(s.ht/c)); } inline QSize QSize::expandedTo(const QSize & otherSize) const { return QSize(qMax(wd,otherSize.wd), qMax(ht,otherSize.ht)); } inline QSize QSize::boundedTo(const QSize & otherSize) const { return QSize(qMin(wd,otherSize.wd), qMin(ht,otherSize.ht)); } QDebug operator<<(QDebug, const QSize &); class QSizeF { public: QSizeF(); QSizeF(const QSize &sz); QSizeF(qreal w, qreal h); bool isNull() const; bool isEmpty() const; bool isValid() const; qreal width() const; qreal height() const; void setWidth(qreal w); void setHeight(qreal h); void transpose(); void scale(qreal w, qreal h, Qt::AspectRatioMode mode); void scale(const QSizeF &s, Qt::AspectRatioMode mode); QSizeF expandedTo(const QSizeF &) const; QSizeF boundedTo(const QSizeF &) const; qreal &rwidth(); qreal &rheight(); QSizeF &operator+=(const QSizeF &); QSizeF &operator-=(const QSizeF &); QSizeF &operator*=(qreal c); QSizeF &operator/=(qreal c); friend inline bool operator==(const QSizeF &, const QSizeF &); friend inline bool operator!=(const QSizeF &, const QSizeF &); friend inline const QSizeF operator+(const QSizeF &, const QSizeF &); friend inline const QSizeF operator-(const QSizeF &, const QSizeF &); friend inline const QSizeF operator*(const QSizeF &, qreal); friend inline const QSizeF operator*(qreal, const QSizeF &); friend inline const QSizeF operator/(const QSizeF &, qreal); inline QSize toSize() const; private: qreal wd; qreal ht; }; template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QSizeF)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QSizeF"; } }; QDataStream &operator<<(QDataStream &, const QSizeF &); QDataStream &operator>>(QDataStream &, QSizeF &); inline QSizeF::QSizeF() { wd = ht = -1.; } inline QSizeF::QSizeF(const QSize &sz) : wd(sz.width()), ht(sz.height()) { } inline QSizeF::QSizeF(qreal w, qreal h) { wd = w; ht = h; } inline bool QSizeF::isNull() const { return qIsNull(wd) && qIsNull(ht); } inline bool QSizeF::isEmpty() const { return wd <= 0. || ht <= 0.; } inline bool QSizeF::isValid() const { return wd >= 0. && ht >= 0.; } inline qreal QSizeF::width() const { return wd; } inline qreal QSizeF::height() const { return ht; } inline void QSizeF::setWidth(qreal w) { wd = w; } inline void QSizeF::setHeight(qreal h) { ht = h; } inline void QSizeF::scale(qreal w, qreal h, Qt::AspectRatioMode mode) { scale(QSizeF(w, h), mode); } inline qreal &QSizeF::rwidth() { return wd; } inline qreal &QSizeF::rheight() { return ht; } inline QSizeF &QSizeF::operator+=(const QSizeF &s) { wd += s.wd; ht += s.ht; return *this; } inline QSizeF &QSizeF::operator-=(const QSizeF &s) { wd -= s.wd; ht -= s.ht; return *this; } inline QSizeF &QSizeF::operator*=(qreal c) { wd *= c; ht *= c; return *this; } inline bool operator==(const QSizeF &s1, const QSizeF &s2) { return qFuzzyCompare(s1.wd, s2.wd) && qFuzzyCompare(s1.ht, s2.ht); } inline bool operator!=(const QSizeF &s1, const QSizeF &s2) { return !qFuzzyCompare(s1.wd, s2.wd) || !qFuzzyCompare(s1.ht, s2.ht); } inline const QSizeF operator+(const QSizeF & s1, const QSizeF & s2) { return QSizeF(s1.wd+s2.wd, s1.ht+s2.ht); } inline const QSizeF operator-(const QSizeF &s1, const QSizeF &s2) { return QSizeF(s1.wd-s2.wd, s1.ht-s2.ht); } inline const QSizeF operator*(const QSizeF &s, qreal c) { return QSizeF(s.wd*c, s.ht*c); } inline const QSizeF operator*(qreal c, const QSizeF &s) { return QSizeF(s.wd*c, s.ht*c); } inline QSizeF &QSizeF::operator/=(qreal c) { qt_noop(); wd = wd/c; ht = ht/c; return *this; } inline const QSizeF operator/(const QSizeF &s, qreal c) { qt_noop(); return QSizeF(s.wd/c, s.ht/c); } inline QSizeF QSizeF::expandedTo(const QSizeF & otherSize) const { return QSizeF(qMax(wd,otherSize.wd), qMax(ht,otherSize.ht)); } inline QSizeF QSizeF::boundedTo(const QSizeF & otherSize) const { return QSizeF(qMin(wd,otherSize.wd), qMin(ht,otherSize.ht)); } inline QSize QSizeF::toSize() const { return QSize(qRound(wd), qRound(ht)); } QDebug operator<<(QDebug, const QSizeF &); typedef QtValidLicenseForCoreModule QtCoreModule; class QRect { public: QRect() { x1 = y1 = 0; x2 = y2 = -1; } QRect(const QPoint &topleft, const QPoint &bottomright); QRect(const QPoint &topleft, const QSize &size); QRect(int left, int top, int width, int height); bool isNull() const; bool isEmpty() const; bool isValid() const; int left() const; int top() const; int right() const; int bottom() const; QRect normalized() const; int x() const; int y() const; void setLeft(int pos); void setTop(int pos); void setRight(int pos); void setBottom(int pos); void setX(int x); void setY(int y); void setTopLeft(const QPoint &p); void setBottomRight(const QPoint &p); void setTopRight(const QPoint &p); void setBottomLeft(const QPoint &p); QPoint topLeft() const; QPoint bottomRight() const; QPoint topRight() const; QPoint bottomLeft() const; QPoint center() const; void moveLeft(int pos); void moveTop(int pos); void moveRight(int pos); void moveBottom(int pos); void moveTopLeft(const QPoint &p); void moveBottomRight(const QPoint &p); void moveTopRight(const QPoint &p); void moveBottomLeft(const QPoint &p); void moveCenter(const QPoint &p); inline void translate(int dx, int dy); inline void translate(const QPoint &p); inline QRect translated(int dx, int dy) const; inline QRect translated(const QPoint &p) const; void moveTo(int x, int t); void moveTo(const QPoint &p); void setRect(int x, int y, int w, int h); inline void getRect(int *x, int *y, int *w, int *h) const; void setCoords(int x1, int y1, int x2, int y2); inline void getCoords(int *x1, int *y1, int *x2, int *y2) const; inline void adjust(int x1, int y1, int x2, int y2); inline QRect adjusted(int x1, int y1, int x2, int y2) const; QSize size() const; int width() const; int height() const; void setWidth(int w); void setHeight(int h); void setSize(const QSize &s); QRect operator|(const QRect &r) const; QRect operator&(const QRect &r) const; QRect& operator|=(const QRect &r); QRect& operator&=(const QRect &r); bool contains(const QPoint &p, bool proper=false) const; bool contains(int x, int y) const; bool contains(int x, int y, bool proper) const; bool contains(const QRect &r, bool proper = false) const; QRect unite(const QRect &r) const; QRect united(const QRect &other) const; QRect intersect(const QRect &r) const; QRect intersected(const QRect &other) const; bool intersects(const QRect &r) const; friend inline bool operator==(const QRect &, const QRect &); friend inline bool operator!=(const QRect &, const QRect &); private: friend void qt_setCoords(QRect *r, int xp1, int yp1, int xp2, int yp2); int x1; int y1; int x2; int y2; }; template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QRect)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QRect"; } }; inline bool operator==(const QRect &, const QRect &); inline bool operator!=(const QRect &, const QRect &); QDataStream &operator<<(QDataStream &, const QRect &); QDataStream &operator>>(QDataStream &, QRect &); inline QRect::QRect(int aleft, int atop, int awidth, int aheight) { x1 = aleft; y1 = atop; x2 = (aleft + awidth - 1); y2 = (atop + aheight - 1); } inline QRect::QRect(const QPoint &atopLeft, const QPoint &abottomRight) { x1 = atopLeft.x(); y1 = atopLeft.y(); x2 = abottomRight.x(); y2 = abottomRight.y(); } inline QRect::QRect(const QPoint &atopLeft, const QSize &asize) { x1 = atopLeft.x(); y1 = atopLeft.y(); x2 = (x1+asize.width() - 1); y2 = (y1+asize.height() - 1); } inline bool QRect::isNull() const { return x2 == x1 - 1 && y2 == y1 - 1; } inline bool QRect::isEmpty() const { return x1 > x2 || y1 > y2; } inline bool QRect::isValid() const { return x1 <= x2 && y1 <= y2; } inline int QRect::left() const { return x1; } inline int QRect::top() const { return y1; } inline int QRect::right() const { return x2; } inline int QRect::bottom() const { return y2; } inline int QRect::x() const { return x1; } inline int QRect::y() const { return y1; } inline void QRect::setLeft(int pos) { x1 = pos; } inline void QRect::setTop(int pos) { y1 = pos; } inline void QRect::setRight(int pos) { x2 = pos; } inline void QRect::setBottom(int pos) { y2 = pos; } inline void QRect::setTopLeft(const QPoint &p) { x1 = p.x(); y1 = p.y(); } inline void QRect::setBottomRight(const QPoint &p) { x2 = p.x(); y2 = p.y(); } inline void QRect::setTopRight(const QPoint &p) { x2 = p.x(); y1 = p.y(); } inline void QRect::setBottomLeft(const QPoint &p) { x1 = p.x(); y2 = p.y(); } inline void QRect::setX(int ax) { x1 = ax; } inline void QRect::setY(int ay) { y1 = ay; } inline QPoint QRect::topLeft() const { return QPoint(x1, y1); } inline QPoint QRect::bottomRight() const { return QPoint(x2, y2); } inline QPoint QRect::topRight() const { return QPoint(x2, y1); } inline QPoint QRect::bottomLeft() const { return QPoint(x1, y2); } inline QPoint QRect::center() const { return QPoint((x1+x2)/2, (y1+y2)/2); } inline int QRect::width() const { return x2 - x1 + 1; } inline int QRect::height() const { return y2 - y1 + 1; } inline QSize QRect::size() const { return QSize(width(), height()); } inline void QRect::translate(int dx, int dy) { x1 += dx; y1 += dy; x2 += dx; y2 += dy; } inline void QRect::translate(const QPoint &p) { x1 += p.x(); y1 += p.y(); x2 += p.x(); y2 += p.y(); } inline QRect QRect::translated(int dx, int dy) const { return QRect(QPoint(x1 + dx, y1 + dy), QPoint(x2 + dx, y2 + dy)); } inline QRect QRect::translated(const QPoint &p) const { return QRect(QPoint(x1 + p.x(), y1 + p.y()), QPoint(x2 + p.x(), y2 + p.y())); } inline void QRect::moveTo(int ax, int ay) { x2 += ax - x1; y2 += ay - y1; x1 = ax; y1 = ay; } inline void QRect::moveTo(const QPoint &p) { x2 += p.x() - x1; y2 += p.y() - y1; x1 = p.x(); y1 = p.y(); } inline void QRect::moveLeft(int pos) { x2 += (pos - x1); x1 = pos; } inline void QRect::moveTop(int pos) { y2 += (pos - y1); y1 = pos; } inline void QRect::moveRight(int pos) { x1 += (pos - x2); x2 = pos; } inline void QRect::moveBottom(int pos) { y1 += (pos - y2); y2 = pos; } inline void QRect::moveTopLeft(const QPoint &p) { moveLeft(p.x()); moveTop(p.y()); } inline void QRect::moveBottomRight(const QPoint &p) { moveRight(p.x()); moveBottom(p.y()); } inline void QRect::moveTopRight(const QPoint &p) { moveRight(p.x()); moveTop(p.y()); } inline void QRect::moveBottomLeft(const QPoint &p) { moveLeft(p.x()); moveBottom(p.y()); } inline void QRect::getRect(int *ax, int *ay, int *aw, int *ah) const { *ax = x1; *ay = y1; *aw = x2 - x1 + 1; *ah = y2 - y1 + 1; } inline void QRect::setRect(int ax, int ay, int aw, int ah) { x1 = ax; y1 = ay; x2 = (ax + aw - 1); y2 = (ay + ah - 1); } inline void QRect::getCoords(int *xp1, int *yp1, int *xp2, int *yp2) const { *xp1 = x1; *yp1 = y1; *xp2 = x2; *yp2 = y2; } inline void QRect::setCoords(int xp1, int yp1, int xp2, int yp2) { x1 = xp1; y1 = yp1; x2 = xp2; y2 = yp2; } inline QRect QRect::adjusted(int xp1, int yp1, int xp2, int yp2) const { return QRect(QPoint(x1 + xp1, y1 + yp1), QPoint(x2 + xp2, y2 + yp2)); } inline void QRect::adjust(int dx1, int dy1, int dx2, int dy2) { x1 += dx1; y1 += dy1; x2 += dx2; y2 += dy2; } inline void QRect::setWidth(int w) { x2 = (x1 + w - 1); } inline void QRect::setHeight(int h) { y2 = (y1 + h - 1); } inline void QRect::setSize(const QSize &s) { x2 = (s.width() + x1 - 1); y2 = (s.height() + y1 - 1); } inline bool QRect::contains(int ax, int ay, bool aproper) const { return contains(QPoint(ax, ay), aproper); } inline bool QRect::contains(int ax, int ay) const { return contains(QPoint(ax, ay), false); } inline QRect& QRect::operator|=(const QRect &r) { *this = *this | r; return *this; } inline QRect& QRect::operator&=(const QRect &r) { *this = *this & r; return *this; } inline QRect QRect::intersect(const QRect &r) const { return *this & r; } inline QRect QRect::intersected(const QRect &other) const { return intersect(other); } inline QRect QRect::unite(const QRect &r) const { return *this | r; } inline QRect QRect::united(const QRect &r) const { return unite(r); } inline bool operator==(const QRect &r1, const QRect &r2) { return r1.x1==r2.x1 && r1.x2==r2.x2 && r1.y1==r2.y1 && r1.y2==r2.y2; } inline bool operator!=(const QRect &r1, const QRect &r2) { return r1.x1!=r2.x1 || r1.x2!=r2.x2 || r1.y1!=r2.y1 || r1.y2!=r2.y2; } QDebug operator<<(QDebug, const QRect &); class QRectF { public: QRectF() { xp = yp = 0.; w = h = 0.; } QRectF(const QPointF &topleft, const QSizeF &size); QRectF(const QPointF &topleft, const QPointF &bottomRight); QRectF(qreal left, qreal top, qreal width, qreal height); QRectF(const QRect &rect); bool isNull() const; bool isEmpty() const; bool isValid() const; QRectF normalized() const; inline qreal left() const { return xp; } inline qreal top() const { return yp; } inline qreal right() const { return xp + w; } inline qreal bottom() const { return yp + h; } inline qreal x() const; inline qreal y() const; inline void setLeft(qreal pos); inline void setTop(qreal pos); inline void setRight(qreal pos); inline void setBottom(qreal pos); inline void setX(qreal pos) { setLeft(pos); } inline void setY(qreal pos) { setTop(pos); } inline QPointF topLeft() const { return QPointF(xp, yp); } inline QPointF bottomRight() const { return QPointF(xp+w, yp+h); } inline QPointF topRight() const { return QPointF(xp+w, yp); } inline QPointF bottomLeft() const { return QPointF(xp, yp+h); } inline QPointF center() const; void setTopLeft(const QPointF &p); void setBottomRight(const QPointF &p); void setTopRight(const QPointF &p); void setBottomLeft(const QPointF &p); void moveLeft(qreal pos); void moveTop(qreal pos); void moveRight(qreal pos); void moveBottom(qreal pos); void moveTopLeft(const QPointF &p); void moveBottomRight(const QPointF &p); void moveTopRight(const QPointF &p); void moveBottomLeft(const QPointF &p); void moveCenter(const QPointF &p); void translate(qreal dx, qreal dy); void translate(const QPointF &p); QRectF translated(qreal dx, qreal dy) const; QRectF translated(const QPointF &p) const; void moveTo(qreal x, qreal t); void moveTo(const QPointF &p); void setRect(qreal x, qreal y, qreal w, qreal h); void getRect(qreal *x, qreal *y, qreal *w, qreal *h) const; void setCoords(qreal x1, qreal y1, qreal x2, qreal y2); void getCoords(qreal *x1, qreal *y1, qreal *x2, qreal *y2) const; inline void adjust(qreal x1, qreal y1, qreal x2, qreal y2); inline QRectF adjusted(qreal x1, qreal y1, qreal x2, qreal y2) const; QSizeF size() const; qreal width() const; qreal height() const; void setWidth(qreal w); void setHeight(qreal h); void setSize(const QSizeF &s); QRectF operator|(const QRectF &r) const; QRectF operator&(const QRectF &r) const; QRectF& operator|=(const QRectF &r); QRectF& operator&=(const QRectF &r); bool contains(const QPointF &p) const; bool contains(qreal x, qreal y) const; bool contains(const QRectF &r) const; QRectF unite(const QRectF &r) const; QRectF united(const QRectF &other) const; QRectF intersect(const QRectF &r) const; QRectF intersected(const QRectF &other) const; bool intersects(const QRectF &r) const; friend inline bool operator==(const QRectF &, const QRectF &); friend inline bool operator!=(const QRectF &, const QRectF &); QRect toRect() const; QRect toAlignedRect() const; private: qreal xp; qreal yp; qreal w; qreal h; }; template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QRectF)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QRectF"; } }; inline bool operator==(const QRectF &, const QRectF &); inline bool operator!=(const QRectF &, const QRectF &); QDataStream &operator<<(QDataStream &, const QRectF &); QDataStream &operator>>(QDataStream &, QRectF &); inline QRectF::QRectF(qreal aleft, qreal atop, qreal awidth, qreal aheight) : xp(aleft), yp(atop), w(awidth), h(aheight) { } inline QRectF::QRectF(const QPointF &atopLeft, const QSizeF &asize) { xp = atopLeft.x(); yp = atopLeft.y(); w = asize.width(); h = asize.height(); } inline QRectF::QRectF(const QPointF &atopLeft, const QPointF &abottomRight) { xp = atopLeft.x(); yp = atopLeft.y(); w = abottomRight.x() - xp; h = abottomRight.y() - yp; } inline QRectF::QRectF(const QRect &r) : xp(r.x()), yp(r.y()), w(r.width()), h(r.height()) { } inline bool QRectF::isNull() const { return w == 0. && h == 0.; } inline bool QRectF::isEmpty() const { return w <= 0. || h <= 0.; } inline bool QRectF::isValid() const { return w > 0. && h > 0.; } inline qreal QRectF::x() const { return xp; } inline qreal QRectF::y() const { return yp; } inline void QRectF::setLeft(qreal pos) { qreal diff = pos - xp; xp += diff; w -= diff; } inline void QRectF::setRight(qreal pos) { w = pos - xp; } inline void QRectF::setTop(qreal pos) { qreal diff = pos - yp; yp += diff; h -= diff; } inline void QRectF::setBottom(qreal pos) { h = pos - yp; } inline void QRectF::setTopLeft(const QPointF &p) { setLeft(p.x()); setTop(p.y()); } inline void QRectF::setTopRight(const QPointF &p) { setRight(p.x()); setTop(p.y()); } inline void QRectF::setBottomLeft(const QPointF &p) { setLeft(p.x()); setBottom(p.y()); } inline void QRectF::setBottomRight(const QPointF &p) { setRight(p.x()); setBottom(p.y()); } inline QPointF QRectF::center() const { return QPointF(xp + w/2, yp + h/2); } inline void QRectF::moveLeft(qreal pos) { xp = pos; } inline void QRectF::moveTop(qreal pos) { yp = pos; } inline void QRectF::moveRight(qreal pos) { xp = pos - w; } inline void QRectF::moveBottom(qreal pos) { yp = pos - h; } inline void QRectF::moveTopLeft(const QPointF &p) { moveLeft(p.x()); moveTop(p.y()); } inline void QRectF::moveTopRight(const QPointF &p) { moveRight(p.x()); moveTop(p.y()); } inline void QRectF::moveBottomLeft(const QPointF &p) { moveLeft(p.x()); moveBottom(p.y()); } inline void QRectF::moveBottomRight(const QPointF &p) { moveRight(p.x()); moveBottom(p.y()); } inline void QRectF::moveCenter(const QPointF &p) { xp = p.x() - w/2; yp = p.y() - h/2; } inline qreal QRectF::width() const { return w; } inline qreal QRectF::height() const { return h; } inline QSizeF QRectF::size() const { return QSizeF(w, h); } inline void QRectF::translate(qreal dx, qreal dy) { xp += dx; yp += dy; } inline void QRectF::translate(const QPointF &p) { xp += p.x(); yp += p.y(); } inline void QRectF::moveTo(qreal ax, qreal ay) { xp = ax; yp = ay; } inline void QRectF::moveTo(const QPointF &p) { xp = p.x(); yp = p.y(); } inline QRectF QRectF::translated(qreal dx, qreal dy) const { return QRectF(xp + dx, yp + dy, w, h); } inline QRectF QRectF::translated(const QPointF &p) const { return QRectF(xp + p.x(), yp + p.y(), w, h); } inline void QRectF::getRect(qreal *ax, qreal *ay, qreal *aaw, qreal *aah) const { *ax = this->xp; *ay = this->yp; *aaw = this->w; *aah = this->h; } inline void QRectF::setRect(qreal ax, qreal ay, qreal aaw, qreal aah) { this->xp = ax; this->yp = ay; this->w = aaw; this->h = aah; } inline void QRectF::getCoords(qreal *xp1, qreal *yp1, qreal *xp2, qreal *yp2) const { *xp1 = xp; *yp1 = yp; *xp2 = xp + w; *yp2 = yp + h; } inline void QRectF::setCoords(qreal xp1, qreal yp1, qreal xp2, qreal yp2) { xp = xp1; yp = yp1; w = xp2 - xp1; h = yp2 - yp1; } inline void QRectF::adjust(qreal xp1, qreal yp1, qreal xp2, qreal yp2) { xp += xp1; yp += yp1; w += xp2 - xp1; h += yp2 - yp1; } inline QRectF QRectF::adjusted(qreal xp1, qreal yp1, qreal xp2, qreal yp2) const { return QRectF(xp + xp1, yp + yp1, w + xp2 - xp1, h + yp2 - yp1); } inline void QRectF::setWidth(qreal aw) { this->w = aw; } inline void QRectF::setHeight(qreal ah) { this->h = ah; } inline void QRectF::setSize(const QSizeF &s) { w = s.width(); h = s.height(); } inline bool QRectF::contains(qreal ax, qreal ay) const { return contains(QPointF(ax, ay)); } inline QRectF& QRectF::operator|=(const QRectF &r) { *this = *this | r; return *this; } inline QRectF& QRectF::operator&=(const QRectF &r) { *this = *this & r; return *this; } inline QRectF QRectF::intersect(const QRectF &r) const { return *this & r; } inline QRectF QRectF::intersected(const QRectF &r) const { return intersect(r); } inline QRectF QRectF::unite(const QRectF &r) const { return *this | r; } inline QRectF QRectF::united(const QRectF &r) const { return unite(r); } inline bool operator==(const QRectF &r1, const QRectF &r2) { return qFuzzyCompare(r1.xp, r2.xp) && qFuzzyCompare(r1.yp, r2.yp) && qFuzzyCompare(r1.w, r2.w) && qFuzzyCompare(r1.h, r2.h); } inline bool operator!=(const QRectF &r1, const QRectF &r2) { return !qFuzzyCompare(r1.xp, r2.xp) || !qFuzzyCompare(r1.yp, r2.yp) || !qFuzzyCompare(r1.w, r2.w) || !qFuzzyCompare(r1.h, r2.h); } inline QRect QRectF::toRect() const { return QRect(qRound(xp), qRound(yp), qRound(w), qRound(h)); } QDebug operator<<(QDebug, const QRectF &); typedef QtValidLicenseForCoreModule QtCoreModule; template class QScopedValueRollback { public: QScopedValueRollback(T &var) : varRef(var) { oldValue = varRef; } ~QScopedValueRollback() { varRef = oldValue; } void commit() { oldValue = varRef; } private: T& varRef; T oldValue; QScopedValueRollback(const QScopedValueRollback &); QScopedValueRollback &operator=(const QScopedValueRollback &); }; typedef QtValidLicenseForCoreModule QtCoreModule; template class QSet { typedef QHash Hash; public: inline QSet() {} inline QSet(const QSet &other) : q_hash(other.q_hash) {} inline QSet &operator=(const QSet &other) { q_hash = other.q_hash; return *this; } inline void swap(QSet &other) { q_hash.swap(other.q_hash); } inline bool operator==(const QSet &other) const { return q_hash == other.q_hash; } inline bool operator!=(const QSet &other) const { return q_hash != other.q_hash; } inline int size() const { return q_hash.size(); } inline bool isEmpty() const { return q_hash.isEmpty(); } inline int capacity() const { return q_hash.capacity(); } inline void reserve(int size); inline void squeeze() { q_hash.squeeze(); } inline void detach() { q_hash.detach(); } inline bool isDetached() const { return q_hash.isDetached(); } inline void setSharable(bool sharable) { q_hash.setSharable(sharable); } inline void clear() { q_hash.clear(); } inline bool remove(const T &value) { return q_hash.remove(value) != 0; } inline bool contains(const T &value) const { return q_hash.contains(value); } bool contains(const QSet &set) const; class const_iterator; class iterator { typedef QHash Hash; typename Hash::iterator i; friend class const_iterator; public: typedef std::bidirectional_iterator_tag iterator_category; typedef qptrdiff difference_type; typedef T value_type; typedef const T *pointer; typedef const T &reference; inline iterator() {} inline iterator(typename Hash::iterator o) : i(o) {} inline iterator(const iterator &o) : i(o.i) {} inline iterator &operator=(const iterator &o) { i = o.i; return *this; } inline const T &operator*() const { return i.key(); } inline const T *operator->() const { return &i.key(); } inline bool operator==(const iterator &o) const { return i == o.i; } inline bool operator!=(const iterator &o) const { return i != o.i; } inline bool operator==(const const_iterator &o) const { return i == o.i; } inline bool operator!=(const const_iterator &o) const { return i != o.i; } inline iterator &operator++() { ++i; return *this; } inline iterator operator++(int) { iterator r = *this; ++i; return r; } inline iterator &operator--() { --i; return *this; } inline iterator operator--(int) { iterator r = *this; --i; return r; } inline iterator operator+(int j) const { return i + j; } inline iterator operator-(int j) const { return i - j; } inline iterator &operator+=(int j) { i += j; return *this; } inline iterator &operator-=(int j) { i -= j; return *this; } }; class const_iterator { typedef QHash Hash; typename Hash::const_iterator i; friend class iterator; public: typedef std::bidirectional_iterator_tag iterator_category; typedef qptrdiff difference_type; typedef T value_type; typedef const T *pointer; typedef const T &reference; inline const_iterator() {} inline const_iterator(typename Hash::const_iterator o) : i(o) {} inline const_iterator(const const_iterator &o) : i(o.i) {} inline const_iterator(const iterator &o) : i(o.i) {} inline const_iterator &operator=(const const_iterator &o) { i = o.i; return *this; } inline const T &operator*() const { return i.key(); } inline const T *operator->() const { return &i.key(); } inline bool operator==(const const_iterator &o) const { return i == o.i; } inline bool operator!=(const const_iterator &o) const { return i != o.i; } inline const_iterator &operator++() { ++i; return *this; } inline const_iterator operator++(int) { const_iterator r = *this; ++i; return r; } inline const_iterator &operator--() { --i; return *this; } inline const_iterator operator--(int) { const_iterator r = *this; --i; return r; } inline const_iterator operator+(int j) const { return i + j; } inline const_iterator operator-(int j) const { return i - j; } inline const_iterator &operator+=(int j) { i += j; return *this; } inline const_iterator &operator-=(int j) { i -= j; return *this; } }; inline iterator begin() { return q_hash.begin(); } inline const_iterator begin() const { return q_hash.begin(); } inline const_iterator constBegin() const { return q_hash.constBegin(); } inline iterator end() { return q_hash.end(); } inline const_iterator end() const { return q_hash.end(); } inline const_iterator constEnd() const { return q_hash.constEnd(); } iterator erase(iterator i) { return q_hash.erase(reinterpret_cast(i)); } typedef iterator Iterator; typedef const_iterator ConstIterator; inline int count() const { return q_hash.count(); } inline const_iterator insert(const T &value) { return static_cast(q_hash.insert(value, QHashDummyValue())); } iterator find(const T &value) { return q_hash.find(value); } const_iterator find(const T &value) const { return q_hash.find(value); } inline const_iterator constFind(const T &value) const { return find(value); } QSet &unite(const QSet &other); QSet &intersect(const QSet &other); QSet &subtract(const QSet &other); typedef T key_type; typedef T value_type; typedef value_type *pointer; typedef const value_type *const_pointer; typedef value_type &reference; typedef const value_type &const_reference; typedef qptrdiff difference_type; typedef int size_type; inline bool empty() const { return isEmpty(); } inline QSet &operator<<(const T &value) { insert(value); return *this; } inline QSet &operator|=(const QSet &other) { unite(other); return *this; } inline QSet &operator|=(const T &value) { insert(value); return *this; } inline QSet &operator&=(const QSet &other) { intersect(other); return *this; } inline QSet &operator&=(const T &value) { QSet result; if (contains(value)) result.insert(value); return (*this = result); } inline QSet &operator+=(const QSet &other) { unite(other); return *this; } inline QSet &operator+=(const T &value) { insert(value); return *this; } inline QSet &operator-=(const QSet &other) { subtract(other); return *this; } inline QSet &operator-=(const T &value) { remove(value); return *this; } inline QSet operator|(const QSet &other) const { QSet result = *this; result |= other; return result; } inline QSet operator&(const QSet &other) const { QSet result = *this; result &= other; return result; } inline QSet operator+(const QSet &other) const { QSet result = *this; result += other; return result; } inline QSet operator-(const QSet &other) const { QSet result = *this; result -= other; return result; } inline QSet operator|(const QSet &other) { QSet result = *this; result |= other; return result; } inline QSet operator&(const QSet &other) { QSet result = *this; result &= other; return result; } inline QSet operator+(const QSet &other) { QSet result = *this; result += other; return result; } inline QSet operator-(const QSet &other) { QSet result = *this; result -= other; return result; } QList toList() const; inline QList values() const { return toList(); } static QSet fromList(const QList &list); private: Hash q_hash; }; template inline void QSet::reserve(int asize) { q_hash.reserve(asize); } template inline QSet &QSet::unite(const QSet &other) { QSet copy(other); typename QSet::const_iterator i = copy.constEnd(); while (i != copy.constBegin()) { --i; insert(*i); } return *this; } template inline QSet &QSet::intersect(const QSet &other) { QSet copy1(*this); QSet copy2(other); typename QSet::const_iterator i = copy1.constEnd(); while (i != copy1.constBegin()) { --i; if (!copy2.contains(*i)) remove(*i); } return *this; } template inline QSet &QSet::subtract(const QSet &other) { QSet copy1(*this); QSet copy2(other); typename QSet::const_iterator i = copy1.constEnd(); while (i != copy1.constBegin()) { --i; if (copy2.contains(*i)) remove(*i); } return *this; } template inline bool QSet::contains(const QSet &other) const { typename QSet::const_iterator i = other.constBegin(); while (i != other.constEnd()) { if (!contains(*i)) return false; ++i; } return true; } template QList QSet::toList() const { QList result; result.reserve(size()); typename QSet::const_iterator i = constBegin(); while (i != constEnd()) { result.append(*i); ++i; } return result; } template QSet QList::toSet() const { QSet result; result.reserve(size()); for (int i = 0; i < size(); ++i) result.insert(at(i)); return result; } template QSet QSet::fromList(const QList &list) { return list.toSet(); } template QList QList::fromSet(const QSet &set) { return set.toList(); } template class QSetIterator { typedef typename QSet::const_iterator const_iterator; QSet c; const_iterator i; public: inline QSetIterator(const QSet &container) : c(container), i(c.constBegin()) {} inline QSetIterator &operator=(const QSet &container) { c = container; i = c.constBegin(); return *this; } inline void toFront() { i = c.constBegin(); } inline void toBack() { i = c.constEnd(); } inline bool hasNext() const { return i != c.constEnd(); } inline const T &next() { return *i++; } inline const T &peekNext() const { return *i; } inline bool hasPrevious() const { return i != c.constBegin(); } inline const T &previous() { return *--i; } inline const T &peekPrevious() const { const_iterator p = i; return *--p; } inline bool findNext(const T &t) { while (i != c.constEnd()) if (*i++ == t) return true; return false; } inline bool findPrevious(const T &t) { while (i != c.constBegin()) if (*(--i) == t) return true; return false; } }; template class QMutableSetIterator { typedef typename QSet::iterator iterator; QSet *c; iterator i, n; inline bool item_exists() const { return c->constEnd() != n; } public: inline QMutableSetIterator(QSet &container) : c(&container) { c->setSharable(false); i = c->begin(); n = c->end(); } inline ~QMutableSetIterator() { c->setSharable(true); } inline QMutableSetIterator &operator=(QSet &container) { c->setSharable(true); c = &container; c->setSharable(false); i = c->begin(); n = c->end(); return *this; } inline void toFront() { i = c->begin(); n = c->end(); } inline void toBack() { i = c->end(); n = i; } inline bool hasNext() const { return c->constEnd() != i; } inline const T &next() { n = i++; return *n; } inline const T &peekNext() const { return *i; } inline bool hasPrevious() const { return c->constBegin() != i; } inline const T &previous() { n = --i; return *n; } inline const T &peekPrevious() const { iterator p = i; return *--p; } inline void remove() { if (c->constEnd() != n) { i = c->erase(n); n = c->end(); } } inline const T &value() const { qt_noop(); return *n; } inline bool findNext(const T &t) { while (c->constEnd() != (n = i)) if (*i++ == t) return true; return false; } inline bool findPrevious(const T &t) { while (c->constBegin() != i) if (*(n = --i) == t) return true; n = c->end(); return false; } }; typedef QtValidLicenseForCoreModule QtCoreModule; struct QVectorData { QBasicAtomicInt ref; int alloc; int size; uint sharable : 1; uint capacity : 1; uint reserved : 30; static QVectorData shared_null; static QVectorData *malloc(int sizeofTypedData, int size, int sizeofT, QVectorData *init); static QVectorData *allocate(int size, int alignment); static QVectorData *reallocate(QVectorData *old, int newsize, int oldsize, int alignment); static void free(QVectorData *data, int alignment); static int grow(int sizeofTypedData, int size, int sizeofT, bool excessive); }; template struct QVectorTypedData : private QVectorData { T array[1]; static inline void free(QVectorTypedData *x, int alignment) { QVectorData::free(static_cast(x), alignment); } }; class QRegion; template class QVector { typedef QVectorTypedData Data; union { QVectorData *d; Data *p; }; public: inline QVector() : d(&QVectorData::shared_null) { d->ref.ref(); } explicit QVector(int size); QVector(int size, const T &t); inline QVector(const QVector &v) : d(v.d) { d->ref.ref(); if (!d->sharable) detach_helper(); } inline ~QVector() { if (!d) return; if (!d->ref.deref()) free(p); } QVector &operator=(const QVector &v); inline void swap(QVector &other) { qSwap(d, other.d); } bool operator==(const QVector &v) const; inline bool operator!=(const QVector &v) const { return !(*this == v); } inline int size() const { return d->size; } inline bool isEmpty() const { return d->size == 0; } void resize(int size); inline int capacity() const { return d->alloc; } void reserve(int size); inline void squeeze() { realloc(d->size, d->size); d->capacity = 0; } inline void detach() { if (d->ref != 1) detach_helper(); } inline bool isDetached() const { return d->ref == 1; } inline void setSharable(bool sharable) { if (!sharable) detach(); d->sharable = sharable; } inline bool isSharedWith(const QVector &other) const { return d == other.d; } inline T *data() { detach(); return p->array; } inline const T *data() const { return p->array; } inline const T *constData() const { return p->array; } void clear(); const T &at(int i) const; T &operator[](int i); const T &operator[](int i) const; void append(const T &t); void prepend(const T &t); void insert(int i, const T &t); void insert(int i, int n, const T &t); void replace(int i, const T &t); void remove(int i); void remove(int i, int n); QVector &fill(const T &t, int size = -1); int indexOf(const T &t, int from = 0) const; int lastIndexOf(const T &t, int from = -1) const; bool contains(const T &t) const; int count(const T &t) const; typedef T* iterator; typedef const T* const_iterator; inline iterator begin() { detach(); return p->array; } inline const_iterator begin() const { return p->array; } inline const_iterator constBegin() const { return p->array; } inline iterator end() { detach(); return p->array + d->size; } inline const_iterator end() const { return p->array + d->size; } inline const_iterator constEnd() const { return p->array + d->size; } iterator insert(iterator before, int n, const T &x); inline iterator insert(iterator before, const T &x) { return insert(before, 1, x); } iterator erase(iterator begin, iterator end); inline iterator erase(iterator pos) { return erase(pos, pos+1); } inline int count() const { return d->size; } inline T& first() { qt_noop(); return *begin(); } inline const T &first() const { qt_noop(); return *begin(); } inline T& last() { qt_noop(); return *(end()-1); } inline const T &last() const { qt_noop(); return *(end()-1); } inline bool startsWith(const T &t) const { return !isEmpty() && first() == t; } inline bool endsWith(const T &t) const { return !isEmpty() && last() == t; } QVector mid(int pos, int length = -1) const; T value(int i) const; T value(int i, const T &defaultValue) const; typedef T value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef qptrdiff difference_type; typedef iterator Iterator; typedef const_iterator ConstIterator; typedef int size_type; inline void push_back(const T &t) { append(t); } inline void push_front(const T &t) { prepend(t); } void pop_back() { qt_noop(); erase(end()-1); } void pop_front() { qt_noop(); erase(begin()); } inline bool empty() const { return d->size == 0; } inline T& front() { return first(); } inline const_reference front() const { return first(); } inline reference back() { return last(); } inline const_reference back() const { return last(); } QVector &operator+=(const QVector &l); inline QVector operator+(const QVector &l) const { QVector n = *this; n += l; return n; } inline QVector &operator+=(const T &t) { append(t); return *this; } inline QVector &operator<< (const T &t) { append(t); return *this; } inline QVector &operator<<(const QVector &l) { *this += l; return *this; } QList toList() const; static QVector fromList(const QList &list); static inline QVector fromStdVector(const std::vector &vector) { QVector tmp; tmp.reserve(int(vector.size())); qCopy(vector.begin(), vector.end(), std::back_inserter(tmp)); return tmp; } inline std::vector toStdVector() const { std::vector tmp; tmp.reserve(size()); qCopy(constBegin(), constEnd(), std::back_inserter(tmp)); return tmp; } private: friend class QRegion; void detach_helper(); QVectorData *malloc(int alloc); void realloc(int size, int alloc); void free(Data *d); int sizeOfTypedData() { return reinterpret_cast(&(reinterpret_cast(this))->array[1]) - reinterpret_cast(this); } inline int alignOfTypedData() const { return qMax(sizeof(void*), __alignof__(Data)); } }; template void QVector::detach_helper() { realloc(d->size, d->alloc); } template void QVector::reserve(int asize) { if (asize > d->alloc) realloc(d->size, asize); if (d->ref == 1) d->capacity = 1; } template void QVector::resize(int asize) { realloc(asize, (asize > d->alloc || (!d->capacity && asize < d->size && asize < (d->alloc >> 1))) ? QVectorData::grow(sizeOfTypedData(), asize, sizeof(T), QTypeInfo::isStatic) : d->alloc); } template inline void QVector::clear() { *this = QVector(); } template inline const T &QVector::at(int i) const { qt_noop(); return p->array[i]; } template inline const T &QVector::operator[](int i) const { qt_noop(); return p->array[i]; } template inline T &QVector::operator[](int i) { qt_noop(); return data()[i]; } template inline void QVector::insert(int i, const T &t) { qt_noop(); insert(begin() + i, 1, t); } template inline void QVector::insert(int i, int n, const T &t) { qt_noop(); insert(begin() + i, n, t); } template inline void QVector::remove(int i, int n) { qt_noop(); erase(begin() + i, begin() + i + n); } template inline void QVector::remove(int i) { qt_noop(); erase(begin() + i, begin() + i + 1); } template inline void QVector::prepend(const T &t) { insert(begin(), 1, t); } template inline void QVector::replace(int i, const T &t) { qt_noop(); const T copy(t); data()[i] = copy; } template QVector &QVector::operator=(const QVector &v) { QVectorData *o = v.d; o->ref.ref(); if (!d->ref.deref()) free(p); d = o; if (!d->sharable) detach_helper(); return *this; } template inline QVectorData *QVector::malloc(int aalloc) { QVectorData *vectordata = QVectorData::allocate(sizeOfTypedData() + (aalloc - 1) * sizeof(T), alignOfTypedData()); do { if (!(vectordata)) qBadAlloc(); } while (0); return vectordata; } template QVector::QVector(int asize) { d = malloc(asize); d->ref = 1; d->alloc = d->size = asize; d->sharable = true; d->capacity = false; if (QTypeInfo::isComplex) { T* b = p->array; T* i = p->array + d->size; while (i != b) new (--i) T; } else { qMemSet(p->array, 0, asize * sizeof(T)); } } template QVector::QVector(int asize, const T &t) { d = malloc(asize); d->ref = 1; d->alloc = d->size = asize; d->sharable = true; d->capacity = false; T* i = p->array + d->size; while (i != p->array) new (--i) T(t); } template void QVector::free(Data *x) { if (QTypeInfo::isComplex) { T* b = x->array; union { QVectorData *d; Data *p; } u; u.p = x; T* i = b + u.d->size; while (i-- != b) i->~T(); } x->free(x, alignOfTypedData()); } template void QVector::realloc(int asize, int aalloc) { qt_noop(); T *pOld; T *pNew; union { QVectorData *d; Data *p; } x; x.d = d; if (QTypeInfo::isComplex && asize < d->size && d->ref == 1 ) { pOld = p->array + d->size; pNew = p->array + asize; while (asize < d->size) { (--pOld)->~T(); d->size--; } } if (aalloc != d->alloc || d->ref != 1) { if (QTypeInfo::isStatic) { x.d = malloc(aalloc); do { if (!(x.p)) qBadAlloc(); } while (0); x.d->size = 0; } else if (d->ref != 1) { x.d = malloc(aalloc); do { if (!(x.p)) qBadAlloc(); } while (0); if (QTypeInfo::isComplex) { x.d->size = 0; } else { ::memcpy(x.p, p, sizeOfTypedData() + (qMin(aalloc, d->alloc) - 1) * sizeof(T)); x.d->size = d->size; } } else { try { QVectorData *mem = QVectorData::reallocate(d, sizeOfTypedData() + (aalloc - 1) * sizeof(T), sizeOfTypedData() + (d->alloc - 1) * sizeof(T), alignOfTypedData()); do { if (!(mem)) qBadAlloc(); } while (0); x.d = d = mem; x.d->size = d->size; } catch (const std::bad_alloc &) { if (aalloc > d->alloc) throw; } } x.d->ref = 1; x.d->alloc = aalloc; x.d->sharable = true; x.d->capacity = d->capacity; x.d->reserved = 0; } if (QTypeInfo::isComplex) { try { pOld = p->array + x.d->size; pNew = x.p->array + x.d->size; const int toMove = qMin(asize, d->size); while (x.d->size < toMove) { new (pNew++) T(*pOld++); x.d->size++; } while (x.d->size < asize) { new (pNew++) T; x.d->size++; } } catch (...) { free(x.p); throw; } } else if (asize > x.d->size) { qMemSet(x.p->array + x.d->size, 0, (asize - x.d->size) * sizeof(T)); } x.d->size = asize; if (d != x.d) { if (!d->ref.deref()) free(p); d = x.d; } } template T QVector::value(int i) const { if (i < 0 || i >= d->size) { return T(); } return p->array[i]; } template T QVector::value(int i, const T &defaultValue) const { return ((i < 0 || i >= d->size) ? defaultValue : p->array[i]); } template void QVector::append(const T &t) { if (d->ref != 1 || d->size + 1 > d->alloc) { const T copy(t); realloc(d->size, QVectorData::grow(sizeOfTypedData(), d->size + 1, sizeof(T), QTypeInfo::isStatic)); if (QTypeInfo::isComplex) new (p->array + d->size) T(copy); else p->array[d->size] = copy; } else { if (QTypeInfo::isComplex) new (p->array + d->size) T(t); else p->array[d->size] = t; } ++d->size; } template typename QVector::iterator QVector::insert(iterator before, size_type n, const T &t) { int offset = int(before - p->array); if (n != 0) { const T copy(t); if (d->ref != 1 || d->size + n > d->alloc) realloc(d->size, QVectorData::grow(sizeOfTypedData(), d->size + n, sizeof(T), QTypeInfo::isStatic)); if (QTypeInfo::isStatic) { T *b = p->array + d->size; T *i = p->array + d->size + n; while (i != b) new (--i) T; i = p->array + d->size; T *j = i + n; b = p->array + offset; while (i != b) *--j = *--i; i = b+n; while (i != b) *--i = copy; } else { T *b = p->array + offset; T *i = b + n; memmove(i, b, (d->size - offset) * sizeof(T)); while (i != b) new (--i) T(copy); } d->size += n; } return p->array + offset; } template typename QVector::iterator QVector::erase(iterator abegin, iterator aend) { int f = int(abegin - p->array); int l = int(aend - p->array); int n = l - f; detach(); if (QTypeInfo::isComplex) { qCopy(p->array+l, p->array+d->size, p->array+f); T *i = p->array+d->size; T* b = p->array+d->size-n; while (i != b) { --i; i->~T(); } } else { memmove(p->array + f, p->array + l, (d->size-l)*sizeof(T)); } d->size -= n; return p->array + f; } template bool QVector::operator==(const QVector &v) const { if (d->size != v.d->size) return false; if (d == v.d) return true; T* b = p->array; T* i = b + d->size; T* j = v.p->array + d->size; while (i != b) if (!(*--i == *--j)) return false; return true; } template QVector &QVector::fill(const T &from, int asize) { const T copy(from); resize(asize < 0 ? d->size : asize); if (d->size) { T *i = p->array + d->size; T *b = p->array; while (i != b) *--i = copy; } return *this; } template QVector &QVector::operator+=(const QVector &l) { int newSize = d->size + l.d->size; realloc(d->size, newSize); T *w = p->array + newSize; T *i = l.p->array + l.d->size; T *b = l.p->array; while (i != b) { if (QTypeInfo::isComplex) new (--w) T(*--i); else *--w = *--i; } d->size = newSize; return *this; } template int QVector::indexOf(const T &t, int from) const { if (from < 0) from = qMax(from + d->size, 0); if (from < d->size) { T* n = p->array + from - 1; T* e = p->array + d->size; while (++n != e) if (*n == t) return n - p->array; } return -1; } template int QVector::lastIndexOf(const T &t, int from) const { if (from < 0) from += d->size; else if (from >= d->size) from = d->size-1; if (from >= 0) { T* b = p->array; T* n = p->array + from + 1; while (n != b) { if (*--n == t) return n - b; } } return -1; } template bool QVector::contains(const T &t) const { T* b = p->array; T* i = p->array + d->size; while (i != b) if (*--i == t) return true; return false; } template int QVector::count(const T &t) const { int c = 0; T* b = p->array; T* i = p->array + d->size; while (i != b) if (*--i == t) ++c; return c; } template QVector QVector::mid(int pos, int length) const { if (length < 0) length = size() - pos; if (pos == 0 && length == size()) return *this; if (pos + length > size()) length = size() - pos; QVector copy; copy.reserve(length); for (int i = pos; i < pos + length; ++i) copy += at(i); return copy; } template QList QVector::toList() const { QList result; result.reserve(size()); for (int i = 0; i < size(); ++i) result.append(at(i)); return result; } template QVector QList::toVector() const { QVector result(size()); for (int i = 0; i < size(); ++i) result[i] = at(i); return result; } template QVector QVector::fromList(const QList &list) { return list.toVector(); } template QList QList::fromVector(const QVector &vector) { return vector.toList(); } template class QVectorIterator { typedef typename QVector::const_iterator const_iterator; QVector c; const_iterator i; public: inline QVectorIterator(const QVector &container) : c(container), i(c.constBegin()) {} inline QVectorIterator &operator=(const QVector &container) { c = container; i = c.constBegin(); return *this; } inline void toFront() { i = c.constBegin(); } inline void toBack() { i = c.constEnd(); } inline bool hasNext() const { return i != c.constEnd(); } inline const T &next() { return *i++; } inline const T &peekNext() const { return *i; } inline bool hasPrevious() const { return i != c.constBegin(); } inline const T &previous() { return *--i; } inline const T &peekPrevious() const { const_iterator p = i; return *--p; } inline bool findNext(const T &t) { while (i != c.constEnd()) if (*i++ == t) return true; return false; } inline bool findPrevious(const T &t) { while (i != c.constBegin()) if (*(--i) == t) return true; return false; } }; template class QMutableVectorIterator { typedef typename QVector::iterator iterator; typedef typename QVector::const_iterator const_iterator; QVector *c; iterator i, n; inline bool item_exists() const { return const_iterator(n) != c->constEnd(); } public: inline QMutableVectorIterator(QVector &container) : c(&container) { c->setSharable(false); i = c->begin(); n = c->end(); } inline ~QMutableVectorIterator() { c->setSharable(true); } inline QMutableVectorIterator &operator=(QVector &container) { c->setSharable(true); c = &container; c->setSharable(false); i = c->begin(); n = c->end(); return *this; } inline void toFront() { i = c->begin(); n = c->end(); } inline void toBack() { i = c->end(); n = i; } inline bool hasNext() const { return c->constEnd() != const_iterator(i); } inline T &next() { n = i++; return *n; } inline T &peekNext() const { return *i; } inline bool hasPrevious() const { return c->constBegin() != const_iterator(i); } inline T &previous() { n = --i; return *n; } inline T &peekPrevious() const { iterator p = i; return *--p; } inline void remove() { if (c->constEnd() != const_iterator(n)) { i = c->erase(n); n = c->end(); } } inline void setValue(const T &t) const { if (c->constEnd() != const_iterator(n)) *n = t; } inline T &value() { qt_noop(); return *n; } inline const T &value() const { qt_noop(); return *n; } inline void insert(const T &t) { n = i = c->insert(i, t); ++i; } inline bool findNext(const T &t) { while (c->constEnd() != const_iterator(n = i)) if (*i++ == t) return true; return false; } inline bool findPrevious(const T &t) { while (c->constBegin() != const_iterator(i)) if (*(n = --i) == t) return true; n = c->end(); return false; } }; typedef QtValidLicenseForCoreModule QtCoreModule; template class QStack : public QVector { public: inline QStack() {} inline ~QStack() {} inline void swap(QStack &other) { QVector::swap(other); } inline void push(const T &t) { QVector::append(t); } T pop(); T &top(); const T &top() const; }; template inline T QStack::pop() { qt_noop(); T t = this->data()[this->size() -1]; this->resize(this->size()-1); return t; } template inline T &QStack::top() { qt_noop(); this->detach(); return this->data()[this->size()-1]; } template inline const T &QStack::top() const { qt_noop(); return this->data()[this->size()-1]; } typedef QtValidLicenseForCoreModule QtCoreModule; class QLatin1Literal { public: int size() const { return m_size; } const char *data() const { return m_data; } template QLatin1Literal(const char (&str)[N]) : m_size(N - 1), m_data(str) {} private: const int m_size; const char * const m_data; }; struct QAbstractConcatenable { protected: static void convertFromAscii(const char *a, int len, QChar *&out); static void convertToAscii(const QChar *a, int len, char *&out); static inline void convertFromAscii(char a, QChar *&out) { if (QString::codecForCStrings) *out++ = QChar::fromAscii(a); else *out++ = QLatin1Char(a); } static inline void convertToAscii(QChar a, char *&out) { if (QString::codecForCStrings) *out++ = a.toAscii(); else convertToLatin1(a, out); } static inline void convertToLatin1(QChar a, char *&out) { *out++ = a.unicode() > 0xff ? '?' : char(a.unicode()); } }; template struct QConcatenable {}; template class QStringBuilder { public: QStringBuilder(const A &a_, const B &b_) : a(a_), b(b_) {} private: friend class QByteArray; friend class QString; template T convertTo() const { const uint len = QConcatenable< QStringBuilder >::size(*this); T s(len, Qt::Uninitialized); typename T::iterator d = s.data(); typename T::const_iterator const start = d; QConcatenable< QStringBuilder >::appendTo(*this, d); if (!QConcatenable< QStringBuilder >::ExactSize && int(len) != d - start) { s.resize(d - start); } return s; } typedef QConcatenable > Concatenable; typedef typename Concatenable::ConvertTo ConvertTo; public: operator ConvertTo() const { return convertTo(); } QByteArray toLatin1() const { return convertTo().toLatin1(); } int size() const { return Concatenable::size(*this); } const A &a; const B &b; }; template <> class QStringBuilder { public: QStringBuilder(const QString &a_, const QString &b_) : a(a_), b(b_) {} operator QString() const { QString r(a); r += b; return r; } QByteArray toLatin1() const { return QString(*this).toLatin1(); } const QString &a; const QString &b; }; template <> class QStringBuilder { public: QStringBuilder(const QByteArray &a_, const QByteArray &b_) : a(a_), b(b_) {} operator QByteArray() const { QByteArray r(a); r += b; return r; } const QByteArray &a; const QByteArray &b; }; template <> struct QConcatenable : private QAbstractConcatenable { typedef char type; typedef QByteArray ConvertTo; enum { ExactSize = true }; static int size(const char) { return 1; } static inline void appendTo(const char c, QChar *&out) { QAbstractConcatenable::convertFromAscii(c, out); } static inline void appendTo(const char c, char *&out) { *out++ = c; } }; template <> struct QConcatenable { typedef QLatin1Char type; typedef QString ConvertTo; enum { ExactSize = true }; static int size(const QLatin1Char) { return 1; } static inline void appendTo(const QLatin1Char c, QChar *&out) { *out++ = c; } static inline void appendTo(const QLatin1Char c, char *&out) { *out++ = c.toLatin1(); } }; template <> struct QConcatenable : private QAbstractConcatenable { typedef QChar type; typedef QString ConvertTo; enum { ExactSize = true }; static int size(const QChar) { return 1; } static inline void appendTo(const QChar c, QChar *&out) { *out++ = c; } static inline void appendTo(const QChar c, char *&out) { convertToAscii(c, out); } }; template <> struct QConcatenable : private QAbstractConcatenable { typedef QCharRef type; typedef QString ConvertTo; enum { ExactSize = true }; static int size(const QCharRef &) { return 1; } static inline void appendTo(const QCharRef &c, QChar *&out) { *out++ = QChar(c); } static inline void appendTo(const QCharRef &c, char *&out) { convertToAscii(c, out); } }; template <> struct QConcatenable { typedef QLatin1String type; typedef QString ConvertTo; enum { ExactSize = true }; static int size(const QLatin1String &a) { return qstrlen(a.latin1()); } static inline void appendTo(const QLatin1String &a, QChar *&out) { for (const char *s = a.latin1(); *s; ) *out++ = QLatin1Char(*s++); } static inline void appendTo(const QLatin1String &a, char *&out) { for (const char *s = a.latin1(); *s; ) *out++ = *s++; } }; template <> struct QConcatenable { typedef QLatin1Literal type; typedef QString ConvertTo; enum { ExactSize = true }; static int size(const QLatin1Literal &a) { return a.size(); } static inline void appendTo(const QLatin1Literal &a, QChar *&out) { for (const char *s = a.data(); *s; ) *out++ = QLatin1Char(*s++); } static inline void appendTo(const QLatin1Literal &a, char *&out) { for (const char *s = a.data(); *s; ) *out++ = *s++; } }; template <> struct QConcatenable : private QAbstractConcatenable { typedef QString type; typedef QString ConvertTo; enum { ExactSize = true }; static int size(const QString &a) { return a.size(); } static inline void appendTo(const QString &a, QChar *&out) { const int n = a.size(); memcpy(out, reinterpret_cast(a.constData()), sizeof(QChar) * n); out += n; } static inline void appendTo(const QString &a, char *&out) { convertToAscii(a.constData(), a.length(), out); } }; template <> struct QConcatenable : private QAbstractConcatenable { typedef QStringRef type; typedef QString ConvertTo; enum { ExactSize = true }; static int size(const QStringRef &a) { return a.size(); } static inline void appendTo(const QStringRef &a, QChar *&out) { const int n = a.size(); memcpy(out, reinterpret_cast(a.constData()), sizeof(QChar) * n); out += n; } static inline void appendTo(const QStringRef &a, char *&out) { convertToAscii(a.constData(), a.length(), out); } }; template struct QConcatenable : private QAbstractConcatenable { typedef char type[N]; typedef QByteArray ConvertTo; enum { ExactSize = false }; static int size(const char[N]) { return N - 1; } static inline void appendTo(const char a[N], QChar *&out) { QAbstractConcatenable::convertFromAscii(a, N, out); } static inline void appendTo(const char a[N], char *&out) { while (*a) *out++ = *a++; } }; template struct QConcatenable : private QAbstractConcatenable { typedef const char type[N]; typedef QByteArray ConvertTo; enum { ExactSize = false }; static int size(const char[N]) { return N - 1; } static inline void appendTo(const char a[N], QChar *&out) { QAbstractConcatenable::convertFromAscii(a, N, out); } static inline void appendTo(const char a[N], char *&out) { while (*a) *out++ = *a++; } }; template <> struct QConcatenable : private QAbstractConcatenable { typedef char const *type; typedef QByteArray ConvertTo; enum { ExactSize = false }; static int size(const char *a) { return qstrlen(a); } static inline void appendTo(const char *a, QChar *&out) { QAbstractConcatenable::convertFromAscii(a, -1, out); } static inline void appendTo(const char *a, char *&out) { if (!a) return; while (*a) *out++ = *a++; } }; template <> struct QConcatenable : private QAbstractConcatenable { typedef QByteArray type; typedef QByteArray ConvertTo; enum { ExactSize = false }; static int size(const QByteArray &ba) { return ba.size(); } static inline void appendTo(const QByteArray &ba, QChar *&out) { QAbstractConcatenable::convertFromAscii(ba.constData(), ba.size() + 1, out); } static inline void appendTo(const QByteArray &ba, char *&out) { const char *a = ba.constData(); const char * const end = ba.end(); while (a != end) *out++ = *a++; } }; namespace QtStringBuilder { template struct ConvertToTypeHelper { typedef A ConvertTo; }; template struct ConvertToTypeHelper { typedef QString ConvertTo; }; } template struct QConcatenable< QStringBuilder > { typedef QStringBuilder type; typedef typename QtStringBuilder::ConvertToTypeHelper::ConvertTo, typename QConcatenable::ConvertTo>::ConvertTo ConvertTo; enum { ExactSize = QConcatenable::ExactSize && QConcatenable::ExactSize }; static int size(const type &p) { return QConcatenable::size(p.a) + QConcatenable::size(p.b); } template static inline void appendTo(const type &p, T *&out) { QConcatenable::appendTo(p.a, out); QConcatenable::appendTo(p.b, out); } }; template QStringBuilder::type, typename QConcatenable::type> operator%(const A &a, const B &b) { return QStringBuilder::type, typename QConcatenable::type>(a, b); } template QByteArray &operator+=(QByteArray &a, const QStringBuilder &b) { if (sizeof(typename QConcatenable< QStringBuilder >::ConvertTo::value_type) == sizeof(QChar)) { return a += QString(b); } int len = a.size() + QConcatenable< QStringBuilder >::size(b); a.reserve(len); char *it = a.data() + a.size(); QConcatenable< QStringBuilder >::appendTo(b, it); a.resize(len); return a; } template QString &operator+=(QString &a, const QStringBuilder &b) { int len = a.size() + QConcatenable< QStringBuilder >::size(b); a.reserve(len); QChar *it = a.data() + a.size(); QConcatenable< QStringBuilder >::appendTo(b, it); a.resize(it - a.constData()); return a; } typedef QtValidLicenseForCoreModule QtCoreModule; class QTextBoundaryFinderPrivate; class QTextBoundaryFinder { public: QTextBoundaryFinder(); QTextBoundaryFinder(const QTextBoundaryFinder &other); QTextBoundaryFinder &operator=(const QTextBoundaryFinder &other); ~QTextBoundaryFinder(); enum BoundaryType { Grapheme, Word, Line, Sentence }; enum BoundaryReason { NotAtBoundary = 0, StartWord = 1, EndWord = 2 }; typedef QFlags BoundaryReasons; QTextBoundaryFinder(BoundaryType type, const QString &string); QTextBoundaryFinder(BoundaryType type, const QChar *chars, int length, unsigned char *buffer = 0, int bufferSize = 0); inline bool isValid() const { return d; } inline BoundaryType type() const { return t; } QString string() const; void toStart(); void toEnd(); int position() const; void setPosition(int position); int toNextBoundary(); int toPreviousBoundary(); bool isAtBoundary() const; BoundaryReasons boundaryReasons() const; private: BoundaryType t; QString s; const QChar *chars; int length; int pos; uint freePrivate : 1; uint unused : 31; QTextBoundaryFinderPrivate *d; }; typedef QtValidLicenseForCoreModule QtCoreModule; class QTimeLinePrivate; class QTimeLine : public QObject { public: template inline void qt_check_for_QOBJECT_macro(const T &_q_argument) const { int i = qYouForgotTheQ_OBJECT_Macro(this, &_q_argument); i = i; } static const QMetaObject staticMetaObject; virtual const QMetaObject *metaObject() const; virtual void *qt_metacast(const char *); static inline QString tr(const char *s, const char *c = 0) { return staticMetaObject.tr(s, c); } static inline QString trUtf8(const char *s, const char *c = 0) { return staticMetaObject.trUtf8(s, c); } static inline QString tr(const char *s, const char *c, int n) { return staticMetaObject.tr(s, c, n); } static inline QString trUtf8(const char *s, const char *c, int n) { return staticMetaObject.trUtf8(s, c, n); } virtual int qt_metacall(QMetaObject::Call, int, void **); private: __attribute__((visibility("hidden"))) static const QMetaObjectExtraData staticMetaObjectExtraData; __attribute__((visibility("hidden"))) static void qt_static_metacall(QObject *, QMetaObject::Call, int, void **); public: enum State { NotRunning, Paused, Running }; enum Direction { Forward, Backward }; enum CurveShape { EaseInCurve, EaseOutCurve, EaseInOutCurve, LinearCurve, SineCurve, CosineCurve }; explicit QTimeLine(int duration = 1000, QObject *parent = 0); virtual ~QTimeLine(); State state() const; int loopCount() const; void setLoopCount(int count); Direction direction() const; void setDirection(Direction direction); int duration() const; void setDuration(int duration); int startFrame() const; void setStartFrame(int frame); int endFrame() const; void setEndFrame(int frame); void setFrameRange(int startFrame, int endFrame); int updateInterval() const; void setUpdateInterval(int interval); CurveShape curveShape() const; void setCurveShape(CurveShape shape); QEasingCurve easingCurve() const; void setEasingCurve(const QEasingCurve &curve); int currentTime() const; int currentFrame() const; qreal currentValue() const; int frameForTime(int msec) const; virtual qreal valueForTime(int msec) const; public : void start(); void resume(); void stop(); void setPaused(bool paused); void setCurrentTime(int msec); void toggleDirection(); protected: void valueChanged(qreal x); void frameChanged(int); void stateChanged(QTimeLine::State newState); void finished(); protected: void timerEvent(QTimerEvent *event); private: QTimeLine(const QTimeLine &); QTimeLine &operator=(const QTimeLine &); inline QTimeLinePrivate* d_func() { return reinterpret_cast(qGetPtrHelper(d_ptr)); } inline const QTimeLinePrivate* d_func() const { return reinterpret_cast(qGetPtrHelper(d_ptr)); } friend class QTimeLinePrivate; }; typedef QtValidLicenseForCoreModule QtCoreModule; template class QPodList; template class QVarLengthArray { public: inline explicit QVarLengthArray(int size = 0); inline QVarLengthArray(const QVarLengthArray &other) : a(Prealloc), s(0), ptr(reinterpret_cast(array)) { append(other.constData(), other.size()); } inline ~QVarLengthArray() { if (QTypeInfo::isComplex) { T *i = ptr + s; while (i-- != ptr) i->~T(); } if (ptr != reinterpret_cast(array)) qFree(ptr); } inline QVarLengthArray &operator=(const QVarLengthArray &other) { if (this != &other) { clear(); append(other.constData(), other.size()); } return *this; } inline void removeLast() { qt_noop(); realloc(s - 1, a); } inline int size() const { return s; } inline int count() const { return s; } inline bool isEmpty() const { return (s == 0); } inline void resize(int size); inline void clear() { resize(0); } inline int capacity() const { return a; } inline void reserve(int size); inline T &operator[](int idx) { qt_noop(); return ptr[idx]; } inline const T &operator[](int idx) const { qt_noop(); return ptr[idx]; } inline const T &at(int idx) const { return operator[](idx); } T value(int i) const; T value(int i, const T &defaultValue) const; inline void append(const T &t) { if (s == a) realloc(s, s<<1); const int idx = s++; if (QTypeInfo::isComplex) { new (ptr + idx) T(t); } else { ptr[idx] = t; } } void append(const T *buf, int size); inline QVarLengthArray &operator<<(const T &t) { append(t); return *this; } inline QVarLengthArray &operator+=(const T &t) { append(t); return *this; } void prepend(const T &t); void insert(int i, const T &t); void insert(int i, int n, const T &t); void replace(int i, const T &t); void remove(int i); void remove(int i, int n); inline T *data() { return ptr; } inline const T *data() const { return ptr; } inline const T * constData() const { return ptr; } typedef int size_type; typedef T value_type; typedef value_type *pointer; typedef const value_type *const_pointer; typedef value_type &reference; typedef const value_type &const_reference; typedef qptrdiff difference_type; typedef T* iterator; typedef const T* const_iterator; inline iterator begin() { return ptr; } inline const_iterator begin() const { return ptr; } inline const_iterator constBegin() const { return ptr; } inline iterator end() { return ptr + s; } inline const_iterator end() const { return ptr + s; } inline const_iterator constEnd() const { return ptr + s; } iterator insert(iterator before, int n, const T &x); inline iterator insert(iterator before, const T &x) { return insert(before, 1, x); } iterator erase(iterator begin, iterator end); inline iterator erase(iterator pos) { return erase(pos, pos+1); } private: friend class QPodList; void realloc(int size, int alloc); int a; int s; T *ptr; union { char array[sizeof(qint64) * (((Prealloc * sizeof(T)) / sizeof(qint64)) + 1)]; qint64 q_for_alignment_1; double q_for_alignment_2; }; }; template inline QVarLengthArray::QVarLengthArray(int asize) : s(asize) { if (s > Prealloc) { ptr = reinterpret_cast(qMalloc(s * sizeof(T))); do { if (!(ptr)) qBadAlloc(); } while (0); a = s; } else { ptr = reinterpret_cast(array); a = Prealloc; } if (QTypeInfo::isComplex) { T *i = ptr + s; while (i != ptr) new (--i) T; } } template inline void QVarLengthArray::resize(int asize) { realloc(asize, qMax(asize, a)); } template inline void QVarLengthArray::reserve(int asize) { if (asize > a) realloc(s, asize); } template void QVarLengthArray::append(const T *abuf, int increment) { qt_noop(); if (increment <= 0) return; const int asize = s + increment; if (asize >= a) realloc(s, qMax(s*2, asize)); if (QTypeInfo::isComplex) { while (s < asize) new (ptr+(s++)) T(*abuf++); } else { qMemCopy(&ptr[s], abuf, increment * sizeof(T)); s = asize; } } template void QVarLengthArray::realloc(int asize, int aalloc) { qt_noop(); T *oldPtr = ptr; int osize = s; const int copySize = qMin(asize, osize); if (aalloc != a) { ptr = reinterpret_cast(qMalloc(aalloc * sizeof(T))); do { if (!(ptr)) qBadAlloc(); } while (0); if (ptr) { s = 0; a = aalloc; if (QTypeInfo::isStatic) { try { while (s < copySize) { new (ptr+s) T(*(oldPtr+s)); (oldPtr+s)->~T(); s++; } } catch (...) { int sClean = s; while (sClean < osize) (oldPtr+(sClean++))->~T(); if (oldPtr != reinterpret_cast(array) && oldPtr != ptr) qFree(oldPtr); throw; } } else { qMemCopy(ptr, oldPtr, copySize * sizeof(T)); } } else { ptr = oldPtr; return; } } s = copySize; if (QTypeInfo::isComplex) { while (osize > asize) (oldPtr+(--osize))->~T(); } if (oldPtr != reinterpret_cast(array) && oldPtr != ptr) qFree(oldPtr); if (QTypeInfo::isComplex) { while (s < asize) new (ptr+(s++)) T; } else { s = asize; } } template T QVarLengthArray::value(int i) const { if (i < 0 || i >= size()) { return T(); } return at(i); } template T QVarLengthArray::value(int i, const T &defaultValue) const { return (i < 0 || i >= size()) ? defaultValue : at(i); } template inline void QVarLengthArray::insert(int i, const T &t) { qt_noop(); insert(begin() + i, 1, t); } template inline void QVarLengthArray::insert(int i, int n, const T &t) { qt_noop(); insert(begin() + i, n, t); } template inline void QVarLengthArray::remove(int i, int n) { qt_noop(); erase(begin() + i, begin() + i + n); } template inline void QVarLengthArray::remove(int i) { qt_noop(); erase(begin() + i, begin() + i + 1); } template inline void QVarLengthArray::prepend(const T &t) { insert(begin(), 1, t); } template inline void QVarLengthArray::replace(int i, const T &t) { qt_noop(); const T copy(t); data()[i] = copy; } template typename QVarLengthArray::iterator QVarLengthArray::insert(iterator before, size_type n, const T &t) { int offset = int(before - ptr); if (n != 0) { resize(s + n); const T copy(t); if (QTypeInfo::isStatic) { T *b = ptr + offset; T *j = ptr + s; T *i = j - n; while (i != b) *--j = *--i; i = b + n; while (i != b) *--i = copy; } else { T *b = ptr + offset; T *i = b + n; memmove(i, b, (s - offset - n) * sizeof(T)); while (i != b) new (--i) T(copy); } } return ptr + offset; } template typename QVarLengthArray::iterator QVarLengthArray::erase(iterator abegin, iterator aend) { int f = int(abegin - ptr); int l = int(aend - ptr); int n = l - f; if (QTypeInfo::isComplex) { qCopy(ptr + l, ptr + s, ptr + f); T *i = ptr + s; T *b = ptr + s - n; while (i != b) { --i; i->~T(); } } else { memmove(ptr + f, ptr + l, (s - l) * sizeof(T)); } s -= n; return ptr + f; } template bool operator==(const QVarLengthArray &l, const QVarLengthArray &r) { if (l.size() != r.size()) return false; for (int i = 0; i < l.size(); i++) { if (l.at(i) != r.at(i)) return false; } return true; } template bool operator!=(const QVarLengthArray &l, const QVarLengthArray &r) { return !(l == r); } typedef QtValidLicenseForCoreModule QtCoreModule; class QXmlStreamStringRef { QString m_string; int m_position, m_size; public: inline QXmlStreamStringRef():m_position(0), m_size(0){} inline QXmlStreamStringRef(const QStringRef &aString) :m_string(aString.string()?*aString.string():QString()), m_position(aString.position()), m_size(aString.size()){} inline QXmlStreamStringRef(const QString &aString):m_string(aString), m_position(0), m_size(aString.size()){} inline ~QXmlStreamStringRef(){} inline void clear() { m_string.clear(); m_position = m_size = 0; } inline operator QStringRef() const { return QStringRef(&m_string, m_position, m_size); } inline const QString *string() const { return &m_string; } inline int position() const { return m_position; } inline int size() const { return m_size; } }; class QXmlStreamReaderPrivate; class QXmlStreamAttributes; class QXmlStreamAttribute { QXmlStreamStringRef m_name, m_namespaceUri, m_qualifiedName, m_value; void *reserved; uint m_isDefault : 1; friend class QXmlStreamReaderPrivate; friend class QXmlStreamAttributes; public: QXmlStreamAttribute(); QXmlStreamAttribute(const QString &qualifiedName, const QString &value); QXmlStreamAttribute(const QString &namespaceUri, const QString &name, const QString &value); QXmlStreamAttribute(const QXmlStreamAttribute &); QXmlStreamAttribute& operator=(const QXmlStreamAttribute &); ~QXmlStreamAttribute(); inline QStringRef namespaceUri() const { return m_namespaceUri; } inline QStringRef name() const { return m_name; } inline QStringRef qualifiedName() const { return m_qualifiedName; } inline QStringRef prefix() const { return QStringRef(m_qualifiedName.string(), m_qualifiedName.position(), qMax(0, m_qualifiedName.size() - m_name.size() - 1)); } inline QStringRef value() const { return m_value; } inline bool isDefault() const { return m_isDefault; } inline bool operator==(const QXmlStreamAttribute &other) const { return (value() == other.value() && (namespaceUri().isNull() ? (qualifiedName() == other.qualifiedName()) : (namespaceUri() == other.namespaceUri() && name() == other.name()))); } inline bool operator!=(const QXmlStreamAttribute &other) const { return !operator==(other); } }; template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QXmlStreamAttribute)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QXmlStreamAttribute"; } }; class QXmlStreamAttributes : public QVector { public: inline QXmlStreamAttributes() {} QStringRef value(const QString &namespaceUri, const QString &name) const; QStringRef value(const QString &namespaceUri, const QLatin1String &name) const; QStringRef value(const QLatin1String &namespaceUri, const QLatin1String &name) const; QStringRef value(const QString &qualifiedName) const; QStringRef value(const QLatin1String &qualifiedName) const; void append(const QString &namespaceUri, const QString &name, const QString &value); void append(const QString &qualifiedName, const QString &value); inline bool hasAttribute(const QString &qualifiedName) const { return !value(qualifiedName).isNull(); } inline bool hasAttribute(const QLatin1String &qualifiedName) const { return !value(qualifiedName).isNull(); } inline bool hasAttribute(const QString &namespaceUri, const QString &name) const { return !value(namespaceUri, name).isNull(); } using QVector::append; }; class QXmlStreamNamespaceDeclaration { QXmlStreamStringRef m_prefix, m_namespaceUri; void *reserved; friend class QXmlStreamReaderPrivate; public: QXmlStreamNamespaceDeclaration(); QXmlStreamNamespaceDeclaration(const QXmlStreamNamespaceDeclaration &); QXmlStreamNamespaceDeclaration(const QString &prefix, const QString &namespaceUri); ~QXmlStreamNamespaceDeclaration(); QXmlStreamNamespaceDeclaration& operator=(const QXmlStreamNamespaceDeclaration &); inline QStringRef prefix() const { return m_prefix; } inline QStringRef namespaceUri() const { return m_namespaceUri; } inline bool operator==(const QXmlStreamNamespaceDeclaration &other) const { return (prefix() == other.prefix() && namespaceUri() == other.namespaceUri()); } inline bool operator!=(const QXmlStreamNamespaceDeclaration &other) const { return !operator==(other); } }; template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QXmlStreamNamespaceDeclaration)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QXmlStreamNamespaceDeclaration"; } }; typedef QVector QXmlStreamNamespaceDeclarations; class QXmlStreamNotationDeclaration { QXmlStreamStringRef m_name, m_systemId, m_publicId; void *reserved; friend class QXmlStreamReaderPrivate; public: QXmlStreamNotationDeclaration(); ~QXmlStreamNotationDeclaration(); QXmlStreamNotationDeclaration(const QXmlStreamNotationDeclaration &); QXmlStreamNotationDeclaration& operator=(const QXmlStreamNotationDeclaration &); inline QStringRef name() const { return m_name; } inline QStringRef systemId() const { return m_systemId; } inline QStringRef publicId() const { return m_publicId; } inline bool operator==(const QXmlStreamNotationDeclaration &other) const { return (name() == other.name() && systemId() == other.systemId() && publicId() == other.publicId()); } inline bool operator!=(const QXmlStreamNotationDeclaration &other) const { return !operator==(other); } }; template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QXmlStreamNotationDeclaration)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QXmlStreamNotationDeclaration"; } }; typedef QVector QXmlStreamNotationDeclarations; class QXmlStreamEntityDeclaration { QXmlStreamStringRef m_name, m_notationName, m_systemId, m_publicId, m_value; void *reserved; friend class QXmlStreamReaderPrivate; public: QXmlStreamEntityDeclaration(); ~QXmlStreamEntityDeclaration(); QXmlStreamEntityDeclaration(const QXmlStreamEntityDeclaration &); QXmlStreamEntityDeclaration& operator=(const QXmlStreamEntityDeclaration &); inline QStringRef name() const { return m_name; } inline QStringRef notationName() const { return m_notationName; } inline QStringRef systemId() const { return m_systemId; } inline QStringRef publicId() const { return m_publicId; } inline QStringRef value() const { return m_value; } inline bool operator==(const QXmlStreamEntityDeclaration &other) const { return (name() == other.name() && notationName() == other.notationName() && systemId() == other.systemId() && publicId() == other.publicId() && value() == other.value()); } inline bool operator!=(const QXmlStreamEntityDeclaration &other) const { return !operator==(other); } }; template<> class QTypeInfo { public: enum { isComplex = (((Q_MOVABLE_TYPE) & Q_PRIMITIVE_TYPE) == 0), isStatic = (((Q_MOVABLE_TYPE) & (Q_MOVABLE_TYPE | Q_PRIMITIVE_TYPE)) == 0), isLarge = (sizeof(QXmlStreamEntityDeclaration)>sizeof(void*)), isPointer = false, isDummy = (((Q_MOVABLE_TYPE) & Q_DUMMY_TYPE) != 0) }; static inline const char *name() { return "QXmlStreamEntityDeclaration"; } }; typedef QVector QXmlStreamEntityDeclarations; class QXmlStreamEntityResolver { public: virtual ~QXmlStreamEntityResolver(); virtual QString resolveEntity(const QString& publicId, const QString& systemId); virtual QString resolveUndeclaredEntity(const QString &name); }; class QXmlStreamReader { public: enum TokenType { NoToken = 0, Invalid, StartDocument, EndDocument, StartElement, EndElement, Characters, Comment, DTD, EntityReference, ProcessingInstruction }; QXmlStreamReader(); QXmlStreamReader(QIODevice *device); QXmlStreamReader(const QByteArray &data); QXmlStreamReader(const QString &data); QXmlStreamReader(const char * data); ~QXmlStreamReader(); void setDevice(QIODevice *device); QIODevice *device() const; void addData(const QByteArray &data); void addData(const QString &data); void addData(const char *data); void clear(); bool atEnd() const; TokenType readNext(); bool readNextStartElement(); void skipCurrentElement(); TokenType tokenType() const; QString tokenString() const; void setNamespaceProcessing(bool); bool namespaceProcessing() const; inline bool isStartDocument() const { return tokenType() == StartDocument; } inline bool isEndDocument() const { return tokenType() == EndDocument; } inline bool isStartElement() const { return tokenType() == StartElement; } inline bool isEndElement() const { return tokenType() == EndElement; } inline bool isCharacters() const { return tokenType() == Characters; } bool isWhitespace() const; bool isCDATA() const; inline bool isComment() const { return tokenType() == Comment; } inline bool isDTD() const { return tokenType() == DTD; } inline bool isEntityReference() const { return tokenType() == EntityReference; } inline bool isProcessingInstruction() const { return tokenType() == ProcessingInstruction; } bool isStandaloneDocument() const; QStringRef documentVersion() const; QStringRef documentEncoding() const; qint64 lineNumber() const; qint64 columnNumber() const; qint64 characterOffset() const; QXmlStreamAttributes attributes() const; enum ReadElementTextBehaviour { ErrorOnUnexpectedElement, IncludeChildElements, SkipChildElements }; QString readElementText(ReadElementTextBehaviour behaviour); QString readElementText(); QStringRef name() const; QStringRef namespaceUri() const; QStringRef qualifiedName() const; QStringRef prefix() const; QStringRef processingInstructionTarget() const; QStringRef processingInstructionData() const; QStringRef text() const; QXmlStreamNamespaceDeclarations namespaceDeclarations() const; void addExtraNamespaceDeclaration(const QXmlStreamNamespaceDeclaration &extraNamespaceDeclaraction); void addExtraNamespaceDeclarations(const QXmlStreamNamespaceDeclarations &extraNamespaceDeclaractions); QXmlStreamNotationDeclarations notationDeclarations() const; QXmlStreamEntityDeclarations entityDeclarations() const; QStringRef dtdName() const; QStringRef dtdPublicId() const; QStringRef dtdSystemId() const; enum Error { NoError, UnexpectedElementError, CustomError, NotWellFormedError, PrematureEndOfDocumentError }; void raiseError(const QString& message = QString()); QString errorString() const; Error error() const; inline bool hasError() const { return error() != NoError; } void setEntityResolver(QXmlStreamEntityResolver *resolver); QXmlStreamEntityResolver *entityResolver() const; private: QXmlStreamReader(const QXmlStreamReader &); QXmlStreamReader &operator=(const QXmlStreamReader &); inline QXmlStreamReaderPrivate* d_func() { return reinterpret_cast(qGetPtrHelper(d_ptr)); } inline const QXmlStreamReaderPrivate* d_func() const { return reinterpret_cast(qGetPtrHelper(d_ptr)); } friend class QXmlStreamReaderPrivate; QScopedPointer d_ptr; }; class QXmlStreamWriterPrivate; class QXmlStreamWriter { public: QXmlStreamWriter(); QXmlStreamWriter(QIODevice *device); QXmlStreamWriter(QByteArray *array); QXmlStreamWriter(QString *string); ~QXmlStreamWriter(); void setDevice(QIODevice *device); QIODevice *device() const; void setCodec(QTextCodec *codec); void setCodec(const char *codecName); QTextCodec *codec() const; void setAutoFormatting(bool); bool autoFormatting() const; void setAutoFormattingIndent(int spacesOrTabs); int autoFormattingIndent() const; void writeAttribute(const QString &qualifiedName, const QString &value); void writeAttribute(const QString &namespaceUri, const QString &name, const QString &value); void writeAttribute(const QXmlStreamAttribute& attribute); void writeAttributes(const QXmlStreamAttributes& attributes); void writeCDATA(const QString &text); void writeCharacters(const QString &text); void writeComment(const QString &text); void writeDTD(const QString &dtd); void writeEmptyElement(const QString &qualifiedName); void writeEmptyElement(const QString &namespaceUri, const QString &name); void writeTextElement(const QString &qualifiedName, const QString &text); void writeTextElement(const QString &namespaceUri, const QString &name, const QString &text); void writeEndDocument(); void writeEndElement(); void writeEntityReference(const QString &name); void writeNamespace(const QString &namespaceUri, const QString &prefix = QString()); void writeDefaultNamespace(const QString &namespaceUri); void writeProcessingInstruction(const QString &target, const QString &data = QString()); void writeStartDocument(); void writeStartDocument(const QString &version); void writeStartDocument(const QString &version, bool standalone); void writeStartElement(const QString &qualifiedName); void writeStartElement(const QString &namespaceUri, const QString &name); void writeCurrentToken(const QXmlStreamReader &reader); bool hasError() const; private: QXmlStreamWriter(const QXmlStreamWriter &); QXmlStreamWriter &operator=(const QXmlStreamWriter &); inline QXmlStreamWriterPrivate* d_func() { return reinterpret_cast(qGetPtrHelper(d_ptr)); } inline const QXmlStreamWriterPrivate* d_func() const { return reinterpret_cast(qGetPtrHelper(d_ptr)); } friend class QXmlStreamWriterPrivate; QScopedPointer d_ptr; }; typedef QtValidLicenseForCoreModule QtCoreModule; class QTextCodec; class QIODevice; class QTextDecoder; class QTextEncoder; class QTextCodec { QTextCodec(const QTextCodec &); QTextCodec &operator=(const QTextCodec &); public: static QTextCodec* codecForName(const QByteArray &name); static QTextCodec* codecForName(const char *name) { return codecForName(QByteArray(name)); } static QTextCodec* codecForMib(int mib); static QList availableCodecs(); static QList availableMibs(); static QTextCodec* codecForLocale(); static void setCodecForLocale(QTextCodec *c); static QTextCodec* codecForTr(); static void setCodecForTr(QTextCodec *c); static QTextCodec* codecForCStrings(); static void setCodecForCStrings(QTextCodec *c); static QTextCodec *codecForHtml(const QByteArray &ba); static QTextCodec *codecForHtml(const QByteArray &ba, QTextCodec *defaultCodec); static QTextCodec *codecForUtfText(const QByteArray &ba); static QTextCodec *codecForUtfText(const QByteArray &ba, QTextCodec *defaultCodec); bool canEncode(QChar) const; bool canEncode(const QString&) const; QString toUnicode(const QByteArray&) const; QString toUnicode(const char* chars) const; QByteArray fromUnicode(const QString& uc) const; enum ConversionFlag { DefaultConversion, ConvertInvalidToNull = 0x80000000, IgnoreHeader = 0x1, FreeFunction = 0x2 }; typedef QFlags ConversionFlags; struct ConverterState { ConverterState(ConversionFlags f = DefaultConversion) : flags(f), remainingChars(0), invalidChars(0), d(0) { state_data[0] = state_data[1] = state_data[2] = 0; } ~ConverterState(); ConversionFlags flags; int remainingChars; int invalidChars; uint state_data[3]; void *d; private: ConverterState(const ConverterState &); ConverterState &operator=(const ConverterState &); }; QString toUnicode(const char *in, int length, ConverterState *state = 0) const { return convertToUnicode(in, length, state); } QByteArray fromUnicode(const QChar *in, int length, ConverterState *state = 0) const { return convertFromUnicode(in, length, state); } QTextDecoder* makeDecoder() const; QTextDecoder* makeDecoder(ConversionFlags flags) const; QTextEncoder* makeEncoder() const; QTextEncoder* makeEncoder(ConversionFlags flags) const; virtual QByteArray name() const = 0; virtual QList aliases() const; virtual int mibEnum() const = 0; protected: virtual QString convertToUnicode(const char *in, int length, ConverterState *state) const = 0; virtual QByteArray convertFromUnicode(const QChar *in, int length, ConverterState *state) const = 0; QTextCodec(); virtual ~QTextCodec(); public: private: friend class QTextCodecCleanup; static QTextCodec *cftr; static bool validCodecs(); }; inline QFlags operator|(QTextCodec::ConversionFlags::enum_type f1, QTextCodec::ConversionFlags::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(QTextCodec::ConversionFlags::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(QTextCodec::ConversionFlags::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } inline QTextCodec* QTextCodec::codecForTr() { return validCodecs() ? cftr : 0; } inline void QTextCodec::setCodecForTr(QTextCodec *c) { cftr = c; } inline QTextCodec* QTextCodec::codecForCStrings() { return validCodecs() ? QString::codecForCStrings : 0; } inline void QTextCodec::setCodecForCStrings(QTextCodec *c) { QString::codecForCStrings = c; } class QTextEncoder { QTextEncoder(const QTextEncoder &); QTextEncoder &operator=(const QTextEncoder &); public: explicit QTextEncoder(const QTextCodec *codec) : c(codec), state() {} QTextEncoder(const QTextCodec *codec, QTextCodec::ConversionFlags flags); ~QTextEncoder(); QByteArray fromUnicode(const QString& str); QByteArray fromUnicode(const QChar *uc, int len); bool hasFailure() const; private: const QTextCodec *c; QTextCodec::ConverterState state; }; class QTextDecoder { QTextDecoder(const QTextDecoder &); QTextDecoder &operator=(const QTextDecoder &); public: explicit QTextDecoder(const QTextCodec *codec) : c(codec), state() {} QTextDecoder(const QTextCodec *codec, QTextCodec::ConversionFlags flags); ~QTextDecoder(); QString toUnicode(const char* chars, int len); QString toUnicode(const QByteArray &ba); void toUnicode(QString *target, const char *chars, int len); bool hasFailure() const; private: const QTextCodec *c; QTextCodec::ConverterState state; }; typedef QtValidLicenseForCoreModule QtCoreModule; template class QPointer { QObject *o; public: inline QPointer() : o(0) {} inline QPointer(T *p) : o(p) { QMetaObject::addGuard(&o); } inline QPointer(const QPointer &p) : o(p.o) { QMetaObject::addGuard(&o); } inline ~QPointer() { QMetaObject::removeGuard(&o); } inline QPointer &operator=(const QPointer &p) { if (this != &p) QMetaObject::changeGuard(&o, p.o); return *this; } inline QPointer &operator=(T* p) { if (o != p) QMetaObject::changeGuard(&o, p); return *this; } inline bool isNull() const { return !o; } inline T* operator->() const { return static_cast(const_cast(o)); } inline T& operator*() const { return *static_cast(const_cast(o)); } inline operator T*() const { return static_cast(const_cast(o)); } inline T* data() const { return static_cast(const_cast(o)); } }; template inline bool operator==(const T *o, const QPointer &p) { return o == p.operator->(); } template inline bool operator==(const QPointer &p, const T *o) { return p.operator->() == o; } template inline bool operator==(T *o, const QPointer &p) { return o == p.operator->(); } template inline bool operator==(const QPointer &p, T *o) { return p.operator->() == o; } template inline bool operator==(const QPointer &p1, const QPointer &p2) { return p1.operator->() == p2.operator->(); } template inline bool operator!=(const T *o, const QPointer &p) { return o != p.operator->(); } template inline bool operator!= (const QPointer &p, const T *o) { return p.operator->() != o; } template inline bool operator!=(T *o, const QPointer &p) { return o != p.operator->(); } template inline bool operator!= (const QPointer &p, T *o) { return p.operator->() != o; } template inline bool operator!= (const QPointer &p1, const QPointer &p2) { return p1.operator->() != p2.operator->() ; } typedef QtValidLicenseForCoreModule QtCoreModule; typedef QObject *(*QtPluginInstanceFunction)(); void qRegisterStaticPluginInstanceFunction(QtPluginInstanceFunction function); typedef QtValidLicenseForCoreModule QtCoreModule; struct QFactoryInterface { virtual ~QFactoryInterface() {} virtual QStringList keys() const = 0; }; template <> inline const char *qobject_interface_iid() { return "com.trolltech.Qt.QFactoryInterface"; } template <> inline QFactoryInterface *qobject_cast(QObject *object) { return reinterpret_cast((object ? object->qt_metacast("com.trolltech.Qt.QFactoryInterface") : 0)); } template <> inline QFactoryInterface *qobject_cast(const QObject *object) { return reinterpret_cast((object ? const_cast(object)->qt_metacast("com.trolltech.Qt.QFactoryInterface") : 0)); } typedef QtValidLicenseForCoreModule QtCoreModule; class QTextCodec; struct QTextCodecFactoryInterface : public QFactoryInterface { virtual QTextCodec *create(const QString &key) = 0; }; template <> inline const char *qobject_interface_iid() { return "com.trolltech.Qt.QTextCodecFactoryInterface"; } template <> inline QTextCodecFactoryInterface *qobject_cast(QObject *object) { return reinterpret_cast((object ? object->qt_metacast("com.trolltech.Qt.QTextCodecFactoryInterface") : 0)); } template <> inline QTextCodecFactoryInterface *qobject_cast(const QObject *object) { return reinterpret_cast((object ? const_cast(object)->qt_metacast("com.trolltech.Qt.QTextCodecFactoryInterface") : 0)); } class QTextCodecPlugin : public QObject, public QTextCodecFactoryInterface { public: template inline void qt_check_for_QOBJECT_macro(const T &_q_argument) const { int i = qYouForgotTheQ_OBJECT_Macro(this, &_q_argument); i = i; } static const QMetaObject staticMetaObject; virtual const QMetaObject *metaObject() const; virtual void *qt_metacast(const char *); static inline QString tr(const char *s, const char *c = 0) { return staticMetaObject.tr(s, c); } static inline QString trUtf8(const char *s, const char *c = 0) { return staticMetaObject.trUtf8(s, c); } static inline QString tr(const char *s, const char *c, int n) { return staticMetaObject.tr(s, c, n); } static inline QString trUtf8(const char *s, const char *c, int n) { return staticMetaObject.trUtf8(s, c, n); } virtual int qt_metacall(QMetaObject::Call, int, void **); private: __attribute__((visibility("hidden"))) static const QMetaObjectExtraData staticMetaObjectExtraData; __attribute__((visibility("hidden"))) static void qt_static_metacall(QObject *, QMetaObject::Call, int, void **); public: explicit QTextCodecPlugin(QObject *parent = 0); ~QTextCodecPlugin(); virtual QList names() const = 0; virtual QList aliases() const = 0; virtual QTextCodec *createForName(const QByteArray &name) = 0; virtual QList mibEnums() const = 0; virtual QTextCodec *createForMib(int mib) = 0; private: QStringList keys() const; QTextCodec *create(const QString &name); }; typedef QtValidLicenseForCoreModule QtCoreModule; class QRunnable { int ref; friend class QThreadPool; friend class QThreadPoolPrivate; friend class QThreadPoolThread; public: virtual void run() = 0; QRunnable() : ref(0) { } virtual ~QRunnable() { } bool autoDelete() const { return ref != -1; } void setAutoDelete(bool _autoDelete) { ref = _autoDelete ? 0 : -1; } }; typedef QtValidLicenseForCoreModule QtCoreModule; class QAtomicInt; class QMutexData; class QMutex { friend class QWaitCondition; friend class QWaitConditionPrivate; public: enum RecursionMode { NonRecursive, Recursive }; explicit QMutex(RecursionMode mode = NonRecursive); ~QMutex(); void lock(); inline void lockInline(); bool tryLock(); bool tryLock(int timeout); inline bool tryLockInline(); void unlock(); inline void unlockInline(); private: void lockInternal(); void unlockInternal(); QMutex(const QMutex &); QMutex &operator=(const QMutex &); QMutexData *d; }; class QMutexLocker { public: inline explicit QMutexLocker(QMutex *m) { qt_noop() ; if (m) { m->lockInline(); val = reinterpret_cast(m) | quintptr(1u); } else { val = 0; } } inline ~QMutexLocker() { unlock(); } inline void unlock() { if ((val & quintptr(1u)) == quintptr(1u)) { val &= ~quintptr(1u); mutex()->unlockInline(); } } inline void relock() { if (val) { if ((val & quintptr(1u)) == quintptr(0u)) { mutex()->lockInline(); val |= quintptr(1u); } } } inline QMutex *mutex() const { return reinterpret_cast(val & ~quintptr(1u)); } private: QMutexLocker(const QMutexLocker &); QMutexLocker &operator=(const QMutexLocker &); quintptr val; }; class QMutexData { public: QAtomicInt contenders; const uint recursive : 1; uint reserved : 31; protected: QMutexData(QMutex::RecursionMode mode); ~QMutexData(); }; inline void QMutex::unlockInline() { if (d->recursive) { unlock(); } else if (!d->contenders.testAndSetRelease(1, 0)) { unlockInternal(); } } inline bool QMutex::tryLockInline() { if (d->recursive) { return tryLock(); } else { return d->contenders.testAndSetAcquire(0, 1); } } inline void QMutex::lockInline() { if (d->recursive) { lock(); } else if(!tryLockInline()) { lockInternal(); } } typedef QtValidLicenseForCoreModule QtCoreModule; namespace QtConcurrent { class Exception : public std::exception { public: virtual void raise() const; virtual Exception *clone() const; }; class UnhandledException : public Exception { public: void raise() const; Exception *clone() const; }; namespace internal { class Base; class ExceptionHolder { public: ExceptionHolder(Exception *exception = 0); ExceptionHolder(const ExceptionHolder &other); void operator=(const ExceptionHolder &other); ~ExceptionHolder(); Exception *exception() const; Base *base; }; class ExceptionStore { public: void setException(const Exception &e); bool hasException() const; ExceptionHolder exception(); void throwPossibleException(); bool hasThrown() const; ExceptionHolder exceptionHolder; }; } } extern "C" { typedef struct { __off_t __pos; __mbstate_t __state; } _G_fpos_t; typedef struct { __off64_t __pos; __mbstate_t __state; } _G_fpos64_t; typedef int _G_int16_t __attribute__ ((__mode__ (__HI__))); typedef int _G_int32_t __attribute__ ((__mode__ (__SI__))); typedef unsigned int _G_uint16_t __attribute__ ((__mode__ (__HI__))); typedef unsigned int _G_uint32_t __attribute__ ((__mode__ (__SI__))); struct _IO_jump_t; struct _IO_FILE; typedef void _IO_lock_t; struct _IO_marker { struct _IO_marker *_next; struct _IO_FILE *_sbuf; int _pos; }; enum __codecvt_result { __codecvt_ok, __codecvt_partial, __codecvt_error, __codecvt_noconv }; struct _IO_FILE { int _flags; char* _IO_read_ptr; char* _IO_read_end; char* _IO_read_base; char* _IO_write_base; char* _IO_write_ptr; char* _IO_write_end; char* _IO_buf_base; char* _IO_buf_end; char *_IO_save_base; char *_IO_backup_base; char *_IO_save_end; struct _IO_marker *_markers; struct _IO_FILE *_chain; int _fileno; int _flags2; __off_t _old_offset; unsigned short _cur_column; signed char _vtable_offset; char _shortbuf[1]; _IO_lock_t *_lock; __off64_t _offset; void *__pad1; void *__pad2; void *__pad3; void *__pad4; size_t __pad5; int _mode; char _unused2[15 * sizeof (int) - 4 * sizeof (void *) - sizeof (size_t)]; }; struct _IO_FILE_plus; extern struct _IO_FILE_plus _IO_2_1_stdin_; extern struct _IO_FILE_plus _IO_2_1_stdout_; extern struct _IO_FILE_plus _IO_2_1_stderr_; typedef __ssize_t __io_read_fn (void *__cookie, char *__buf, size_t __nbytes); typedef __ssize_t __io_write_fn (void *__cookie, __const char *__buf, size_t __n); typedef int __io_seek_fn (void *__cookie, __off64_t *__pos, int __w); typedef int __io_close_fn (void *__cookie); typedef __io_read_fn cookie_read_function_t; typedef __io_write_fn cookie_write_function_t; typedef __io_seek_fn cookie_seek_function_t; typedef __io_close_fn cookie_close_function_t; typedef struct { __io_read_fn *read; __io_write_fn *write; __io_seek_fn *seek; __io_close_fn *close; } _IO_cookie_io_functions_t; typedef _IO_cookie_io_functions_t cookie_io_functions_t; struct _IO_cookie_file; extern void _IO_cookie_init (struct _IO_cookie_file *__cfile, int __read_write, void *__cookie, _IO_cookie_io_functions_t __fns); extern "C" { extern int __underflow (_IO_FILE *); extern int __uflow (_IO_FILE *); extern int __overflow (_IO_FILE *, int); extern int _IO_getc (_IO_FILE *__fp); extern int _IO_putc (int __c, _IO_FILE *__fp); extern int _IO_feof (_IO_FILE *__fp) throw (); extern int _IO_ferror (_IO_FILE *__fp) throw (); extern int _IO_peekc_locked (_IO_FILE *__fp); extern void _IO_flockfile (_IO_FILE *) throw (); extern void _IO_funlockfile (_IO_FILE *) throw (); extern int _IO_ftrylockfile (_IO_FILE *) throw (); extern int _IO_vfscanf (_IO_FILE * __restrict, const char * __restrict, __gnuc_va_list, int *__restrict); extern int _IO_vfprintf (_IO_FILE *__restrict, const char *__restrict, __gnuc_va_list); extern __ssize_t _IO_padn (_IO_FILE *, int, __ssize_t); extern size_t _IO_sgetn (_IO_FILE *, void *, size_t); extern __off64_t _IO_seekoff (_IO_FILE *, __off64_t, int, int); extern __off64_t _IO_seekpos (_IO_FILE *, __off64_t, int); extern void _IO_free_backup_area (_IO_FILE *) throw (); } typedef _G_fpos_t fpos_t; typedef _G_fpos64_t fpos64_t; extern struct _IO_FILE *stdin; extern struct _IO_FILE *stdout; extern struct _IO_FILE *stderr; extern int remove (__const char *__filename) throw (); extern int rename (__const char *__old, __const char *__new) throw (); extern int renameat (int __oldfd, __const char *__old, int __newfd, __const char *__new) throw (); extern FILE *tmpfile (void) __attribute__ ((__warn_unused_result__)); extern FILE *tmpfile64 (void) __attribute__ ((__warn_unused_result__)); extern char *tmpnam (char *__s) throw () __attribute__ ((__warn_unused_result__)); extern char *tmpnam_r (char *__s) throw () __attribute__ ((__warn_unused_result__)); extern char *tempnam (__const char *__dir, __const char *__pfx) throw () __attribute__ ((__malloc__)) __attribute__ ((__warn_unused_result__)); extern int fclose (FILE *__stream); extern int fflush (FILE *__stream); extern int fflush_unlocked (FILE *__stream); extern int fcloseall (void); extern FILE *fopen (__const char *__restrict __filename, __const char *__restrict __modes) __attribute__ ((__warn_unused_result__)); extern FILE *freopen (__const char *__restrict __filename, __const char *__restrict __modes, FILE *__restrict __stream) __attribute__ ((__warn_unused_result__)); extern FILE *fopen64 (__const char *__restrict __filename, __const char *__restrict __modes) __attribute__ ((__warn_unused_result__)); extern FILE *freopen64 (__const char *__restrict __filename, __const char *__restrict __modes, FILE *__restrict __stream) __attribute__ ((__warn_unused_result__)); extern FILE *fdopen (int __fd, __const char *__modes) throw () __attribute__ ((__warn_unused_result__)); extern FILE *fopencookie (void *__restrict __magic_cookie, __const char *__restrict __modes, _IO_cookie_io_functions_t __io_funcs) throw () __attribute__ ((__warn_unused_result__)); extern FILE *fmemopen (void *__s, size_t __len, __const char *__modes) throw () __attribute__ ((__warn_unused_result__)); extern FILE *open_memstream (char **__bufloc, size_t *__sizeloc) throw () __attribute__ ((__warn_unused_result__)); extern void setbuf (FILE *__restrict __stream, char *__restrict __buf) throw (); extern int setvbuf (FILE *__restrict __stream, char *__restrict __buf, int __modes, size_t __n) throw (); extern void setbuffer (FILE *__restrict __stream, char *__restrict __buf, size_t __size) throw (); extern void setlinebuf (FILE *__stream) throw (); extern int fprintf (FILE *__restrict __stream, __const char *__restrict __format, ...); extern int printf (__const char *__restrict __format, ...); extern int sprintf (char *__restrict __s, __const char *__restrict __format, ...) throw (); extern int vfprintf (FILE *__restrict __s, __const char *__restrict __format, __gnuc_va_list __arg); extern int vprintf (__const char *__restrict __format, __gnuc_va_list __arg); extern int vsprintf (char *__restrict __s, __const char *__restrict __format, __gnuc_va_list __arg) throw (); extern int snprintf (char *__restrict __s, size_t __maxlen, __const char *__restrict __format, ...) throw () __attribute__ ((__format__ (__printf__, 3, 4))); extern int vsnprintf (char *__restrict __s, size_t __maxlen, __const char *__restrict __format, __gnuc_va_list __arg) throw () __attribute__ ((__format__ (__printf__, 3, 0))); extern int vasprintf (char **__restrict __ptr, __const char *__restrict __f, __gnuc_va_list __arg) throw () __attribute__ ((__format__ (__printf__, 2, 0))) __attribute__ ((__warn_unused_result__)); extern int __asprintf (char **__restrict __ptr, __const char *__restrict __fmt, ...) throw () __attribute__ ((__format__ (__printf__, 2, 3))) __attribute__ ((__warn_unused_result__)); extern int asprintf (char **__restrict __ptr, __const char *__restrict __fmt, ...) throw () __attribute__ ((__format__ (__printf__, 2, 3))) __attribute__ ((__warn_unused_result__)); extern int vdprintf (int __fd, __const char *__restrict __fmt, __gnuc_va_list __arg) __attribute__ ((__format__ (__printf__, 2, 0))); extern int dprintf (int __fd, __const char *__restrict __fmt, ...) __attribute__ ((__format__ (__printf__, 2, 3))); extern int fscanf (FILE *__restrict __stream, __const char *__restrict __format, ...) __attribute__ ((__warn_unused_result__)); extern int scanf (__const char *__restrict __format, ...) __attribute__ ((__warn_unused_result__)); extern int sscanf (__const char *__restrict __s, __const char *__restrict __format, ...) throw (); extern int vfscanf (FILE *__restrict __s, __const char *__restrict __format, __gnuc_va_list __arg) __attribute__ ((__format__ (__scanf__, 2, 0))) __attribute__ ((__warn_unused_result__)); extern int vscanf (__const char *__restrict __format, __gnuc_va_list __arg) __attribute__ ((__format__ (__scanf__, 1, 0))) __attribute__ ((__warn_unused_result__)); extern int vsscanf (__const char *__restrict __s, __const char *__restrict __format, __gnuc_va_list __arg) throw () __attribute__ ((__format__ (__scanf__, 2, 0))); extern int fgetc (FILE *__stream); extern int getc (FILE *__stream); extern int getchar (void); extern int getc_unlocked (FILE *__stream); extern int getchar_unlocked (void); extern int fgetc_unlocked (FILE *__stream); extern int fputc (int __c, FILE *__stream); extern int putc (int __c, FILE *__stream); extern int putchar (int __c); extern int fputc_unlocked (int __c, FILE *__stream); extern int putc_unlocked (int __c, FILE *__stream); extern int putchar_unlocked (int __c); extern int getw (FILE *__stream); extern int putw (int __w, FILE *__stream); extern char *fgets (char *__restrict __s, int __n, FILE *__restrict __stream) __attribute__ ((__warn_unused_result__)); extern char *gets (char *__s) __attribute__ ((__warn_unused_result__)); extern char *fgets_unlocked (char *__restrict __s, int __n, FILE *__restrict __stream) __attribute__ ((__warn_unused_result__)); extern __ssize_t __getdelim (char **__restrict __lineptr, size_t *__restrict __n, int __delimiter, FILE *__restrict __stream) __attribute__ ((__warn_unused_result__)); extern __ssize_t getdelim (char **__restrict __lineptr, size_t *__restrict __n, int __delimiter, FILE *__restrict __stream) __attribute__ ((__warn_unused_result__)); extern __ssize_t getline (char **__restrict __lineptr, size_t *__restrict __n, FILE *__restrict __stream) __attribute__ ((__warn_unused_result__)); extern int fputs (__const char *__restrict __s, FILE *__restrict __stream); extern int puts (__const char *__s); extern int ungetc (int __c, FILE *__stream); extern size_t fread (void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __stream) __attribute__ ((__warn_unused_result__)); extern size_t fwrite (__const void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __s) __attribute__ ((__warn_unused_result__)); extern int fputs_unlocked (__const char *__restrict __s, FILE *__restrict __stream); extern size_t fread_unlocked (void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __stream) __attribute__ ((__warn_unused_result__)); extern size_t fwrite_unlocked (__const void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __stream) __attribute__ ((__warn_unused_result__)); extern int fseek (FILE *__stream, long int __off, int __whence); extern long int ftell (FILE *__stream) __attribute__ ((__warn_unused_result__)); extern void rewind (FILE *__stream); extern int fseeko (FILE *__stream, __off_t __off, int __whence); extern __off_t ftello (FILE *__stream) __attribute__ ((__warn_unused_result__)); extern int fgetpos (FILE *__restrict __stream, fpos_t *__restrict __pos); extern int fsetpos (FILE *__stream, __const fpos_t *__pos); extern int fseeko64 (FILE *__stream, __off64_t __off, int __whence); extern __off64_t ftello64 (FILE *__stream) __attribute__ ((__warn_unused_result__)); extern int fgetpos64 (FILE *__restrict __stream, fpos64_t *__restrict __pos); extern int fsetpos64 (FILE *__stream, __const fpos64_t *__pos); extern void clearerr (FILE *__stream) throw (); extern int feof (FILE *__stream) throw () __attribute__ ((__warn_unused_result__)); extern int ferror (FILE *__stream) throw () __attribute__ ((__warn_unused_result__)); extern void clearerr_unlocked (FILE *__stream) throw (); extern int feof_unlocked (FILE *__stream) throw () __attribute__ ((__warn_unused_result__)); extern int ferror_unlocked (FILE *__stream) throw () __attribute__ ((__warn_unused_result__)); extern void perror (__const char *__s); extern int sys_nerr; extern __const char *__const sys_errlist[]; extern int _sys_nerr; extern __const char *__const _sys_errlist[]; extern int fileno (FILE *__stream) throw () __attribute__ ((__warn_unused_result__)); extern int fileno_unlocked (FILE *__stream) throw () __attribute__ ((__warn_unused_result__)); extern FILE *popen (__const char *__command, __const char *__modes) __attribute__ ((__warn_unused_result__)); extern int pclose (FILE *__stream); extern char *ctermid (char *__s) throw (); extern char *cuserid (char *__s); struct obstack; extern int obstack_printf (struct obstack *__restrict __obstack, __const char *__restrict __format, ...) throw () __attribute__ ((__format__ (__printf__, 2, 3))); extern int obstack_vprintf (struct obstack *__restrict __obstack, __const char *__restrict __format, __gnuc_va_list __args) throw () __attribute__ ((__format__ (__printf__, 2, 0))); extern void flockfile (FILE *__stream) throw (); extern int ftrylockfile (FILE *__stream) throw () __attribute__ ((__warn_unused_result__)); extern void funlockfile (FILE *__stream) throw (); extern __inline __attribute__ ((__gnu_inline__)) int getchar (void) { return _IO_getc (stdin); } extern __inline __attribute__ ((__gnu_inline__)) int fgetc_unlocked (FILE *__fp) { return (__builtin_expect (((__fp)->_IO_read_ptr >= (__fp)->_IO_read_end), 0) ? __uflow (__fp) : *(unsigned char *) (__fp)->_IO_read_ptr++); } extern __inline __attribute__ ((__gnu_inline__)) int getc_unlocked (FILE *__fp) { return (__builtin_expect (((__fp)->_IO_read_ptr >= (__fp)->_IO_read_end), 0) ? __uflow (__fp) : *(unsigned char *) (__fp)->_IO_read_ptr++); } extern __inline __attribute__ ((__gnu_inline__)) int getchar_unlocked (void) { return (__builtin_expect (((stdin)->_IO_read_ptr >= (stdin)->_IO_read_end), 0) ? __uflow (stdin) : *(unsigned char *) (stdin)->_IO_read_ptr++); } extern __inline __attribute__ ((__gnu_inline__)) int putchar (int __c) { return _IO_putc (__c, stdout); } extern __inline __attribute__ ((__gnu_inline__)) int fputc_unlocked (int __c, FILE *__stream) { return (__builtin_expect (((__stream)->_IO_write_ptr >= (__stream)->_IO_write_end), 0) ? __overflow (__stream, (unsigned char) (__c)) : (unsigned char) (*(__stream)->_IO_write_ptr++ = (__c))); } extern __inline __attribute__ ((__gnu_inline__)) int putc_unlocked (int __c, FILE *__stream) { return (__builtin_expect (((__stream)->_IO_write_ptr >= (__stream)->_IO_write_end), 0) ? __overflow (__stream, (unsigned char) (__c)) : (unsigned char) (*(__stream)->_IO_write_ptr++ = (__c))); } extern __inline __attribute__ ((__gnu_inline__)) int putchar_unlocked (int __c) { return (__builtin_expect (((stdout)->_IO_write_ptr >= (stdout)->_IO_write_end), 0) ? __overflow (stdout, (unsigned char) (__c)) : (unsigned char) (*(stdout)->_IO_write_ptr++ = (__c))); } extern __inline __attribute__ ((__gnu_inline__)) __ssize_t getline (char **__lineptr, size_t *__n, FILE *__stream) { return __getdelim (__lineptr, __n, '\n', __stream); } extern __inline __attribute__ ((__gnu_inline__)) int __attribute__ ((__leaf__)) feof_unlocked (FILE *__stream) throw () { return (((__stream)->_flags & 0x10) != 0); } extern __inline __attribute__ ((__gnu_inline__)) int __attribute__ ((__leaf__)) ferror_unlocked (FILE *__stream) throw () { return (((__stream)->_flags & 0x20) != 0); } extern int __sprintf_chk (char *__restrict __s, int __flag, size_t __slen, __const char *__restrict __format, ...) throw (); extern int __vsprintf_chk (char *__restrict __s, int __flag, size_t __slen, __const char *__restrict __format, __gnuc_va_list __ap) throw (); extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int __attribute__ ((__leaf__)) sprintf (char *__restrict __s, __const char *__restrict __fmt, ...) throw () { return __builtin___sprintf_chk (__s, 2 - 1, __builtin_object_size (__s, 2 > 1), __fmt, __builtin_va_arg_pack ()); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int __attribute__ ((__leaf__)) vsprintf (char *__restrict __s, __const char *__restrict __fmt, __gnuc_va_list __ap) throw () { return __builtin___vsprintf_chk (__s, 2 - 1, __builtin_object_size (__s, 2 > 1), __fmt, __ap); } extern int __snprintf_chk (char *__restrict __s, size_t __n, int __flag, size_t __slen, __const char *__restrict __format, ...) throw (); extern int __vsnprintf_chk (char *__restrict __s, size_t __n, int __flag, size_t __slen, __const char *__restrict __format, __gnuc_va_list __ap) throw (); extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int __attribute__ ((__leaf__)) snprintf (char *__restrict __s, size_t __n, __const char *__restrict __fmt, ...) throw () { return __builtin___snprintf_chk (__s, __n, 2 - 1, __builtin_object_size (__s, 2 > 1), __fmt, __builtin_va_arg_pack ()); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int __attribute__ ((__leaf__)) vsnprintf (char *__restrict __s, size_t __n, __const char *__restrict __fmt, __gnuc_va_list __ap) throw () { return __builtin___vsnprintf_chk (__s, __n, 2 - 1, __builtin_object_size (__s, 2 > 1), __fmt, __ap); } extern int __fprintf_chk (FILE *__restrict __stream, int __flag, __const char *__restrict __format, ...); extern int __printf_chk (int __flag, __const char *__restrict __format, ...); extern int __vfprintf_chk (FILE *__restrict __stream, int __flag, __const char *__restrict __format, __gnuc_va_list __ap); extern int __vprintf_chk (int __flag, __const char *__restrict __format, __gnuc_va_list __ap); extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int fprintf (FILE *__restrict __stream, __const char *__restrict __fmt, ...) { return __fprintf_chk (__stream, 2 - 1, __fmt, __builtin_va_arg_pack ()); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int printf (__const char *__restrict __fmt, ...) { return __printf_chk (2 - 1, __fmt, __builtin_va_arg_pack ()); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int vprintf (__const char *__restrict __fmt, __gnuc_va_list __ap) { return __vfprintf_chk (stdout, 2 - 1, __fmt, __ap); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int vfprintf (FILE *__restrict __stream, __const char *__restrict __fmt, __gnuc_va_list __ap) { return __vfprintf_chk (__stream, 2 - 1, __fmt, __ap); } extern int __asprintf_chk (char **__restrict __ptr, int __flag, __const char *__restrict __fmt, ...) throw () __attribute__ ((__format__ (__printf__, 3, 4))) __attribute__ ((__warn_unused_result__)); extern int __vasprintf_chk (char **__restrict __ptr, int __flag, __const char *__restrict __fmt, __gnuc_va_list __arg) throw () __attribute__ ((__format__ (__printf__, 3, 0))) __attribute__ ((__warn_unused_result__)); extern int __dprintf_chk (int __fd, int __flag, __const char *__restrict __fmt, ...) __attribute__ ((__format__ (__printf__, 3, 4))); extern int __vdprintf_chk (int __fd, int __flag, __const char *__restrict __fmt, __gnuc_va_list __arg) __attribute__ ((__format__ (__printf__, 3, 0))); extern int __obstack_printf_chk (struct obstack *__restrict __obstack, int __flag, __const char *__restrict __format, ...) throw () __attribute__ ((__format__ (__printf__, 3, 4))); extern int __obstack_vprintf_chk (struct obstack *__restrict __obstack, int __flag, __const char *__restrict __format, __gnuc_va_list __args) throw () __attribute__ ((__format__ (__printf__, 3, 0))); extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int __attribute__ ((__leaf__)) asprintf (char **__restrict __ptr, __const char *__restrict __fmt, ...) throw () { return __asprintf_chk (__ptr, 2 - 1, __fmt, __builtin_va_arg_pack ()); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int __attribute__ ((__leaf__)) __asprintf (char **__restrict __ptr, __const char *__restrict __fmt, ...) throw () { return __asprintf_chk (__ptr, 2 - 1, __fmt, __builtin_va_arg_pack ()); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int dprintf (int __fd, __const char *__restrict __fmt, ...) { return __dprintf_chk (__fd, 2 - 1, __fmt, __builtin_va_arg_pack ()); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int __attribute__ ((__leaf__)) obstack_printf (struct obstack *__restrict __obstack, __const char *__restrict __fmt, ...) throw () { return __obstack_printf_chk (__obstack, 2 - 1, __fmt, __builtin_va_arg_pack ()); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int __attribute__ ((__leaf__)) vasprintf (char **__restrict __ptr, __const char *__restrict __fmt, __gnuc_va_list __ap) throw () { return __vasprintf_chk (__ptr, 2 - 1, __fmt, __ap); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int vdprintf (int __fd, __const char *__restrict __fmt, __gnuc_va_list __ap) { return __vdprintf_chk (__fd, 2 - 1, __fmt, __ap); } extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) int __attribute__ ((__leaf__)) obstack_vprintf (struct obstack *__restrict __obstack, __const char *__restrict __fmt, __gnuc_va_list __ap) throw () { return __obstack_vprintf_chk (__obstack, 2 - 1, __fmt, __ap); } extern char *__gets_chk (char *__str, size_t) __attribute__ ((__warn_unused_result__)); extern char *__gets_warn (char *__str) __asm__ ("" "gets") __attribute__ ((__warn_unused_result__)) __attribute__((__warning__ ("please use fgets or getline instead, gets can't " "specify buffer size"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __attribute__ ((__warn_unused_result__)) char * gets (char *__str) { if (__builtin_object_size (__str, 2 > 1) != (size_t) -1) return __gets_chk (__str, __builtin_object_size (__str, 2 > 1)); return __gets_warn (__str); } extern char *__fgets_chk (char *__restrict __s, size_t __size, int __n, FILE *__restrict __stream) __attribute__ ((__warn_unused_result__)); extern char *__fgets_alias (char *__restrict __s, int __n, FILE *__restrict __stream) __asm__ ("" "fgets") __attribute__ ((__warn_unused_result__)); extern char *__fgets_chk_warn (char *__restrict __s, size_t __size, int __n, FILE *__restrict __stream) __asm__ ("" "__fgets_chk") __attribute__ ((__warn_unused_result__)) __attribute__((__warning__ ("fgets called with bigger size than length " "of destination buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __attribute__ ((__warn_unused_result__)) char * fgets (char *__restrict __s, int __n, FILE *__restrict __stream) { if (__builtin_object_size (__s, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__n) || __n <= 0) return __fgets_chk (__s, __builtin_object_size (__s, 2 > 1), __n, __stream); if ((size_t) __n > __builtin_object_size (__s, 2 > 1)) return __fgets_chk_warn (__s, __builtin_object_size (__s, 2 > 1), __n, __stream); } return __fgets_alias (__s, __n, __stream); } extern size_t __fread_chk (void *__restrict __ptr, size_t __ptrlen, size_t __size, size_t __n, FILE *__restrict __stream) __attribute__ ((__warn_unused_result__)); extern size_t __fread_alias (void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __stream) __asm__ ("" "fread") __attribute__ ((__warn_unused_result__)); extern size_t __fread_chk_warn (void *__restrict __ptr, size_t __ptrlen, size_t __size, size_t __n, FILE *__restrict __stream) __asm__ ("" "__fread_chk") __attribute__ ((__warn_unused_result__)) __attribute__((__warning__ ("fread called with bigger size * nmemb than length " "of destination buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __attribute__ ((__warn_unused_result__)) size_t fread (void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __stream) { if (__builtin_object_size (__ptr, 0) != (size_t) -1) { if (!__builtin_constant_p (__size) || !__builtin_constant_p (__n) || (__size | __n) >= (((size_t) 1) << (8 * sizeof (size_t) / 2))) return __fread_chk (__ptr, __builtin_object_size (__ptr, 0), __size, __n, __stream); if (__size * __n > __builtin_object_size (__ptr, 0)) return __fread_chk_warn (__ptr, __builtin_object_size (__ptr, 0), __size, __n, __stream); } return __fread_alias (__ptr, __size, __n, __stream); } extern char *__fgets_unlocked_chk (char *__restrict __s, size_t __size, int __n, FILE *__restrict __stream) __attribute__ ((__warn_unused_result__)); extern char *__fgets_unlocked_alias (char *__restrict __s, int __n, FILE *__restrict __stream) __asm__ ("" "fgets_unlocked") __attribute__ ((__warn_unused_result__)); extern char *__fgets_unlocked_chk_warn (char *__restrict __s, size_t __size, int __n, FILE *__restrict __stream) __asm__ ("" "__fgets_unlocked_chk") __attribute__ ((__warn_unused_result__)) __attribute__((__warning__ ("fgets_unlocked called with bigger size than length " "of destination buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __attribute__ ((__warn_unused_result__)) char * fgets_unlocked (char *__restrict __s, int __n, FILE *__restrict __stream) { if (__builtin_object_size (__s, 2 > 1) != (size_t) -1) { if (!__builtin_constant_p (__n) || __n <= 0) return __fgets_unlocked_chk (__s, __builtin_object_size (__s, 2 > 1), __n, __stream); if ((size_t) __n > __builtin_object_size (__s, 2 > 1)) return __fgets_unlocked_chk_warn (__s, __builtin_object_size (__s, 2 > 1), __n, __stream); } return __fgets_unlocked_alias (__s, __n, __stream); } extern size_t __fread_unlocked_chk (void *__restrict __ptr, size_t __ptrlen, size_t __size, size_t __n, FILE *__restrict __stream) __attribute__ ((__warn_unused_result__)); extern size_t __fread_unlocked_alias (void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __stream) __asm__ ("" "fread_unlocked") __attribute__ ((__warn_unused_result__)); extern size_t __fread_unlocked_chk_warn (void *__restrict __ptr, size_t __ptrlen, size_t __size, size_t __n, FILE *__restrict __stream) __asm__ ("" "__fread_unlocked_chk") __attribute__ ((__warn_unused_result__)) __attribute__((__warning__ ("fread_unlocked called with bigger size * nmemb than " "length of destination buffer"))) ; extern __inline __attribute__ ((__always_inline__)) __attribute__ ((__gnu_inline__, __artificial__)) __attribute__ ((__warn_unused_result__)) size_t fread_unlocked (void *__restrict __ptr, size_t __size, size_t __n, FILE *__restrict __stream) { if (__builtin_object_size (__ptr, 0) != (size_t) -1) { if (!__builtin_constant_p (__size) || !__builtin_constant_p (__n) || (__size | __n) >= (((size_t) 1) << (8 * sizeof (size_t) / 2))) return __fread_unlocked_chk (__ptr, __builtin_object_size (__ptr, 0), __size, __n, __stream); if (__size * __n > __builtin_object_size (__ptr, 0)) return __fread_unlocked_chk_warn (__ptr, __builtin_object_size (__ptr, 0), __size, __n, __stream); } if (__builtin_constant_p (__size) && __builtin_constant_p (__n) && (__size | __n) < (((size_t) 1) << (8 * sizeof (size_t) / 2)) && __size * __n <= 8) { size_t __cnt = __size * __n; char *__cptr = (char *) __ptr; if (__cnt == 0) return 0; for (; __cnt > 0; --__cnt) { int __c = (__builtin_expect (((__stream)->_IO_read_ptr >= (__stream)->_IO_read_end), 0) ? __uflow (__stream) : *(unsigned char *) (__stream)->_IO_read_ptr++); if (__c == (-1)) break; *__cptr++ = __c; } return (__cptr - (char *) __ptr) / __size; } return __fread_unlocked_alias (__ptr, __size, __n, __stream); } } typedef QtValidLicenseForCoreModule QtCoreModule; class QTextCodec; class QTextDecoder; class QTextStreamPrivate; class QTextStream { inline QTextStreamPrivate* d_func() { return reinterpret_cast(qGetPtrHelper(d_ptr)); } inline const QTextStreamPrivate* d_func() const { return reinterpret_cast(qGetPtrHelper(d_ptr)); } friend class QTextStreamPrivate; public: enum RealNumberNotation { SmartNotation, FixedNotation, ScientificNotation }; enum FieldAlignment { AlignLeft, AlignRight, AlignCenter, AlignAccountingStyle }; enum Status { Ok, ReadPastEnd, ReadCorruptData, WriteFailed }; enum NumberFlag { ShowBase = 0x1, ForcePoint = 0x2, ForceSign = 0x4, UppercaseBase = 0x8, UppercaseDigits = 0x10 }; typedef QFlags NumberFlags; QTextStream(); explicit QTextStream(QIODevice *device); explicit QTextStream(FILE *fileHandle, QIODevice::OpenMode openMode = QIODevice::ReadWrite); explicit QTextStream(QString *string, QIODevice::OpenMode openMode = QIODevice::ReadWrite); explicit QTextStream(QByteArray *array, QIODevice::OpenMode openMode = QIODevice::ReadWrite); explicit QTextStream(const QByteArray &array, QIODevice::OpenMode openMode = QIODevice::ReadOnly); virtual ~QTextStream(); void setCodec(QTextCodec *codec); void setCodec(const char *codecName); QTextCodec *codec() const; void setAutoDetectUnicode(bool enabled); bool autoDetectUnicode() const; void setGenerateByteOrderMark(bool generate); bool generateByteOrderMark() const; void setLocale(const QLocale &locale); QLocale locale() const; void setDevice(QIODevice *device); QIODevice *device() const; void setString(QString *string, QIODevice::OpenMode openMode = QIODevice::ReadWrite); QString *string() const; Status status() const; void setStatus(Status status); void resetStatus(); bool atEnd() const; void reset(); void flush(); bool seek(qint64 pos); qint64 pos() const; void skipWhiteSpace(); QString readLine(qint64 maxlen = 0); QString readAll(); QString read(qint64 maxlen); void setFieldAlignment(FieldAlignment alignment); FieldAlignment fieldAlignment() const; void setPadChar(QChar ch); QChar padChar() const; void setFieldWidth(int width); int fieldWidth() const; void setNumberFlags(NumberFlags flags); NumberFlags numberFlags() const; void setIntegerBase(int base); int integerBase() const; void setRealNumberNotation(RealNumberNotation notation); RealNumberNotation realNumberNotation() const; void setRealNumberPrecision(int precision); int realNumberPrecision() const; QTextStream &operator>>(QChar &ch); QTextStream &operator>>(char &ch); QTextStream &operator>>(signed short &i); QTextStream &operator>>(unsigned short &i); QTextStream &operator>>(signed int &i); QTextStream &operator>>(unsigned int &i); QTextStream &operator>>(signed long &i); QTextStream &operator>>(unsigned long &i); QTextStream &operator>>(qlonglong &i); QTextStream &operator>>(qulonglong &i); QTextStream &operator>>(float &f); QTextStream &operator>>(double &f); QTextStream &operator>>(QString &s); QTextStream &operator>>(QByteArray &array); QTextStream &operator>>(char *c); QTextStream &operator<<(QBool b); QTextStream &operator<<(QChar ch); QTextStream &operator<<(char ch); QTextStream &operator<<(signed short i); QTextStream &operator<<(unsigned short i); QTextStream &operator<<(signed int i); QTextStream &operator<<(unsigned int i); QTextStream &operator<<(signed long i); QTextStream &operator<<(unsigned long i); QTextStream &operator<<(qlonglong i); QTextStream &operator<<(qulonglong i); QTextStream &operator<<(float f); QTextStream &operator<<(double f); QTextStream &operator<<(const QString &s); QTextStream &operator<<(const QByteArray &array); QTextStream &operator<<(const char *c); QTextStream &operator<<(const void *ptr); private: QTextStream(const QTextStream &); QTextStream &operator=(const QTextStream &); QScopedPointer d_ptr; }; inline QFlags operator|(QTextStream::NumberFlags::enum_type f1, QTextStream::NumberFlags::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(QTextStream::NumberFlags::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(QTextStream::NumberFlags::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } typedef QTextStream & (*QTextStreamFunction)(QTextStream &); typedef void (QTextStream::*QTSMFI)(int); typedef void (QTextStream::*QTSMFC)(QChar); class QTextStreamManipulator { public: QTextStreamManipulator(QTSMFI m, int a) { mf = m; mc = 0; arg = a; } QTextStreamManipulator(QTSMFC m, QChar c) { mf = 0; mc = m; ch = c; arg = -1; } void exec(QTextStream &s) { if (mf) { (s.*mf)(arg); } else { (s.*mc)(ch); } } private: QTSMFI mf; QTSMFC mc; int arg; QChar ch; }; inline QTextStream &operator>>(QTextStream &s, QTextStreamFunction f) { return (*f)(s); } inline QTextStream &operator<<(QTextStream &s, QTextStreamFunction f) { return (*f)(s); } inline QTextStream &operator<<(QTextStream &s, QTextStreamManipulator m) { m.exec(s); return s; } QTextStream &bin(QTextStream &s); QTextStream &oct(QTextStream &s); QTextStream &dec(QTextStream &s); QTextStream &hex(QTextStream &s); QTextStream &showbase(QTextStream &s); QTextStream &forcesign(QTextStream &s); QTextStream &forcepoint(QTextStream &s); QTextStream &noshowbase(QTextStream &s); QTextStream &noforcesign(QTextStream &s); QTextStream &noforcepoint(QTextStream &s); QTextStream &uppercasebase(QTextStream &s); QTextStream &uppercasedigits(QTextStream &s); QTextStream &lowercasebase(QTextStream &s); QTextStream &lowercasedigits(QTextStream &s); QTextStream &fixed(QTextStream &s); QTextStream &scientific(QTextStream &s); QTextStream &left(QTextStream &s); QTextStream &right(QTextStream &s); QTextStream ¢er(QTextStream &s); QTextStream &endl(QTextStream &s); QTextStream &flush(QTextStream &s); QTextStream &reset(QTextStream &s); QTextStream &bom(QTextStream &s); QTextStream &ws(QTextStream &s); inline QTextStreamManipulator qSetFieldWidth(int width) { QTSMFI func = &QTextStream::setFieldWidth; return QTextStreamManipulator(func,width); } inline QTextStreamManipulator qSetPadChar(QChar ch) { QTSMFC func = &QTextStream::setPadChar; return QTextStreamManipulator(func, ch); } inline QTextStreamManipulator qSetRealNumberPrecision(int precision) { QTSMFI func = &QTextStream::setRealNumberPrecision; return QTextStreamManipulator(func, precision); } typedef QtValidLicenseForCoreModule QtCoreModule; class QDebug { struct Stream { Stream(QIODevice *device) : ts(device), ref(1), type(QtDebugMsg), space(true), message_output(false) {} Stream(QString *string) : ts(string, QIODevice::WriteOnly), ref(1), type(QtDebugMsg), space(true), message_output(false) {} Stream(QtMsgType t) : ts(&buffer, QIODevice::WriteOnly), ref(1), type(t), space(true), message_output(true) {} QTextStream ts; QString buffer; int ref; QtMsgType type; bool space; bool message_output; } *stream; public: inline QDebug(QIODevice *device) : stream(new Stream(device)) {} inline QDebug(QString *string) : stream(new Stream(string)) {} inline QDebug(QtMsgType t) : stream(new Stream(t)) {} inline QDebug(const QDebug &o):stream(o.stream) { ++stream->ref; } inline QDebug &operator=(const QDebug &other); inline ~QDebug() { if (!--stream->ref) { if(stream->message_output) { try { qt_message_output(stream->type, stream->buffer.toLocal8Bit().data()); } catch (std::bad_alloc&) { } } delete stream; } } inline QDebug &space() { stream->space = true; stream->ts << ' '; return *this; } inline QDebug &nospace() { stream->space = false; return *this; } inline QDebug &maybeSpace() { if (stream->space) stream->ts << ' '; return *this; } inline QDebug &operator<<(QChar t) { stream->ts << '\'' << t << '\''; return maybeSpace(); } inline QDebug &operator<<(QBool t) { stream->ts << (bool(t != 0) ? "true" : "false"); return maybeSpace(); } inline QDebug &operator<<(bool t) { stream->ts << (t ? "true" : "false"); return maybeSpace(); } inline QDebug &operator<<(char t) { stream->ts << t; return maybeSpace(); } inline QDebug &operator<<(signed short t) { stream->ts << t; return maybeSpace(); } inline QDebug &operator<<(unsigned short t) { stream->ts << t; return maybeSpace(); } inline QDebug &operator<<(signed int t) { stream->ts << t; return maybeSpace(); } inline QDebug &operator<<(unsigned int t) { stream->ts << t; return maybeSpace(); } inline QDebug &operator<<(signed long t) { stream->ts << t; return maybeSpace(); } inline QDebug &operator<<(unsigned long t) { stream->ts << t; return maybeSpace(); } inline QDebug &operator<<(qint64 t) { stream->ts << QString::number(t); return maybeSpace(); } inline QDebug &operator<<(quint64 t) { stream->ts << QString::number(t); return maybeSpace(); } inline QDebug &operator<<(float t) { stream->ts << t; return maybeSpace(); } inline QDebug &operator<<(double t) { stream->ts << t; return maybeSpace(); } inline QDebug &operator<<(const char* t) { stream->ts << QString::fromAscii(t); return maybeSpace(); } inline QDebug &operator<<(const QString & t) { stream->ts << '\"' << t << '\"'; return maybeSpace(); } inline QDebug &operator<<(const QStringRef & t) { return operator<<(t.toString()); } inline QDebug &operator<<(const QLatin1String &t) { stream->ts << '\"' << t.latin1() << '\"'; return maybeSpace(); } inline QDebug &operator<<(const QByteArray & t) { stream->ts << '\"' << t << '\"'; return maybeSpace(); } inline QDebug &operator<<(const void * t) { stream->ts << t; return maybeSpace(); } inline QDebug &operator<<(QTextStreamFunction f) { stream->ts << f; return *this; } inline QDebug &operator<<(QTextStreamManipulator m) { stream->ts << m; return *this; } }; class QNoDebug { public: inline QNoDebug(){} inline QNoDebug(const QDebug &){} inline ~QNoDebug(){} inline QNoDebug &operator<<(QTextStreamFunction) { return *this; } inline QNoDebug &operator<<(QTextStreamManipulator) { return *this; } inline QNoDebug &space() { return *this; } inline QNoDebug &nospace() { return *this; } inline QNoDebug &maybeSpace() { return *this; } template inline QNoDebug &operator<<(const T &) { return *this; } }; inline QDebug qCritical() { return QDebug(QtCriticalMsg); } inline QDebug &QDebug::operator=(const QDebug &other) { if (this != &other) { QDebug copy(other); qSwap(stream, copy.stream); } return *this; } template inline QDebug operator<<(QDebug debug, const QList &list) { debug.nospace() << '('; for (typename QList::size_type i = 0; i < list.count(); ++i) { if (i) debug << ", "; debug << list.at(i); } debug << ')'; return debug.space(); } template inline QDebug operator<<(QDebug debug, const QVector &vec) { debug.nospace() << "QVector"; return operator<<(debug, vec.toList()); } template inline QDebug operator<<(QDebug debug, const QMap &map) { debug.nospace() << "QMap("; for (typename QMap::const_iterator it = map.constBegin(); it != map.constEnd(); ++it) { debug << '(' << it.key() << ", " << it.value() << ')'; } debug << ')'; return debug.space(); } template inline QDebug operator<<(QDebug debug, const QHash &hash) { debug.nospace() << "QHash("; for (typename QHash::const_iterator it = hash.constBegin(); it != hash.constEnd(); ++it) debug << '(' << it.key() << ", " << it.value() << ')'; debug << ')'; return debug.space(); } template inline QDebug operator<<(QDebug debug, const QPair &pair) { debug.nospace() << "QPair(" << pair.first << ',' << pair.second << ')'; return debug.space(); } template inline QDebug operator<<(QDebug debug, const QSet &set) { debug.nospace() << "QSet"; return operator<<(debug, set.toList()); } template inline QDebug operator<<(QDebug debug, const QContiguousCache &cache) { debug.nospace() << "QContiguousCache("; for (int i = cache.firstIndex(); i <= cache.lastIndex(); ++i) { debug << cache[i]; if (i != cache.lastIndex()) debug << ", "; } debug << ')'; return debug.space(); } template inline QDebug operator<<(QDebug debug, const QFlags &flags) { debug.nospace() << "QFlags("; bool needSeparator = false; for (uint i = 0; i < sizeof(T) * 8; ++i) { if (flags.testFlag(T(1 << i))) { if (needSeparator) debug.nospace() << '|'; else needSeparator = true; debug.nospace() << "0x" << QByteArray::number(T(1 << i), 16).constData(); } } debug << ')'; return debug.space(); } inline QDebug qDebug() { return QDebug(QtDebugMsg); } inline QDebug qWarning() { return QDebug(QtWarningMsg); } typedef QtValidLicenseForCoreModule QtCoreModule; namespace QtConcurrent { class ResultItem { public: ResultItem(const void *_result, int _count) : m_count(_count), result(_result) { } ResultItem(const void *_result) : m_count(0), result(_result) { } ResultItem() : m_count(0), result(0) { } bool isValid() const { return result != 0; } bool isVector() const { return m_count != 0; } int count() const { return (m_count == 0) ? 1 : m_count; } int m_count; const void *result; }; class ResultIteratorBase { public: ResultIteratorBase(); ResultIteratorBase(QMap::const_iterator _mapIterator, int _vectorIndex = 0); int vectorIndex() const; int resultIndex() const; ResultIteratorBase operator++(); int batchSize() const; void batchedAdvance(); bool operator==(const ResultIteratorBase &other) const; bool operator!=(const ResultIteratorBase &other) const; bool isVector() const; bool canIncrementVectorIndex() const; protected: QMap::const_iterator mapIterator; int m_vectorIndex; }; template class ResultIterator : public ResultIteratorBase { public: ResultIterator(const ResultIteratorBase &base) : ResultIteratorBase(base) { } const T &value() const { return *pointer(); } const T *pointer() const { if (mapIterator.value().isVector()) return &(reinterpret_cast *>(mapIterator.value().result)->at(m_vectorIndex)); else return reinterpret_cast(mapIterator.value().result); } }; class ResultStoreBase { public: ResultStoreBase(); void setFilterMode(bool enable); bool filterMode() const; int addResult(int index, const void *result); int addResults(int index, const void *results, int vectorSize, int logicalCount); ResultIteratorBase begin() const; ResultIteratorBase end() const; bool hasNextResult() const; ResultIteratorBase resultAt(int index) const; bool contains(int index) const; int count() const; virtual ~ResultStoreBase() { }; protected: int insertResultItem(int index, ResultItem &resultItem); void insertResultItemIfValid(int index, ResultItem &resultItem); void syncPendingResults(); void syncResultCount(); int updateInsertIndex(int index, int _count); QMap m_results; int insertIndex; int resultCount; bool m_filterMode; QMap pendingResults; int filteredResults; }; template class ResultStore : public ResultStoreBase { public: ResultStore() { } ResultStore(const ResultStoreBase &base) : ResultStoreBase(base) { } int addResult(int index, const T *result) { if (result == 0) return ResultStoreBase::addResult(index, result); else return ResultStoreBase::addResult(index, new T(*result)); } int addResults(int index, const QVector *results) { return ResultStoreBase::addResults(index, new QVector(*results), results->count(), results->count()); } int addResults(int index, const QVector *results, int totalCount) { if (m_filterMode && totalCount && !results->count()) return ResultStoreBase::addResults(index, 0, 0, totalCount); else return ResultStoreBase::addResults(index, new QVector(*results), results->count(), totalCount); } int addCanceledResult(int index) { return addResult(index, 0); } int addCanceledResults(int index, int _count) { QVector empty; return addResults(index, &empty, _count); } ResultIterator begin() const { return static_cast >(ResultStoreBase::begin()); } ResultIterator end() const { return static_cast >(ResultStoreBase::end()); } ResultIterator resultAt(int index) const { return static_cast >(ResultStoreBase::resultAt(index)); } void clear() { QMap::const_iterator mapIterator = m_results.constBegin(); while (mapIterator != m_results.constEnd()) { if (mapIterator.value().isVector()) delete reinterpret_cast *>(mapIterator.value().result); else delete reinterpret_cast(mapIterator.value().result); ++mapIterator; } resultCount = 0; m_results.clear(); } ~ResultStore() { clear(); } }; } typedef QtValidLicenseForCoreModule QtCoreModule; template class QFuture; class QFutureInterfaceBasePrivate; class QFutureWatcherBase; class QFutureWatcherBasePrivate; class QFutureInterfaceBase { public: enum State { NoState = 0x00, Running = 0x01, Started = 0x02, Finished = 0x04, Canceled = 0x08, Paused = 0x10, Throttled = 0x20 }; QFutureInterfaceBase(State initialState = NoState); QFutureInterfaceBase(const QFutureInterfaceBase &other); virtual ~QFutureInterfaceBase(); void reportStarted(); void reportFinished(); void reportCanceled(); void reportException(const QtConcurrent::Exception &e); void reportResultsReady(int beginIndex, int endIndex); void setRunnable(QRunnable *runnable); void setFilterMode(bool enable); void setProgressRange(int minimum, int maximum); int progressMinimum() const; int progressMaximum() const; bool isProgressUpdateNeeded() const; void setProgressValue(int progressValue); int progressValue() const; void setProgressValueAndText(int progressValue, const QString &progressText); QString progressText() const; void setExpectedResultCount(int resultCount); int expectedResultCount(); int resultCount() const; bool queryState(State state) const; bool isRunning() const; bool isStarted() const; bool isCanceled() const; bool isFinished() const; bool isPaused() const; bool isThrottled() const; bool isResultReadyAt(int index) const; void cancel(); void setPaused(bool paused); void togglePaused(); void setThrottled(bool enable); void waitForFinished(); bool waitForNextResult(); void waitForResult(int resultIndex); void waitForResume(); QMutex *mutex() const; QtConcurrent::internal::ExceptionStore &exceptionStore(); QtConcurrent::ResultStoreBase &resultStoreBase(); const QtConcurrent::ResultStoreBase &resultStoreBase() const; inline bool operator==(const QFutureInterfaceBase &other) const { return d == other.d; } inline bool operator!=(const QFutureInterfaceBase &other) const { return d != other.d; } QFutureInterfaceBase &operator=(const QFutureInterfaceBase &other); protected: bool referenceCountIsOne() const; public: private: QFutureInterfaceBasePrivate *d; private: friend class QFutureWatcherBase; friend class QFutureWatcherBasePrivate; }; template class QFutureInterface : public QFutureInterfaceBase { public: QFutureInterface(State initialState = NoState) : QFutureInterfaceBase(initialState) { } QFutureInterface(const QFutureInterface &other) : QFutureInterfaceBase(other) { } ~QFutureInterface() { if (referenceCountIsOne()) resultStore().clear(); } static QFutureInterface canceledResult() { return QFutureInterface(State(Started | Finished | Canceled)); } QFutureInterface &operator=(const QFutureInterface &other) { if (referenceCountIsOne()) resultStore().clear(); QFutureInterfaceBase::operator=(other); return *this; } inline QFuture future(); inline void reportResult(const T *result, int index = -1); inline void reportResult(const T &result, int index = -1); inline void reportResults(const QVector &results, int beginIndex = -1, int count = -1); inline void reportFinished(const T *result = 0); inline const T &resultReference(int index) const; inline const T *resultPointer(int index) const; inline QList results(); private: QtConcurrent::ResultStore &resultStore() { return static_cast &>(resultStoreBase()); } const QtConcurrent::ResultStore &resultStore() const { return static_cast &>(resultStoreBase()); } }; template inline void QFutureInterface::reportResult(const T *result, int index) { QMutexLocker locker(mutex()); if (this->queryState(Canceled) || this->queryState(Finished)) { return; } QtConcurrent::ResultStore &store = resultStore(); if (store.filterMode()) { const int resultCountBefore = store.count(); store.addResult(index, result); this->reportResultsReady(resultCountBefore, resultCountBefore + store.count()); } else { const int insertIndex = store.addResult(index, result); this->reportResultsReady(insertIndex, insertIndex + 1); } } template inline void QFutureInterface::reportResult(const T &result, int index) { reportResult(&result, index); } template inline void QFutureInterface::reportResults(const QVector &_results, int beginIndex, int count) { QMutexLocker locker(mutex()); if (this->queryState(Canceled) || this->queryState(Finished)) { return; } QtConcurrent::ResultStore &store = resultStore(); if (store.filterMode()) { const int resultCountBefore = store.count(); store.addResults(beginIndex, &_results, count); this->reportResultsReady(resultCountBefore, store.count()); } else { const int insertIndex = store.addResults(beginIndex, &_results, count); this->reportResultsReady(insertIndex, insertIndex + _results.count()); } } template inline void QFutureInterface::reportFinished(const T *result) { if (result) reportResult(result); QFutureInterfaceBase::reportFinished(); } template inline const T &QFutureInterface::resultReference(int index) const { QMutexLocker lock(mutex()); return resultStore().resultAt(index).value(); } template inline const T *QFutureInterface::resultPointer(int index) const { QMutexLocker lock(mutex()); return resultStore().resultAt(index).pointer(); } template inline QList QFutureInterface::results() { if (this->isCanceled()) { exceptionStore().throwPossibleException(); return QList(); } QFutureInterfaceBase::waitForResult(-1); QList res; QMutexLocker lock(mutex()); QtConcurrent::ResultIterator it = resultStore().begin(); while (it != resultStore().end()) { res.append(it.value()); ++it; } return res; } template <> class QFutureInterface : public QFutureInterfaceBase { public: QFutureInterface(State initialState = NoState) : QFutureInterfaceBase(initialState) { } QFutureInterface(const QFutureInterface &other) : QFutureInterfaceBase(other) { } static QFutureInterface canceledResult() { return QFutureInterface(State(Started | Finished | Canceled)); } QFutureInterface &operator=(const QFutureInterface &other) { QFutureInterfaceBase::operator=(other); return *this; } inline QFuture future(); void reportResult(const void *, int) { } void reportResults(const QVector &, int) { } void reportFinished(void * = 0) { QFutureInterfaceBase::reportFinished(); } }; typedef QtValidLicenseForCoreModule QtCoreModule; namespace QtPrivate { template class HasResultType { typedef char Yes; typedef void *No; template static Yes test(int, const typename U::result_type * = 0); template static No test(double); public: enum { Value = (sizeof(test(0)) == sizeof(Yes)) }; }; } typedef QtValidLicenseForCoreModule QtCoreModule; template class QFutureWatcher; template <> class QFutureWatcher; template class QFuture { public: QFuture() : d(QFutureInterface::canceledResult()) { } explicit QFuture(QFutureInterface *p) : d(*p) { } QFuture(const QFuture &other) : d(other.d) { } ~QFuture() { } inline QFuture &operator=(const QFuture &other); bool operator==(const QFuture &other) const { return (d == other.d); } bool operator!=(const QFuture &other) const { return (d != other.d); } void cancel() { d.cancel(); } bool isCanceled() const { return d.isCanceled(); } void setPaused(bool paused) { d.setPaused(paused); } bool isPaused() const { return d.isPaused(); } void pause() { setPaused(true); } void resume() { setPaused(false); } void togglePaused() { d.togglePaused(); } bool isStarted() const { return d.isStarted(); } bool isFinished() const { return d.isFinished(); } bool isRunning() const { return d.isRunning(); } int resultCount() const { return d.resultCount(); } int progressValue() const { return d.progressValue(); } int progressMinimum() const { return d.progressMinimum(); } int progressMaximum() const { return d.progressMaximum(); } QString progressText() const { return d.progressText(); } void waitForFinished() { d.waitForFinished(); } inline T result() const; inline T resultAt(int index) const; bool isResultReadyAt(int resultIndex) const { return d.isResultReadyAt(resultIndex); } operator T() const { return result(); } QList results() const { return d.results(); } class const_iterator { public: typedef std::bidirectional_iterator_tag iterator_category; typedef qptrdiff difference_type; typedef T value_type; typedef const T *pointer; typedef const T &reference; inline const_iterator() {} inline const_iterator(QFuture const * const _future, int _index) : future(_future), index(_index) {} inline const_iterator(const const_iterator &o) : future(o.future), index(o.index) {} inline const_iterator &operator=(const const_iterator &o) { future = o.future; index = o.index; return *this; } inline const T &operator*() const { return future->d.resultReference(index); } inline const T *operator->() const { return future->d.resultPointer(index); } inline bool operator!=(const const_iterator &other) const { if (index == -1 && other.index == -1) return false; if (other.index == -1) return (future->isRunning() || (index < future->resultCount())); return (index != other.index); } inline bool operator==(const const_iterator &o) const { return !operator!=(o); } inline const_iterator &operator++() { ++index; return *this; } inline const_iterator operator++(int) { const_iterator r = *this; ++index; return r; } inline const_iterator &operator--() { --index; return *this; } inline const_iterator operator--(int) { const_iterator r = *this; --index; return r; } inline const_iterator operator+(int j) const { return const_iterator(future, index + j); } inline const_iterator operator-(int j) const { return const_iterator(future, index - j); } inline const_iterator &operator+=(int j) { index += j; return *this; } inline const_iterator &operator-=(int j) { index -= j; return *this; } private: QFuture const * future; int index; }; friend class const_iterator; typedef const_iterator ConstIterator; const_iterator begin() const { return const_iterator(this, 0); } const_iterator constBegin() const { return const_iterator(this, 0); } const_iterator end() const { return const_iterator(this, -1); } const_iterator constEnd() const { return const_iterator(this, -1); } private: friend class QFutureWatcher; public: mutable QFutureInterface d; }; template inline QFuture &QFuture::operator=(const QFuture &other) { d = other.d; return *this; } template inline T QFuture::result() const { d.waitForResult(0); return d.resultReference(0); } template inline T QFuture::resultAt(int index) const { d.waitForResult(index); return d.resultReference(index); } template inline QFuture QFutureInterface::future() { return QFuture(this); } template class QFutureIterator { typedef typename QFuture::const_iterator const_iterator; QFuture c; const_iterator i; public: inline QFutureIterator(const QFuture &container) : c(container), i(c.constBegin()) {} inline QFutureIterator &operator=(const QFuture &container) { c = container; i = c.constBegin(); return *this; } inline void toFront() { i = c.constBegin(); } inline void toBack() { i = c.constEnd(); } inline bool hasNext() const { return i != c.constEnd(); } inline const T &next() { return *i++; } inline const T &peekNext() const { return *i; } inline bool hasPrevious() const { return i != c.constBegin(); } inline const T &previous() { return *--i; } inline const T &peekPrevious() const { const_iterator p = i; return *--p; } inline bool findNext(const T &t) { while (i != c.constEnd()) if (*i++ == t) return true; return false; } inline bool findPrevious(const T &t) { while (i != c.constBegin()) if (*(--i) == t) return true; return false; } }; template <> class QFuture { public: QFuture() : d(QFutureInterface::canceledResult()) { } explicit QFuture(QFutureInterfaceBase *p) : d(*p) { } QFuture(const QFuture &other) : d(other.d) { } ~QFuture() { } QFuture &operator=(const QFuture &other); bool operator==(const QFuture &other) const { return (d == other.d); } bool operator!=(const QFuture &other) const { return (d != other.d); } template QFuture(const QFuture &other) : d(other.d) { } template QFuture &operator=(const QFuture &other) { d = other.d; return *this; } void cancel() { d.cancel(); } bool isCanceled() const { return d.isCanceled(); } void setPaused(bool paused) { d.setPaused(paused); } bool isPaused() const { return d.isPaused(); } void pause() { setPaused(true); } void resume() { setPaused(false); } void togglePaused() { d.togglePaused(); } bool isStarted() const { return d.isStarted(); } bool isFinished() const { return d.isFinished(); } bool isRunning() const { return d.isRunning(); } int resultCount() const { return d.resultCount(); } int progressValue() const { return d.progressValue(); } int progressMinimum() const { return d.progressMinimum(); } int progressMaximum() const { return d.progressMaximum(); } QString progressText() const { return d.progressText(); } void waitForFinished() { d.waitForFinished(); } private: friend class QFutureWatcher; mutable QFutureInterfaceBase d; }; inline QFuture &QFuture::operator=(const QFuture &other) { d = other.d; return *this; } inline QFuture QFutureInterface::future() { return QFuture(this); } template QFuture qToVoidFuture(const QFuture &future) { return QFuture(future.d); } typedef QtValidLicenseForCoreModule QtCoreModule; template class QFutureSynchronizer { QFutureSynchronizer(const QFutureSynchronizer &); QFutureSynchronizer &operator=(const QFutureSynchronizer &); public: QFutureSynchronizer() : m_cancelOnWait(false) { } explicit QFutureSynchronizer(const QFuture &future) : m_cancelOnWait(false) { addFuture(future); } ~QFutureSynchronizer() { waitForFinished(); } void setFuture(const QFuture &future) { waitForFinished(); m_futures.clear(); addFuture(future); } void addFuture(const QFuture &future) { m_futures.append(future); } void waitForFinished() { if (m_cancelOnWait) { for (int i = 0; i < m_futures.count(); ++i) { m_futures[i].cancel(); } } for (int i = 0; i < m_futures.count(); ++i) { m_futures[i].waitForFinished(); } } void clearFutures() { m_futures.clear(); } QList > futures() const { return m_futures; } void setCancelOnWait(bool enabled) { m_cancelOnWait = enabled; } bool cancelOnWait() const { return m_cancelOnWait; } protected: QList > m_futures; bool m_cancelOnWait; }; typedef QtValidLicenseForCoreModule QtCoreModule; class QEvent; class QFutureWatcherBasePrivate; class QFutureWatcherBase : public QObject { public: template inline void qt_check_for_QOBJECT_macro(const T &_q_argument) const { int i = qYouForgotTheQ_OBJECT_Macro(this, &_q_argument); i = i; } static const QMetaObject staticMetaObject; virtual const QMetaObject *metaObject() const; virtual void *qt_metacast(const char *); static inline QString tr(const char *s, const char *c = 0) { return staticMetaObject.tr(s, c); } static inline QString trUtf8(const char *s, const char *c = 0) { return staticMetaObject.trUtf8(s, c); } static inline QString tr(const char *s, const char *c, int n) { return staticMetaObject.tr(s, c, n); } static inline QString trUtf8(const char *s, const char *c, int n) { return staticMetaObject.trUtf8(s, c, n); } virtual int qt_metacall(QMetaObject::Call, int, void **); private: __attribute__((visibility("hidden"))) static const QMetaObjectExtraData staticMetaObjectExtraData; __attribute__((visibility("hidden"))) static void qt_static_metacall(QObject *, QMetaObject::Call, int, void **); inline QFutureWatcherBasePrivate* d_func() { return reinterpret_cast(qGetPtrHelper(d_ptr)); } inline const QFutureWatcherBasePrivate* d_func() const { return reinterpret_cast(qGetPtrHelper(d_ptr)); } friend class QFutureWatcherBasePrivate; public: QFutureWatcherBase(QObject *parent = 0); int progressValue() const; int progressMinimum() const; int progressMaximum() const; QString progressText() const; bool isStarted() const; bool isFinished() const; bool isRunning() const; bool isCanceled() const; bool isPaused() const; void waitForFinished(); void setPendingResultsLimit(int limit); bool event(QEvent *event); protected: void started(); void finished(); void canceled(); void paused(); void resumed(); void resultReadyAt(int resultIndex); void resultsReadyAt(int beginIndex, int endIndex); void progressRangeChanged(int minimum, int maximum); void progressValueChanged(int progressValue); void progressTextChanged(const QString &progressText); public : void cancel(); void setPaused(bool paused); void pause(); void resume(); void togglePaused(); protected: void connectNotify (const char * signal); void disconnectNotify (const char * signal); void connectOutputInterface(); void disconnectOutputInterface(bool pendingAssignment = false); private: virtual const QFutureInterfaceBase &futureInterface() const = 0; virtual QFutureInterfaceBase &futureInterface() = 0; }; template class QFutureWatcher : public QFutureWatcherBase { public: QFutureWatcher(QObject *_parent = 0) : QFutureWatcherBase(_parent) { } ~QFutureWatcher() { disconnectOutputInterface(); } void setFuture(const QFuture &future); QFuture future() const { return m_future; } T result() const { return m_future.result(); } T resultAt(int index) const { return m_future.resultAt(index); } private: QFuture m_future; const QFutureInterfaceBase &futureInterface() const { return m_future.d; } QFutureInterfaceBase &futureInterface() { return m_future.d; } }; template inline void QFutureWatcher::setFuture(const QFuture &_future) { if (_future == m_future) return; disconnectOutputInterface(true); m_future = _future; connectOutputInterface(); } template <> class QFutureWatcher : public QFutureWatcherBase { public: QFutureWatcher(QObject *_parent = 0) : QFutureWatcherBase(_parent) { } ~QFutureWatcher() { disconnectOutputInterface(); } void setFuture(const QFuture &future); QFuture future() const { return m_future; } private: QFuture m_future; const QFutureInterfaceBase &futureInterface() const { return m_future.d; } QFutureInterfaceBase &futureInterface() { return m_future.d; } }; inline void QFutureWatcher::setFuture(const QFuture &_future) { if (_future == m_future) return; disconnectOutputInterface(true); m_future = _future; connectOutputInterface(); } typedef QtValidLicenseForCoreModule QtCoreModule; namespace QtConcurrent { template class Median { public: Median(int _bufferSize) : currentMedian(), bufferSize(_bufferSize), currentIndex(0), valid(false), dirty(true) { values.resize(bufferSize); } void reset() { values.fill(0); currentIndex = 0; valid = false; dirty = true; } void addValue(T value) { currentIndex = ((currentIndex + 1) % bufferSize); if (valid == false && currentIndex % bufferSize == 0) valid = true; const T currentIndexValue = values[currentIndex]; if ((currentIndexValue > currentMedian && currentMedian > value) || (currentMedian > currentIndexValue && value > currentMedian)) { dirty = true; } values[currentIndex] = value; } bool isMedianValid() const { return valid; } T median() { if (dirty) { dirty = false; QVector sorted = values; qSort(sorted); currentMedian = sorted.at(bufferSize / 2 + 1); } return currentMedian; } private: QVector values; T currentMedian; int bufferSize; int currentIndex; bool valid; bool dirty; }; } typedef QtValidLicenseForCoreModule QtCoreModule; class QThreadData; class QThreadPrivate; class QThread : public QObject { public: static Qt::HANDLE currentThreadId(); static QThread *currentThread(); static int idealThreadCount(); static void yieldCurrentThread(); explicit QThread(QObject *parent = 0); ~QThread(); enum Priority { IdlePriority, LowestPriority, LowPriority, NormalPriority, HighPriority, HighestPriority, TimeCriticalPriority, InheritPriority }; void setPriority(Priority priority); Priority priority() const; bool isFinished() const; bool isRunning() const; void setStackSize(uint stackSize); uint stackSize() const; void exit(int retcode = 0); public : void start(Priority = InheritPriority); void terminate(); void quit(); public: bool wait(unsigned long time = (9223372036854775807L * 2UL + 1UL)); protected: void started(); void finished(); void terminated(); protected: virtual void run(); int exec(); static void setTerminationEnabled(bool enabled = true); static void sleep(unsigned long); static void msleep(unsigned long); static void usleep(unsigned long); protected: QThread(QThreadPrivate &dd, QObject *parent = 0); private: public: template inline void qt_check_for_QOBJECT_macro(const T &_q_argument) const { int i = qYouForgotTheQ_OBJECT_Macro(this, &_q_argument); i = i; } static const QMetaObject staticMetaObject; virtual const QMetaObject *metaObject() const; virtual void *qt_metacast(const char *); static inline QString tr(const char *s, const char *c = 0) { return staticMetaObject.tr(s, c); } static inline QString trUtf8(const char *s, const char *c = 0) { return staticMetaObject.trUtf8(s, c); } static inline QString tr(const char *s, const char *c, int n) { return staticMetaObject.tr(s, c, n); } static inline QString trUtf8(const char *s, const char *c, int n) { return staticMetaObject.trUtf8(s, c, n); } virtual int qt_metacall(QMetaObject::Call, int, void **); private: __attribute__((visibility("hidden"))) static const QMetaObjectExtraData staticMetaObjectExtraData; __attribute__((visibility("hidden"))) static void qt_static_metacall(QObject *, QMetaObject::Call, int, void **); inline QThreadPrivate* d_func() { return reinterpret_cast(qGetPtrHelper(d_ptr)); } inline const QThreadPrivate* d_func() const { return reinterpret_cast(qGetPtrHelper(d_ptr)); } friend class QThreadPrivate; static void initialize(); static void cleanup(); friend class QCoreApplication; friend class QThreadData; }; typedef QtValidLicenseForCoreModule QtCoreModule; class QThreadPoolPrivate; class QThreadPool : public QObject { public: template inline void qt_check_for_QOBJECT_macro(const T &_q_argument) const { int i = qYouForgotTheQ_OBJECT_Macro(this, &_q_argument); i = i; } static const QMetaObject staticMetaObject; virtual const QMetaObject *metaObject() const; virtual void *qt_metacast(const char *); static inline QString tr(const char *s, const char *c = 0) { return staticMetaObject.tr(s, c); } static inline QString trUtf8(const char *s, const char *c = 0) { return staticMetaObject.trUtf8(s, c); } static inline QString tr(const char *s, const char *c, int n) { return staticMetaObject.tr(s, c, n); } static inline QString trUtf8(const char *s, const char *c, int n) { return staticMetaObject.trUtf8(s, c, n); } virtual int qt_metacall(QMetaObject::Call, int, void **); private: __attribute__((visibility("hidden"))) static const QMetaObjectExtraData staticMetaObjectExtraData; __attribute__((visibility("hidden"))) static void qt_static_metacall(QObject *, QMetaObject::Call, int, void **); inline QThreadPoolPrivate* d_func() { return reinterpret_cast(qGetPtrHelper(d_ptr)); } inline const QThreadPoolPrivate* d_func() const { return reinterpret_cast(qGetPtrHelper(d_ptr)); } friend class QThreadPoolPrivate; friend class QFutureInterfaceBase; public: QThreadPool(QObject *parent = 0); ~QThreadPool(); static QThreadPool *globalInstance(); void start(QRunnable *runnable, int priority = 0); bool tryStart(QRunnable *runnable); int expiryTimeout() const; void setExpiryTimeout(int expiryTimeout); int maxThreadCount() const; void setMaxThreadCount(int maxThreadCount); int activeThreadCount() const; void reserveThread(); void releaseThread(); void waitForDone(); bool waitForDone(int msecs); }; typedef QtValidLicenseForCoreModule QtCoreModule; class QWaitConditionPrivate; class QMutex; class QReadWriteLock; class QWaitCondition { public: QWaitCondition(); ~QWaitCondition(); bool wait(QMutex *mutex, unsigned long time = (9223372036854775807L * 2UL + 1UL)); bool wait(QReadWriteLock *readWriteLock, unsigned long time = (9223372036854775807L * 2UL + 1UL)); void wakeOne(); void wakeAll(); private: QWaitCondition(const QWaitCondition &); QWaitCondition &operator=(const QWaitCondition &); QWaitConditionPrivate * d; }; typedef QtValidLicenseForCoreModule QtCoreModule; class QSemaphorePrivate; class QSemaphore { public: explicit QSemaphore(int n = 0); ~QSemaphore(); void acquire(int n = 1); bool tryAcquire(int n = 1); bool tryAcquire(int n, int timeout); void release(int n = 1); int available() const; private: QSemaphore(const QSemaphore &); QSemaphore &operator=(const QSemaphore &); QSemaphorePrivate *d; }; typedef QtValidLicenseForCoreModule QtCoreModule; namespace QtConcurrent { class ThreadEngineBarrier { private: QMutex mutex; QAtomicInt count; QSemaphore semaphore; public: ThreadEngineBarrier(); void acquire(); int release(); void wait(); int currentCount(); bool releaseUnlessLast(); }; enum ThreadFunctionResult { ThrottleThread, ThreadFinished }; class ThreadEngineBase: public QRunnable { public: ThreadEngineBase(); virtual ~ThreadEngineBase(); void startSingleThreaded(); void startBlocking(); void startThread(); bool isCanceled(); void waitForResume(); bool isProgressReportingEnabled(); void setProgressValue(int progress); void setProgressRange(int minimum, int maximum); void acquireBarrierSemaphore(); protected: virtual void start() {} virtual void finish() {} virtual ThreadFunctionResult threadFunction() { return ThreadFinished; } virtual bool shouldStartThread() { return futureInterface ? !futureInterface->isPaused() : true; } virtual bool shouldThrottleThread() { return futureInterface ? futureInterface->isPaused() : false; } private: bool startThreadInternal(); void startThreads(); void threadExit(); bool threadThrottleExit(); void run(); virtual void asynchronousFinish() = 0; void handleException(const QtConcurrent::Exception &exception); protected: QFutureInterfaceBase *futureInterface; QThreadPool *threadPool; ThreadEngineBarrier barrier; QtConcurrent::internal::ExceptionStore exceptionStore; }; template class ThreadEngine : public virtual ThreadEngineBase { public: typedef T ResultType; virtual T *result() { return 0; } QFutureInterface *futureInterfaceTyped() { return static_cast *>(futureInterface); } T *startSingleThreaded() { ThreadEngineBase::startSingleThreaded(); return result(); } T *startBlocking() { ThreadEngineBase::startBlocking(); return result(); } QFuture startAsynchronously() { futureInterface = new QFutureInterface(); futureInterface->reportStarted(); QFuture future = QFuture(futureInterfaceTyped()); start(); acquireBarrierSemaphore(); threadPool->start(this); return future; } void asynchronousFinish() { finish(); futureInterfaceTyped()->reportFinished(result()); delete futureInterfaceTyped(); delete this; } void reportResult(const T *_result, int index = -1) { if (futureInterface) futureInterfaceTyped()->reportResult(_result, index); } void reportResults(const QVector &_result, int index = -1, int count = -1) { if (futureInterface) futureInterfaceTyped()->reportResults(_result, index, count); } }; template class ThreadEngineStarterBase { public: ThreadEngineStarterBase(ThreadEngine *_threadEngine) : threadEngine(_threadEngine) { } inline ThreadEngineStarterBase(const ThreadEngineStarterBase &other) : threadEngine(other.threadEngine) { } QFuture startAsynchronously() { return threadEngine->startAsynchronously(); } operator QFuture() { return startAsynchronously(); } protected: ThreadEngine *threadEngine; }; template class ThreadEngineStarter : public ThreadEngineStarterBase { typedef ThreadEngineStarterBase Base; typedef ThreadEngine TypedThreadEngine; public: ThreadEngineStarter(TypedThreadEngine *eng) : Base(eng) { } T startBlocking() { T t = *this->threadEngine->startBlocking(); delete this->threadEngine; return t; } }; template <> class ThreadEngineStarter : public ThreadEngineStarterBase { public: ThreadEngineStarter(ThreadEngine *_threadEngine) :ThreadEngineStarterBase(_threadEngine) {} void startBlocking() { this->threadEngine->startBlocking(); delete this->threadEngine; } }; template inline ThreadEngineStarter startThreadEngine(ThreadEngine *threadEngine) { return ThreadEngineStarter(threadEngine); } } typedef QtValidLicenseForCoreModule QtCoreModule; namespace QtConcurrent { using std::advance; class BlockSizeManager { public: BlockSizeManager(int iterationCount); void timeBeforeUser(); void timeAfterUser(); int blockSize(); private: inline bool blockSizeMaxed() { return (m_blockSize >= maxBlockSize); } const int maxBlockSize; qint64 beforeUser; qint64 afterUser; Median controlPartElapsed; Median userPartElapsed; int m_blockSize; }; template class ResultReporter { public: ResultReporter(ThreadEngine *_threadEngine) :threadEngine(_threadEngine) { } void reserveSpace(int resultCount) { currentResultCount = resultCount; vector.resize(qMax(resultCount, vector.count())); } void reportResults(int begin) { const int useVectorThreshold = 4; if (currentResultCount > useVectorThreshold) { vector.resize(currentResultCount); threadEngine->reportResults(vector, begin); } else { for (int i = 0; i < currentResultCount; ++i) threadEngine->reportResult(&vector.at(i), begin + i); } } inline T * getPointer() { return vector.data(); } int currentResultCount; ThreadEngine *threadEngine; QVector vector; }; template <> class ResultReporter { public: inline ResultReporter(ThreadEngine *) { } inline void reserveSpace(int) { }; inline void reportResults(int) { }; inline void * getPointer() { return 0; } }; inline bool selectIteration(std::bidirectional_iterator_tag) { return false; } inline bool selectIteration(std::forward_iterator_tag) { return false; } inline bool selectIteration(std::random_access_iterator_tag) { return true; } template class IterateKernel : public ThreadEngine { public: typedef T ResultType; IterateKernel(Iterator _begin, Iterator _end) : begin(_begin), end(_end), current(_begin), currentIndex(0), forIteration(selectIteration(typename std::iterator_traits::iterator_category())), progressReportingEnabled(true) { iterationCount = forIteration ? std::distance(_begin, _end) : 0; } virtual ~IterateKernel() { } virtual bool runIteration(Iterator it, int index , T *result) { (void)it;; (void)index;; (void)result;; return false; } virtual bool runIterations(Iterator _begin, int beginIndex, int endIndex, T *results) { (void)_begin;; (void)beginIndex;; (void)endIndex;; (void)results;; return false; } void start() { progressReportingEnabled = this->isProgressReportingEnabled(); if (progressReportingEnabled && iterationCount > 0) this->setProgressRange(0, iterationCount); } bool shouldStartThread() { if (forIteration) return (currentIndex < iterationCount) && !this->shouldThrottleThread(); else return (iteratorThreads == 0); } ThreadFunctionResult threadFunction() { if (forIteration) return this->forThreadFunction(); else return this->whileThreadFunction(); } ThreadFunctionResult forThreadFunction() { BlockSizeManager blockSizeManager(iterationCount); ResultReporter resultReporter(this); for(;;) { if (this->isCanceled()) break; const int currentBlockSize = blockSizeManager.blockSize(); if (currentIndex >= iterationCount) break; const int beginIndex = currentIndex.fetchAndAddRelease(currentBlockSize); const int endIndex = qMin(beginIndex + currentBlockSize, iterationCount); if (beginIndex >= endIndex) { break; } this->waitForResume(); if (shouldStartThread()) this->startThread(); const int finalBlockSize = endIndex - beginIndex; resultReporter.reserveSpace(finalBlockSize); blockSizeManager.timeBeforeUser(); const bool resultsAvailable = this->runIterations(begin, beginIndex, endIndex, resultReporter.getPointer()); blockSizeManager.timeAfterUser(); if (resultsAvailable) resultReporter.reportResults(beginIndex); if (progressReportingEnabled) { completed.fetchAndAddAcquire(finalBlockSize); this->setProgressValue(this->completed); } if (this->shouldThrottleThread()) return ThrottleThread; } return ThreadFinished; } ThreadFunctionResult whileThreadFunction() { if (iteratorThreads.testAndSetAcquire(0, 1) == false) return ThreadFinished; ResultReporter resultReporter(this); resultReporter.reserveSpace(1); while (current != end) { Iterator prev = current; ++current; int index = currentIndex.fetchAndAddRelaxed(1); iteratorThreads.testAndSetRelease(1, 0); this->waitForResume(); if (shouldStartThread()) this->startThread(); const bool resultAavailable = this->runIteration(prev, index, resultReporter.getPointer()); if (resultAavailable) resultReporter.reportResults(index); if (this->shouldThrottleThread()) return ThrottleThread; if (iteratorThreads.testAndSetAcquire(0, 1) == false) return ThreadFinished; } return ThreadFinished; } public: const Iterator begin; const Iterator end; Iterator current; QAtomicInt currentIndex; bool forIteration; QAtomicInt iteratorThreads; int iterationCount; bool progressReportingEnabled; QAtomicInt completed; }; } typedef QtValidLicenseForCoreModule QtCoreModule; namespace QtConcurrent { enum { ReduceQueueStartLimit = 20, ReduceQueueThrottleLimit = 30 }; template class IntermediateResults { public: int begin, end; QVector vector; }; enum ReduceOption { UnorderedReduce = 0x1, OrderedReduce = 0x2, SequentialReduce = 0x4 }; typedef QFlags ReduceOptions; inline QFlags operator|(ReduceOptions::enum_type f1, ReduceOptions::enum_type f2) { return QFlags(f1) | f2; } inline QFlags operator|(ReduceOptions::enum_type f1, QFlags f2) { return f2 | f1; } inline QIncompatibleFlag operator|(ReduceOptions::enum_type f1, int f2) { return QIncompatibleFlag(int(f1) | f2); } template class ReduceKernel { typedef QMap > ResultsMap; const ReduceOptions reduceOptions; QMutex mutex; int progress, resultsMapSize, threadCount; ResultsMap resultsMap; bool canReduce(int begin) const { return (((reduceOptions & UnorderedReduce) && progress == 0) || ((reduceOptions & OrderedReduce) && progress == begin)); } void reduceResult(ReduceFunctor &reduce, ReduceResultType &r, const IntermediateResults &result) { for (int i = 0; i < result.vector.size(); ++i) { reduce(r, result.vector.at(i)); } } void reduceResults(ReduceFunctor &reduce, ReduceResultType &r, ResultsMap &map) { typename ResultsMap::iterator it = map.begin(); while (it != map.end()) { reduceResult(reduce, r, it.value()); ++it; } } public: ReduceKernel(ReduceOptions _reduceOptions) : reduceOptions(_reduceOptions), progress(0), resultsMapSize(0), threadCount(QThreadPool::globalInstance()->maxThreadCount()) { } void runReduce(ReduceFunctor &reduce, ReduceResultType &r, const IntermediateResults &result) { QMutexLocker locker(&mutex); if (!canReduce(result.begin)) { ++resultsMapSize; resultsMap.insert(result.begin, result); return; } if (reduceOptions & UnorderedReduce) { progress = -1; locker.unlock(); reduceResult(reduce, r, result); locker.relock(); while (!resultsMap.isEmpty()) { ResultsMap resultsMapCopy = resultsMap; resultsMap.clear(); locker.unlock(); reduceResults(reduce, r, resultsMapCopy); locker.relock(); resultsMapSize -= resultsMapCopy.size(); } progress = 0; } else { locker.unlock(); reduceResult(reduce, r, result); locker.relock(); progress += result.end - result.begin; typename ResultsMap::iterator it = resultsMap.begin(); while (it != resultsMap.end()) { if (it.value().begin != progress) break; locker.unlock(); reduceResult(reduce, r, it.value()); locker.relock(); --resultsMapSize; progress += it.value().end - it.value().begin; it = resultsMap.erase(it); } } } void finish(ReduceFunctor &reduce, ReduceResultType &r) { reduceResults(reduce, r, resultsMap); } inline bool shouldThrottle() { return (resultsMapSize > (ReduceQueueThrottleLimit * threadCount)); } inline bool shouldStartThread() { return (resultsMapSize <= (ReduceQueueStartLimit * threadCount)); } }; template struct SequenceHolder2 : public Base { SequenceHolder2(const Sequence &_sequence, Functor1 functor1, Functor2 functor2, ReduceOptions reduceOptions) : Base(_sequence.begin(), _sequence.end(), functor1, functor2, reduceOptions), sequence(_sequence) { } Sequence sequence; void finish() { Base::finish(); sequence = Sequence(); } }; } typedef QtValidLicenseForCoreModule QtCoreModule; namespace QtConcurrent { template class MapKernel : public IterateKernel { MapFunctor map; public: typedef void ReturnType; MapKernel(Iterator begin, Iterator end, MapFunctor _map) : IterateKernel(begin, end), map(_map) { } bool runIteration(Iterator it, int, void *) { map(*it); return false; } bool runIterations(Iterator sequenceBeginIterator, int beginIndex, int endIndex, void *) { Iterator it = sequenceBeginIterator; advance(it, beginIndex); for (int i = beginIndex; i < endIndex; ++i) { runIteration(it, i, 0); advance(it, 1); } return false; } }; template > class MappedReducedKernel : public IterateKernel { ReducedResultType reducedResult; MapFunctor map; ReduceFunctor reduce; Reducer reducer; public: typedef ReducedResultType ReturnType; MappedReducedKernel(Iterator begin, Iterator end, MapFunctor _map, ReduceFunctor _reduce, ReduceOptions reduceOptions) : IterateKernel(begin, end), reducedResult(), map(_map), reduce(_reduce), reducer(reduceOptions) { } MappedReducedKernel(ReducedResultType initialValue, MapFunctor _map, ReduceFunctor _reduce) : reducedResult(initialValue), map(_map), reduce(_reduce) { } bool runIteration(Iterator it, int index, ReducedResultType *) { IntermediateResults results; results.begin = index; results.end = index + 1; results.vector.append(map(*it)); reducer.runReduce(reduce, reducedResult, results); return false; } bool runIterations(Iterator sequenceBeginIterator, int begin, int end, ReducedResultType *) { IntermediateResults results; results.begin = begin; results.end = end; results.vector.reserve(end - begin); Iterator it = sequenceBeginIterator; advance(it, begin); for (int i = begin; i < end; ++i) { results.vector.append(map(*(it))); advance(it, 1); } reducer.runReduce(reduce, reducedResult, results); return false; } void finish() { reducer.finish(reduce, reducedResult); } bool shouldThrottleThread() { return IterateKernel::shouldThrottleThread() || reducer.shouldThrottle(); } bool shouldStartThread() { return IterateKernel::shouldStartThread() && reducer.shouldStartThread(); } typedef ReducedResultType ResultType; ReducedResultType *result() { return &reducedResult; } }; template class MappedEachKernel : public IterateKernel { MapFunctor map; typedef typename MapFunctor::result_type T; public: typedef T ReturnType; typedef T ResultType; MappedEachKernel(Iterator begin, Iterator end, MapFunctor _map) : IterateKernel(begin, end), map(_map) { } bool runIteration(Iterator it, int, T *result) { *result = map(*it); return true; } bool runIterations(Iterator sequenceBeginIterator, int begin, int end, T *results) { Iterator it = sequenceBeginIterator; advance(it, begin); for (int i = begin; i < end; ++i) { runIteration(it, i, results + (i - begin)); advance(it, 1); } return true; } }; template inline ThreadEngineStarter startMap(Iterator begin, Iterator end, Functor functor) { return startThreadEngine(new MapKernel(begin, end, functor)); } template inline ThreadEngineStarter startMapped(Iterator begin, Iterator end, Functor functor) { return startThreadEngine(new MappedEachKernel(begin, end, functor)); } template struct SequenceHolder1 : public Base { SequenceHolder1(const Sequence &_sequence, Functor functor) : Base(_sequence.begin(), _sequence.end(), functor), sequence(_sequence) { } Sequence sequence; void finish() { Base::finish(); sequence = Sequence(); } }; template inline ThreadEngineStarter startMapped(const Sequence &sequence, Functor functor) { typedef SequenceHolder1, Functor> SequenceHolderType; return startThreadEngine(new SequenceHolderType(sequence, functor)); } template inline ThreadEngineStarter startMappedReduced(const Sequence & sequence, MapFunctor mapFunctor, ReduceFunctor reduceFunctor, ReduceOptions options) { typedef typename Sequence::const_iterator Iterator; typedef ReduceKernel Reducer; typedef MappedReducedKernel MappedReduceType; typedef SequenceHolder2 SequenceHolderType; return startThreadEngine(new SequenceHolderType(sequence, mapFunctor, reduceFunctor, options)); } template inline ThreadEngineStarter startMappedReduced(Iterator begin, Iterator end, MapFunctor mapFunctor, ReduceFunctor reduceFunctor, ReduceOptions options) { typedef ReduceKernel Reducer; typedef MappedReducedKernel MappedReduceType; return startThreadEngine(new MappedReduceType(begin, end, mapFunctor, reduceFunctor, options)); } } typedef QtValidLicenseForCoreModule QtCoreModule; namespace QtConcurrent { template struct qValueType { typedef typename T::value_type value_type; }; template struct qValueType { typedef T value_type; }; template struct qValueType { typedef T value_type; }; template class FilterKernel : public IterateKernel { typedef ReduceKernel Reducer; typedef IterateKernel IterateKernelType; typedef typename ReduceFunctor::result_type T; Sequence reducedResult; Sequence &sequence; KeepFunctor keep; ReduceFunctor reduce; Reducer reducer; public: FilterKernel(Sequence &_sequence, KeepFunctor _keep, ReduceFunctor _reduce) : IterateKernelType(const_cast(_sequence).begin(), const_cast(_sequence).end()), reducedResult(), sequence(_sequence), keep(_keep), reduce(_reduce), reducer(OrderedReduce) { } bool runIteration(typename Sequence::const_iterator it, int index, T *) { IntermediateResults results; results.begin = index; results.end = index + 1; if (keep(*it)) results.vector.append(*it); reducer.runReduce(reduce, reducedResult, results); return false; } bool runIterations(typename Sequence::const_iterator sequenceBeginIterator, int begin, int end, T *) { IntermediateResults results; results.begin = begin; results.end = end; results.vector.reserve(end - begin); typename Sequence::const_iterator it = sequenceBeginIterator; advance(it, begin); for (int i = begin; i < end; ++i) { if (keep(*it)) results.vector.append(*it); advance(it, 1); } reducer.runReduce(reduce, reducedResult, results); return false; } void finish() { reducer.finish(reduce, reducedResult); sequence = reducedResult; } inline bool shouldThrottleThread() { return IterateKernelType::shouldThrottleThread() || reducer.shouldThrottle(); } inline bool shouldStartThread() { return IterateKernelType::shouldStartThread() && reducer.shouldStartThread(); } typedef void ReturnType; typedef void ResultType; }; template ::value_type> > class FilteredReducedKernel : public IterateKernel { ReducedResultType reducedResult; KeepFunctor keep; ReduceFunctor reduce; Reducer reducer; typedef IterateKernel IterateKernelType; public: FilteredReducedKernel(Iterator begin, Iterator end, KeepFunctor _keep, ReduceFunctor _reduce, ReduceOptions reduceOption) : IterateKernelType(begin, end), reducedResult(), keep(_keep), reduce(_reduce), reducer(reduceOption) { } bool runIteration(Iterator it, int index, ReducedResultType *) { IntermediateResults::value_type> results; results.begin = index; results.end = index + 1; if (keep(*it)) results.vector.append(*it); reducer.runReduce(reduce, reducedResult, results); return false; } bool runIterations(Iterator sequenceBeginIterator, int begin, int end, ReducedResultType *) { IntermediateResults::value_type> results; results.begin = begin; results.end = end; results.vector.reserve(end - begin); Iterator it = sequenceBeginIterator; advance(it, begin); for (int i = begin; i < end; ++i) { if (keep(*it)) results.vector.append(*it); advance(it, 1); } reducer.runReduce(reduce, reducedResult, results); return false; } void finish() { reducer.finish(reduce, reducedResult); } inline bool shouldThrottleThread() { return IterateKernelType::shouldThrottleThread() || reducer.shouldThrottle(); } inline bool shouldStartThread() { return IterateKernelType::shouldStartThread() && reducer.shouldStartThread(); } typedef ReducedResultType ReturnType; typedef ReducedResultType ResultType; ReducedResultType *result() { return &reducedResult; } }; template class FilteredEachKernel : public IterateKernel::value_type> { typedef typename qValueType::value_type T; typedef IterateKernel IterateKernelType; KeepFunctor keep; public: typedef T ReturnType; typedef T ResultType; FilteredEachKernel(Iterator begin, Iterator end, KeepFunctor _keep) : IterateKernelType(begin, end), keep(_keep) { } void start() { if (this->futureInterface) this->futureInterface->setFilterMode(true); IterateKernelType::start(); } bool runIteration(Iterator it, int index, T *) { if (keep(*it)) this->reportResult(&(*it), index); else this->reportResult(0, index); return false; } bool runIterations(Iterator sequenceBeginIterator, int begin, int end, T *) { const int count = end - begin; IntermediateResults::value_type> results; results.begin = begin; results.end = end; results.vector.reserve(count); Iterator it = sequenceBeginIterator; advance(it, begin); for (int i = begin; i < end; ++i) { if (keep(*it)) results.vector.append(*it); advance(it, 1); } this->reportResults(results.vector, begin, count); return false; } }; template inline ThreadEngineStarter::value_type> startFiltered(Iterator begin, Iterator end, KeepFunctor functor) { return startThreadEngine(new FilteredEachKernel(begin, end, functor)); } template inline ThreadEngineStarter startFiltered(const Sequence &sequence, KeepFunctor functor) { typedef SequenceHolder1, KeepFunctor> SequenceHolderType; return startThreadEngine(new SequenceHolderType(sequence, functor)); } template inline ThreadEngineStarter startFilteredReduced(const Sequence & sequence, MapFunctor mapFunctor, ReduceFunctor reduceFunctor, ReduceOptions options) { typedef typename Sequence::const_iterator Iterator; typedef ReduceKernel::value_type > Reducer; typedef FilteredReducedKernel FilteredReduceType; typedef SequenceHolder2 SequenceHolderType; return startThreadEngine(new SequenceHolderType(sequence, mapFunctor, reduceFunctor, options)); } template inline ThreadEngineStarter startFilteredReduced(Iterator begin, Iterator end, MapFunctor mapFunctor, ReduceFunctor reduceFunctor, ReduceOptions options) { typedef ReduceKernel::value_type> Reducer; typedef FilteredReducedKernel FilteredReduceType; return startThreadEngine(new FilteredReduceType(begin, end, mapFunctor, reduceFunctor, options)); } } typedef QtValidLicenseForCoreModule QtCoreModule; namespace QtConcurrent { template class FunctionWrapper0 { public: typedef T (*FunctionPointerType)(); typedef T result_type; inline FunctionWrapper0(FunctionPointerType _functionPointer) :functionPointer(_functionPointer) { } inline T operator()() { return functionPointer(); } private: FunctionPointerType functionPointer; }; template class FunctionWrapper1 { public: typedef T (*FunctionPointerType)(U u); typedef T result_type; inline FunctionWrapper1(FunctionPointerType _functionPointer) :functionPointer(_functionPointer) { } inline T operator()(U u) { return functionPointer(u); } private: FunctionPointerType functionPointer; }; template class FunctionWrapper2 { public: typedef T (*FunctionPointerType)(U u, V v); typedef T result_type; inline FunctionWrapper2(FunctionPointerType _functionPointer) :functionPointer(_functionPointer) { } inline T operator()(U u, V v) { return functionPointer(u, v); } private: FunctionPointerType functionPointer; }; template class MemberFunctionWrapper { public: typedef T (C::*FunctionPointerType)(); typedef T result_type; inline MemberFunctionWrapper(FunctionPointerType _functionPointer) :functionPointer(_functionPointer) { } inline T operator()(C &c) { return (c.*functionPointer)(); } private: FunctionPointerType functionPointer; }; template class MemberFunctionWrapper1 { public: typedef T (C::*FunctionPointerType)(U); typedef T result_type; inline MemberFunctionWrapper1(FunctionPointerType _functionPointer) : functionPointer(_functionPointer) { } inline T operator()(C &c, U u) { return (c.*functionPointer)(u); } private: FunctionPointerType functionPointer; }; template class ConstMemberFunctionWrapper { public: typedef T (C::*FunctionPointerType)() const; typedef T result_type; inline ConstMemberFunctionWrapper(FunctionPointerType _functionPointer) :functionPointer(_functionPointer) { } inline T operator()(const C &c) const { return (c.*functionPointer)(); } private: FunctionPointerType functionPointer; }; } namespace QtPrivate { template const T& createFunctionWrapper(const T& t) { return t; } template QtConcurrent::FunctionWrapper1 createFunctionWrapper(T (*func)(U)) { return QtConcurrent::FunctionWrapper1(func); } template QtConcurrent::MemberFunctionWrapper createFunctionWrapper(T (C::*func)()) { return QtConcurrent::MemberFunctionWrapper(func); } template QtConcurrent::MemberFunctionWrapper1 createFunctionWrapper(T (C::*func)(U)) { return QtConcurrent::MemberFunctionWrapper1(func); } template QtConcurrent::ConstMemberFunctionWrapper createFunctionWrapper(T (C::*func)() const) { return QtConcurrent::ConstMemberFunctionWrapper(func); } struct PushBackWrapper { typedef void result_type; template inline void operator()(C &c, const U &u) const { return c.push_back(u); } }; template ::Value> struct LazyResultType { typedef typename Functor::result_type Type; }; template struct LazyResultType { typedef void Type; }; template struct ReduceResultType; template struct ReduceResultType { typedef U ResultType; }; template struct ReduceResultType { typedef C ResultType; }; template struct MapResultType { typedef typename LazyResultType::Type ResultType; }; template struct MapResultType { typedef U ResultType; }; template struct MapResultType { typedef T ResultType; }; template